• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical analysis of high-pressure supercritical carbon dioxide jet in well drilling*

    2013-06-01 12:29:58DUYukun杜玉昆WANGRuihe王瑞和NIHongjian倪紅堅(jiān)
    關(guān)鍵詞:王瑞志遠(yuǎn)

    DU Yu-kun (杜玉昆), WANG Rui-he (王瑞和), NI Hong-jian (倪紅堅(jiān))

    College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, E-mail: duyukun_100@hotmail.com

    HUANG Zhi-yuan (黃志遠(yuǎn))

    Drilling Technology Research Institute, Sinopec Shengli Oilfield, Dongying 257000, China

    LI Mu-kun (李木坤)

    College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

    Dynamical analysis of high-pressure supercritical carbon dioxide jet in well drilling*

    DU Yu-kun (杜玉昆), WANG Rui-he (王瑞和), NI Hong-jian (倪紅堅(jiān))

    College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, E-mail: duyukun_100@hotmail.com

    HUANG Zhi-yuan (黃志遠(yuǎn))

    Drilling Technology Research Institute, Sinopec Shengli Oilfield, Dongying 257000, China

    LI Mu-kun (李木坤)

    College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

    (Received June 11, 2012, Revised December 10, 2012)

    This paper presents the design of an experimental setup and mathematical and physical models to determine the dynamical characteristics of the high-pressure supercritical carbon dioxide (SC-CO2) jet with a highly potential applications in the well drilling. The effects of three major factors on the wellbore dynamical characteristics of the high-pressure SC-CO2jet, i.e., the nozzle diameter, the standoff distance and the jet pressure are determined. It is indicated that the pressure of CO2reduces severely in the SC-CO2jet impact process. It is also found that the bottom-hole pressure and the temperature increase as the nozzle diameter increases but decrease with the increase of the standoff distance. The higher the jet pressure at the wellbore inlet is, the higher the pressure and the lower the temperature at the bottom-hole will be.

    supercritical carbon dioxide, wellbore dynamics, experimental determination

    Introduction

    Unconventional oil and gas resources such as the low-permeability oil and gas, the heavy oil, the tight gas, the shale gas and the coalbed methane have become major alternative energy resources due to the increasing energy demand. Thus, new methods were proposed and new technologies were developed to effectively exploit these unconventional oil and gas resources[1-3].

    SC-CO2is an ideal alternative to replace water, and it was demonstrated by Kolle that SC-CO2can penetrate the formation rock and improve the rate of the penetration at a lower pressure[3]. In addition, Kolle and Gupta et al.[4-8]suggested that the advantageous properties of SC-CO2,including the low viscosity, the high density, and the large diffusivity, make it possible to improve the hole-cleaning performance and to reduce the formation damage.

    Previous studies were mainly focused on the density, the viscosity, the heat capacity, the heat transfer, the extraction, the enhanced oil recovery and the sequestration storage of CO2[9-14]. The pure CO2is a highly potential drilling fluid, however, rather few experimental data were available in literature with regard to the wellbore dynamical characteristics of SCCO2jet due to the complexity of the jet process[15,16]. In this study, an experimental setup is designed and the mathematical and physical models are established to determine the wellbore dynamical characteristics of high-pressure SC-CO2jet with consideration of various influencing factors.

    1. Materials and methods

    1.1 Exper imental flow-p roc ess

    Theflow-processoftheSC-CO2drillingandcompletion experimental system is shown in Fig.1[17]. The experimental setup includes the storage tank, the boost pumps, the heater, the experimental wellbore, the solid separator, the liquid separator and the refrigerator. The booster pumps can be used to pressurize the pure CO2up to 100 MPa. The pressurized SC-CO2flows into the experimental wellbore after being heated to the temperature above the critical point of CO2using the heater, and then flows out of the wellbore after reacting with the rock core. Then the solid cuttings and the water vapor are removed by the solid separator and the liquid separator. Finally, the pure CO2fluid is cooled down using the refrigerator and returns to the storage tank.

    Fig.1 Flowchart of the SC-CO2drilling and completion experimental system

    Fig.2 Experimental wellbore

    Fig.3 Test point positions in the wellbore

    1.2 Experimental wellbore

    The experimental wellbore shown in Fig.2 is designed to test the SC-CO2jet’s dynamical characteristics and to effectively simulate the actual drilling process regarding various factors, including the confining pressure and the formation temperature. The back pressure valve between the wellbore and the separator can control the pressure state inside the wellbore, and combined with the relief valve near the outlet of wellbore it can rapidly release the wellbore pressure in the case of overpressure. Three jet nozzles with diameter ()D of 0.0016 m, 0.0023 m and 0.0046 m are used in the experiments while the standoff distance ()H can be adjusted from 0.002 m to 0.05 m. The pressure and the temperature of the SC-CO2in the experimental wellbore can be recorded by the data acquisition system. Test results show that the circulating cuttings can be effectively transported by the SC-CO2drilling fluid.

    The pressure and the temperature of the SC-CO2at the surface of the bottom-hole rock core can be tested by using the test plate to replace the rock core in Fig.2. The test points at the bottom-hole surface and the wellbore annulus are arranged as shown in Fig.3. There are five pressure test points and four tempera-ture test points on the bottom-hole surface, while seven pressure test points and seven temperature test points are on the wellbore annulus.

    1.3 Experimental procedure

    The experiment will follow the following procedure:

    (1) Switch on the heater and the refrigerator to the required temperatures.

    (2) Charge sufficient liquid CO2into the CO2storage tank.

    (3) Put a test plate into the experimental wellbore as shown in Fig.2.

    (4) Turn on the booster pumps and adjust the rotation speed to pressurize the SC-CO2to the required jet pressure at the wellbore inlet.

    (5) Turn off the booster pumps after the required jet time.

    2. Numerical model

    2.1 Mathematical formulation

    The standard kε- two equation turbulence model under high Reynolds number is chosen for establishing the mathematical model in this paper. The basic equations can be expressed as follows:

    Continuity equation

    uiis the speed in the coordinate direction i, ujis the speed in the coordinate direction j, xiand xjare the distances from the entry point, p is the pressure, k is the turbulent kinetic energy, ε is the dissipation rate of turbulent kinetic energy, σ is the turbulent Prandtl number, Cpis the fluid heat capacity, qTis the heat of fluid, T is the fluid temperature.

    2.2 Physical model

    The physical model is designed as shown in Fig.4 according to the experimental setup. The pump flow rate is 32 L/s, the nozzle diameter ranges from 0.001 m to 0.004 m and the standoff distance ranges from 0.003 m to 0.0012 m.

    Fig.4 Physical model

    Fig.5 Schematic diagram of whole grid meshing

    Due to the fact that the phase change of the carbon dioxide fluid in the jet process is severe, the flow field grid near the nozzle is locally refined, and the tetrahedron and parallelepiped grids are used to generate the mesh of the flow field comprehensively considering the accuracy and the speed of the calculation as shown in Fig.5, There are 565 773 nodes and 584 455 mixed cells in the model.2.3 Boundary conditions

    Inlet boundary: The inlet pressure is chosen as the wellbore inlet boundary condition because it can be controlled by adjusting the rotation speed of the booster pumps.

    Outlet boundary: The pressure and the velocity at the wellbore outlet are unpredictable for the phase state changes with the changing pressure at the wellbore inlet. While the mass flow at the wellbore outlet can be calculated at a certain rotation speed of the booster pumps so that the mass outlet is chosen as the wellbore outlet boundary condition.

    Solid surface boundary: The no-slip boundary method with the wall-function is employed to analyze the solid surface boundary in this study.

    3. Analysis results

    3.1 Distribution of flow characteristics in wellbore

    The pressure distribution of CO2in the wellbore is shown in Fig.6 under the following conditions: the jet pressure at the wellbore inlet is 30 MPa, the temperature is 70oC, the nozzle diameter is 0.0023 m and the standoff distance is twice of the nozzle diameter, that is, 0.0046 m. It can be seen that the pressure of CO2changes little in the drill pipe while it decreases greatly in the bottom-hole jet impact process and continues to decrease during the flow along the annulus and out of wellbore outlet.

    Fig.6 Distribution of wellbore pressure in the jet process

    Fig.7 Distribution of bottom-hole pressure

    The pressure distribution curves of CO2in the bottom-hole (pb) with different distance to bottomhole jet center point (Db) and in annulus (pa) with different distance to bottom-hole surface (Da) are shown in Fig.7 and Fig.8, respectively. It can be seen that the numerical calculation tallies well with the test results. The bottom-hole pressure drop as compared with the jet pressure at the wellbore inlet reaches 8.9 MPa in the jet impact process, the bottom-hole pressure decreases from the center point to the surrounding area, and the pressure in the annulus reduces until CO2flows out of the wellbore.

    Fig.8 Distribution of annulus pressure

    Fig.9 Distribution of bottom-hole temperature

    Fig.10 Distribution of annulus temperature

    The temperature distribution curves of CO2in the bottom-hole (Tb) and the annulus (Ta) are shown in Fig.9 and Fig.10, respectively. The bottom-hole temperature drop as compared with the jet temperature atthe wellbore inlet reaches 35oC in the jet impact process and the bottom-hole temperature decreases gradually from the jet impact center to the surrounding area. But the test temperature in the annulus rises while the calculation temperature reduces gradually near the wellbore outlet. This is because the wellbore in the lab is much shorter than the real drilling wellbore and it makes the heat easer to transfer from the wellbore inlet to the outlet so that the temperature drop of the fluid itself in the annulus is covered up.

    Fig.11 Effect of nozzle diameter on bottom-hole pressure

    Fig.12 Effect of nozzle diameter on bottom-hole temperature

    3.2 Dynamical characteristics of bottom-hole jet

    3.2.1 Effect of nozzle diameter

    Experiments are conducted to examine the effect of the nozzle diameter ()D on the bottom-hole jet dynamical characteristics as shown in Fig.11 and Fig.12 under the following conditions: the jet pressure and temperature at wellbore inlet is 30 MPa and 70oC, respectively. The standoff distance is 0.0046 m. It can be seen that the bottom-hole pressure increases while the pressure drop as compared with the jet pressure decreases with the increase of the nozzle diameter. The corresponding bottom-hole temperature shows that the smaller the nozzle diameter is, the lower the temperature and greater the temperature drop will be in the jet impact process. The phase state of CO2changes dramatically when the bottom-hole temperature is low enough, e.g., the state goes from the supercritical phase into the gaseous phase when the temperature drop reaches 40oC at the bottom-hole with 0.0016 m diameter nozzle.

    Fig.13 Effect of standoff distance on bottom-hole pressure

    Fig.14 Effect of standoff distance on bottom-hole temperature

    3.2.2 Effect of standoff distance

    Experiments are carried out to examine the effect of the standoff distance ()H on the bottom-hole jet dynamical characteristics, as shown in Fig.13 and Fig.14 under the following conditions: the jet pressure and temperature at wellbore inlet is 30 MPa and 70oC, respectively and the nozzle diameter is 0.0023 m. It can be seen that the bottom-hole pressure decreases with the increase of the standoff distance. The corresponding bottom-hole temperature shows that the larger the standoff distance is, the lower the temperature will be in the jet impact process. The initial high pressure and temperature with a small standoff distance can be attributed to two factors. First, the SC-CO2jet has not been fully developed when the standoff distance is too small. Second, the mutual interaction between the incoming jet and the returning flow is strong with a small standoff distance. Then the further increase of the standoff distance leads to a significant reduction of the jet axial velocity, which results in a decreased pressure and temperature.

    3.2.3 Effect of jet pressure

    The variations of the bottom-hole pressure and the temperature with the jet pressure ()p at the wellbore inlet are shown in Fig.15 and Fig.16 under the following conditions: the jet temperature at the wellbore inlet is 70oC, the nozzle diameter is 0.0023 mand the standoff distance is 0.0046 m. It can be seen that the numerical calculation tallies well with the test results. It is shown that the higher the pressure is at the wellbore inlet, the higher the pressure and lower the temperature will be at the bottom hole. But the greater the pressure and temperature drop will take place in the jet process. The pressure drop increases from 7.1 MPa to 13.5 MPa when the pressure at the wellbore inlet increases from 25 MPa to 45 MPa. The reason is that the jet speeds up and the fluid phase state change is much greater when the pressure at the wellbore inlet becomes larger.

    Fig.15 Effect of jet pressure on bottom-hole pressure

    Fig.16 Effect of jet pressure on bottom-hole temperature

    4. Conclusions

    (1) An experimental setup is designed and mathematical and physical models are established in this study to determine the dynamical characteristics of high-pressure SC-CO2jet at the bottom-hole and wellbore annulus.

    (2) The pressure of CO2changes little in the drill pipe while it decreases greatly in the bottom-hole jet impact process and continues to reduce during the flow along the annulus and out of the wellbore outlet.

    (3) The wellbore pressure and temperature increase while the pressure drop decreases with the increase of the nozzle diameter. The phase state of CO2turns from the supercritical phase into the gaseous phase when the temperature drop reaches 40oC at the bottom-hole with 0.0016 m diameter nozzle. The bottom-hole pressure and temperature decrease with the increase of the standoff distance. The higher the jet pressure at the wellbore inlet is, the higher the pressure and lower the temperature at the bottom-hole will be and the greater the pressure drop will be in the jetting process.

    The promising experimental findings in this study demonstrate that it is important to control the phase state of CO2in the potential applications in the drilling field.

    Acknowledgement

    This work was supported by the Excellent Ph. D. Thesis Training Fund of China University of Petroleum, the Fundamental Research Funds for the Central Universities (Grant No. 11CX06021A).

    [1] WINTER E M. Availability of depleted oi1and gas reservoirs for disposal of carbon dioxide in the United States[J]. Energy Conversion and Management, 2001, 34(6): 1177-1187.

    [2] ZHAO Ming-guo, ZHOU Hai-fei and CHEN Ding-feng. Investigation and application on gas-driving development in ultra-low permeability reservoirs[J]. Journal of Hydrodynamics, 2008, 20(2): 254-260.

    [3] WANG Ke-liang, LIANG Shou-cheng and YUAN Xinqiang et al. Seepage ability of high-pressure hot composite foam in porous media[J]. Journal of Hydrodynamics, 2010, 22(1): 91-95.

    [4] KOLLE J. J. Coiled-tubing drilling with supercritical carbon dioxide[C]. SPE/CIM International Conference on Horizontal Well Technology. Calgary, Alberta, Canada, 2000, 1-9.

    [5] GUPTA A. P., GUPTA A. and LANGLINAIS J. Feasibility of supercritical carbon dioxide as a drilling fluid for deep underbalanced drilling operation[C]. SPE Annual Technical Conference and Exhibition. Dallas, Texas, USA, 2005, 1-10.

    [6] FAISAL A. Mechanistic modeling of an underbalanced drilling operation utilizing supercritical carbon dioxide[D]. Baton Rouge, Louisiana, USA: Louisiana State University, 2007.

    [7] ZEKRI A. Y., ALMEHAIDEB R. A. and SHEDID S. A. Displavement efficiency of supercritical CO2flooding in tight carbonate rocks under immiscible and miscible conditions[C]. SPE Europec/EAGE Annual Conference and Exhibition. Vienna, Austria, 2006, 1-7.

    [8] SHEN Ping-ping, JIANG Huai-you and CHEN Yongwu. EOR study of CO2injection[J]. Special Oil and Gas Reservoirs, 2007, 14(3): 1-4(in Chinese).

    [9] CARROLL J. J., BOYLE T. B. Calculation of acid gas density in the vapor, liquid and dense phase region[C]. 51st Canadian Chemical Engineering Conference. Calgary, Alberta, Canada, 2001, 1-7.

    [10] SMITH J. M., VANN NESS H. C. and ABBOTT M. Introduction to chemical engineering thermodynamics[M]. 7th Edition, New York: McGraw Hill, 2004.

    [11] POLING B. E., PRAUSNITZ J. M. and O’CONNELL J. P. Properties of gases and liquids[M]. 5th Edition, New York, USA: McGraw Hill, 2001.

    [12] QI Xin-hua, ZHUANG Yuan-yi. Appliance of supercritical fluid technology in the field of environment science[M]. Beijing, China: Science Press, 2005(in Chinese).

    [13] YANG D., GU Y. and TONTIWACHWUTHIKUL P. Wettability determination of the crude oil-reservoir brine-reservoir rock systems with dissolution of CO2at high pressures and elevated temperatures[J]. Energy and Fuels, 2008, 22(4): 2362-2371.

    [14] YANG F., BAI B. and DUNN-NORMAN S. Modeling the effects of completion techniques and formation heterogeneity on CO2sequestration in shallow and deep saline aquifers[J]. Environmental Earth Sciences, 2011, 64(3): 841-849.

    [15] WANG Rui-he, DU Yu-kun and NI Hong-jian et al. Hydrodynamic analysis of suck-in pulsed jet in well drilling[J]. Journal of Hydrodynamics, 2011, 23(1): 34-41.

    [16] NI Hong-jian, WANG Rui-he and GE H. K. Numerical simulation on rock breaking under high pressure water jet[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 550-554(in Chinese).

    [17] WANG Rui-he, NI Hong-jian and DU Yu-kun. Supercritical fluid drilling and completion simulation experiment device[P]. CN Patent, 201120017722.X, 2011-08-10(in Chinese).

    10.1016/S1001-6058(11)60392-3

    * Project supported by the National Natural Science Foundation of China (50974130, 51034007), the National Basic Research Development Program of China (973 Program, Grant No. 2010CB226700).

    Biography: DU Yu-kun (1983-), Male, Ph. D., Lecturer

    猜你喜歡
    王瑞志遠(yuǎn)
    Effect of desorbed gas on microwave breakdown on vacuum side of dielectric window
    Graph dynamical networks for forecasting collective behavior of active matter
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    Magnetic properties of oxides and silicon single crystals
    呼志遠(yuǎn)美術(shù)作品
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    與愛(ài)情無(wú)關(guān)
    婚育與健康(2017年7期)2017-09-11 02:07:14
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    日韩欧美一区二区三区在线观看 | 国产一区二区三区视频了| 少妇精品久久久久久久| 久久人妻熟女aⅴ| 久久香蕉激情| 国产成人av激情在线播放| 热99国产精品久久久久久7| 国产成人欧美| 亚洲久久久国产精品| 久久免费观看电影| 欧美中文综合在线视频| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| 国产精品九九99| 欧美精品一区二区免费开放| 久久国产精品人妻蜜桃| 五月开心婷婷网| 亚洲人成电影观看| av一本久久久久| 免费在线观看视频国产中文字幕亚洲| 91成人精品电影| 免费高清在线观看日韩| 成年女人毛片免费观看观看9 | 欧美激情久久久久久爽电影 | 日韩一卡2卡3卡4卡2021年| 99精品在免费线老司机午夜| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 一进一出抽搐动态| 黄色毛片三级朝国网站| av线在线观看网站| 90打野战视频偷拍视频| 无人区码免费观看不卡 | 国产男女超爽视频在线观看| 麻豆国产av国片精品| 两个人看的免费小视频| 999精品在线视频| 1024香蕉在线观看| tocl精华| 窝窝影院91人妻| 不卡一级毛片| 97在线人人人人妻| 亚洲少妇的诱惑av| 免费av中文字幕在线| 精品国产乱子伦一区二区三区| 国产成人精品久久二区二区免费| 久久国产精品影院| 色在线成人网| 一个人免费在线观看的高清视频| 免费观看人在逋| 叶爱在线成人免费视频播放| 日韩视频一区二区在线观看| 一进一出好大好爽视频| 国产一卡二卡三卡精品| 人人妻人人澡人人爽人人夜夜| 又大又爽又粗| 18禁黄网站禁片午夜丰满| 精品午夜福利视频在线观看一区 | av免费在线观看网站| 99国产极品粉嫩在线观看| 亚洲精品在线观看二区| 日本欧美视频一区| 亚洲熟妇熟女久久| 满18在线观看网站| 在线看a的网站| 又大又爽又粗| 国产欧美日韩精品亚洲av| 美女高潮到喷水免费观看| 国产一卡二卡三卡精品| 日韩熟女老妇一区二区性免费视频| 黄频高清免费视频| 免费人妻精品一区二区三区视频| 精品熟女少妇八av免费久了| 别揉我奶头~嗯~啊~动态视频| 狂野欧美激情性xxxx| 成人国产av品久久久| av不卡在线播放| 在线观看免费视频日本深夜| 亚洲少妇的诱惑av| 欧美黄色片欧美黄色片| 久久久国产精品麻豆| 久久久久久久久久久久大奶| 美女主播在线视频| 老司机福利观看| 日日爽夜夜爽网站| 色老头精品视频在线观看| www.自偷自拍.com| 99精品欧美一区二区三区四区| 满18在线观看网站| 日本一区二区免费在线视频| 一区二区av电影网| 男人操女人黄网站| 两人在一起打扑克的视频| 亚洲欧洲日产国产| 免费一级毛片在线播放高清视频 | 精品国产超薄肉色丝袜足j| 欧美 亚洲 国产 日韩一| 国产日韩欧美视频二区| 午夜激情av网站| 国产在线一区二区三区精| 国产一卡二卡三卡精品| 18禁美女被吸乳视频| 亚洲人成电影免费在线| www.熟女人妻精品国产| 亚洲熟女毛片儿| 人人妻人人爽人人添夜夜欢视频| 99热网站在线观看| 下体分泌物呈黄色| 国产欧美日韩精品亚洲av| 国产成人av教育| 亚洲国产欧美网| 国产亚洲精品第一综合不卡| 亚洲精华国产精华精| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美| 久久人妻熟女aⅴ| 国产男女内射视频| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 日韩有码中文字幕| 欧美日韩国产mv在线观看视频| 亚洲成人免费av在线播放| 最近最新中文字幕大全免费视频| 亚洲欧美日韩高清在线视频 | 欧美一级毛片孕妇| 丰满饥渴人妻一区二区三| 一二三四社区在线视频社区8| 日韩有码中文字幕| 男女边摸边吃奶| av天堂久久9| 亚洲国产欧美日韩在线播放| 免费观看人在逋| 美女扒开内裤让男人捅视频| 中文字幕制服av| 国产av精品麻豆| 熟女少妇亚洲综合色aaa.| 在线观看66精品国产| 精品人妻熟女毛片av久久网站| 久久这里只有精品19| 我要看黄色一级片免费的| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 91精品国产国语对白视频| 色在线成人网| 国产av又大| 午夜福利视频精品| 少妇被粗大的猛进出69影院| 99久久国产精品久久久| 免费日韩欧美在线观看| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情久久久久久爽电影 | 亚洲成人手机| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 夜夜骑夜夜射夜夜干| 国产主播在线观看一区二区| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 亚洲,欧美精品.| 免费在线观看黄色视频的| 天天躁日日躁夜夜躁夜夜| 国产不卡一卡二| 桃红色精品国产亚洲av| 日日爽夜夜爽网站| 国产淫语在线视频| 国产精品美女特级片免费视频播放器 | 老司机在亚洲福利影院| 欧美激情极品国产一区二区三区| 亚洲第一欧美日韩一区二区三区 | 国产伦人伦偷精品视频| 黄色怎么调成土黄色| 亚洲成人免费av在线播放| 1024视频免费在线观看| 香蕉久久夜色| 18禁国产床啪视频网站| 99久久国产精品久久久| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 亚洲三区欧美一区| 日韩视频一区二区在线观看| 淫妇啪啪啪对白视频| av天堂在线播放| 电影成人av| 亚洲欧美日韩高清在线视频 | 中文字幕最新亚洲高清| 亚洲 国产 在线| 日本a在线网址| 中文字幕最新亚洲高清| 免费少妇av软件| 一区二区三区精品91| 欧美乱码精品一区二区三区| 他把我摸到了高潮在线观看 | 久久狼人影院| 色婷婷av一区二区三区视频| 亚洲成人免费电影在线观看| 日本a在线网址| 青青草视频在线视频观看| 亚洲少妇的诱惑av| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频| 亚洲avbb在线观看| 乱人伦中国视频| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 久久中文看片网| 最新在线观看一区二区三区| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| 天天躁日日躁夜夜躁夜夜| 91麻豆精品激情在线观看国产 | 成年人黄色毛片网站| 夜夜骑夜夜射夜夜干| 免费在线观看完整版高清| 免费不卡黄色视频| 中文字幕制服av| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 99re6热这里在线精品视频| 成人国产av品久久久| 汤姆久久久久久久影院中文字幕| 色婷婷久久久亚洲欧美| videosex国产| 9色porny在线观看| 国产av一区二区精品久久| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 五月开心婷婷网| 丰满人妻熟妇乱又伦精品不卡| 大型黄色视频在线免费观看| 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区免费| 中文字幕人妻丝袜一区二区| 国产精品欧美亚洲77777| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看| 丁香六月欧美| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看 | 91精品三级在线观看| 久久久久视频综合| 老熟女久久久| 中文字幕人妻熟女乱码| 亚洲成人免费电影在线观看| 久久亚洲真实| 欧美 亚洲 国产 日韩一| 亚洲熟妇熟女久久| 久久人人爽av亚洲精品天堂| av视频免费观看在线观看| 国产麻豆69| 一边摸一边做爽爽视频免费| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看| 亚洲综合色网址| 日韩制服丝袜自拍偷拍| av福利片在线| 精品国产亚洲在线| 国产黄色免费在线视频| 亚洲一区中文字幕在线| 国产有黄有色有爽视频| 亚洲成人手机| av有码第一页| 怎么达到女性高潮| 国产不卡av网站在线观看| 最新在线观看一区二区三区| 欧美 日韩 精品 国产| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情极品国产一区二区三区| 亚洲欧美日韩高清在线视频 | 国产精品电影一区二区三区 | 这个男人来自地球电影免费观看| 国产亚洲欧美在线一区二区| 国产成人av激情在线播放| 精品一区二区三卡| 最新在线观看一区二区三区| 日韩免费av在线播放| 天堂中文最新版在线下载| 久久影院123| 国产xxxxx性猛交| 国产成人一区二区三区免费视频网站| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 啦啦啦 在线观看视频| www.熟女人妻精品国产| 久久国产精品男人的天堂亚洲| bbb黄色大片| 一边摸一边做爽爽视频免费| 男女边摸边吃奶| 免费在线观看视频国产中文字幕亚洲| 叶爱在线成人免费视频播放| netflix在线观看网站| 亚洲久久久国产精品| svipshipincom国产片| 精品亚洲成国产av| 99热网站在线观看| 十八禁高潮呻吟视频| 久久香蕉激情| 欧美成人午夜精品| 久久久久国内视频| 国产精品99久久99久久久不卡| 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花| 怎么达到女性高潮| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| av一本久久久久| 精品一区二区三卡| 大片电影免费在线观看免费| 国产成人系列免费观看| 一本色道久久久久久精品综合| 国产精品久久久久久精品古装| 亚洲精品自拍成人| 麻豆成人av在线观看| 久久99一区二区三区| netflix在线观看网站| 国产三级黄色录像| 午夜福利视频精品| 国产免费现黄频在线看| 国产免费视频播放在线视频| 大香蕉久久网| 精品高清国产在线一区| 国产成人精品在线电影| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 亚洲中文av在线| 黄色怎么调成土黄色| 日韩欧美三级三区| 丰满迷人的少妇在线观看| 午夜福利一区二区在线看| 精品午夜福利视频在线观看一区 | 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久精品吃奶| 高清欧美精品videossex| 国产一区二区三区在线臀色熟女 | 丰满迷人的少妇在线观看| 另类亚洲欧美激情| www.熟女人妻精品国产| 18禁国产床啪视频网站| 成人影院久久| 18禁国产床啪视频网站| 青青草视频在线视频观看| 欧美激情 高清一区二区三区| 伦理电影免费视频| 久久av网站| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三| 夫妻午夜视频| 热99久久久久精品小说推荐| 久久热在线av| 99国产精品免费福利视频| 制服人妻中文乱码| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 性高湖久久久久久久久免费观看| 美女福利国产在线| 亚洲九九香蕉| 老司机亚洲免费影院| 日本a在线网址| av不卡在线播放| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 一级片免费观看大全| 女性被躁到高潮视频| 亚洲七黄色美女视频| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| 久久精品亚洲熟妇少妇任你| 久久久久久久精品吃奶| 一级黄色大片毛片| 欧美精品一区二区免费开放| 国产高清视频在线播放一区| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 亚洲avbb在线观看| 亚洲精品一二三| 丰满迷人的少妇在线观看| 午夜福利,免费看| 亚洲情色 制服丝袜| 国产伦理片在线播放av一区| 91老司机精品| 亚洲中文av在线| 精品少妇内射三级| 99国产综合亚洲精品| 91九色精品人成在线观看| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区久久| 性色av乱码一区二区三区2| 免费日韩欧美在线观看| 男女边摸边吃奶| 中文亚洲av片在线观看爽 | 色视频在线一区二区三区| 亚洲久久久国产精品| av国产精品久久久久影院| 国产在线免费精品| 香蕉久久夜色| 欧美精品一区二区大全| 日韩中文字幕欧美一区二区| 欧美人与性动交α欧美精品济南到| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 国产成人系列免费观看| 一级毛片电影观看| 亚洲男人天堂网一区| 亚洲 欧美一区二区三区| 久久av网站| 脱女人内裤的视频| 黄色视频,在线免费观看| 无限看片的www在线观看| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 青草久久国产| 亚洲 国产 在线| 最新在线观看一区二区三区| 精品一品国产午夜福利视频| av天堂久久9| 精品人妻熟女毛片av久久网站| 黄色毛片三级朝国网站| 免费观看人在逋| 一边摸一边抽搐一进一出视频| 1024视频免费在线观看| 老司机靠b影院| 18禁黄网站禁片午夜丰满| 国产日韩欧美亚洲二区| 午夜久久久在线观看| 热99久久久久精品小说推荐| 99精品在免费线老司机午夜| 国内毛片毛片毛片毛片毛片| 亚洲一区中文字幕在线| 久久性视频一级片| 日韩免费av在线播放| 两人在一起打扑克的视频| 日本欧美视频一区| 成人18禁高潮啪啪吃奶动态图| 久久久水蜜桃国产精品网| 99久久99久久久精品蜜桃| 一夜夜www| 亚洲专区国产一区二区| 别揉我奶头~嗯~啊~动态视频| 99国产极品粉嫩在线观看| 91麻豆av在线| 日韩欧美三级三区| 亚洲av片天天在线观看| 欧美精品一区二区大全| 不卡一级毛片| 国产成人免费观看mmmm| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产区一区二| 精品国产一区二区久久| 日韩 欧美 亚洲 中文字幕| 国产一区有黄有色的免费视频| 首页视频小说图片口味搜索| 他把我摸到了高潮在线观看 | 肉色欧美久久久久久久蜜桃| 精品少妇一区二区三区视频日本电影| 国产欧美日韩综合在线一区二区| tube8黄色片| www.熟女人妻精品国产| 亚洲精品国产精品久久久不卡| 午夜福利影视在线免费观看| 视频在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 国产精品亚洲av一区麻豆| av欧美777| 黄色a级毛片大全视频| 午夜福利在线免费观看网站| 老司机在亚洲福利影院| 69精品国产乱码久久久| 一个人免费看片子| 亚洲精品国产色婷婷电影| 日韩欧美三级三区| 久久精品国产综合久久久| 交换朋友夫妻互换小说| 婷婷成人精品国产| 亚洲成国产人片在线观看| 热99久久久久精品小说推荐| 少妇猛男粗大的猛烈进出视频| 91av网站免费观看| 亚洲成人免费电影在线观看| 极品人妻少妇av视频| 国产主播在线观看一区二区| 日日夜夜操网爽| 天堂中文最新版在线下载| 亚洲熟女毛片儿| 精品熟女少妇八av免费久了| 欧美av亚洲av综合av国产av| 国产精品一区二区免费欧美| 亚洲av电影在线进入| 女性被躁到高潮视频| 欧美成狂野欧美在线观看| 国产男靠女视频免费网站| 久久久精品94久久精品| 亚洲精品粉嫩美女一区| 岛国在线观看网站| 欧美日韩视频精品一区| videos熟女内射| 久久ye,这里只有精品| 久久精品人人爽人人爽视色| 午夜激情av网站| 欧美日韩一级在线毛片| 搡老岳熟女国产| 最新美女视频免费是黄的| 91成年电影在线观看| 国产精品久久久久久精品电影小说| 后天国语完整版免费观看| 涩涩av久久男人的天堂| 91大片在线观看| 90打野战视频偷拍视频| 黄色成人免费大全| 国产麻豆69| 国产免费av片在线观看野外av| 国产精品电影一区二区三区 | 国产男女内射视频| 美女高潮到喷水免费观看| 高清欧美精品videossex| 国产精品偷伦视频观看了| 国产亚洲精品第一综合不卡| 成人18禁高潮啪啪吃奶动态图| 国产精品自产拍在线观看55亚洲 | 亚洲精品久久成人aⅴ小说| av国产精品久久久久影院| 国产福利在线免费观看视频| 999精品在线视频| 精品欧美一区二区三区在线| 久久久久精品人妻al黑| 久久精品亚洲熟妇少妇任你| 久久久国产成人免费| 午夜福利欧美成人| 久久 成人 亚洲| 久久亚洲真实| av线在线观看网站| 国产高清国产精品国产三级| 久久中文字幕人妻熟女| 午夜两性在线视频| 一本色道久久久久久精品综合| 亚洲男人天堂网一区| 我要看黄色一级片免费的| 中文欧美无线码| 国产一区有黄有色的免费视频| 国产成人av激情在线播放| 亚洲av第一区精品v没综合| 亚洲精品在线美女| 婷婷丁香在线五月| 亚洲熟妇熟女久久| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 黄片小视频在线播放| 中文字幕精品免费在线观看视频| 欧美日韩视频精品一区| 国产淫语在线视频| 热re99久久国产66热| 丝袜人妻中文字幕| 波多野结衣av一区二区av| 人人妻人人添人人爽欧美一区卜| 满18在线观看网站| 大型黄色视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 午夜福利在线免费观看网站| 亚洲熟女毛片儿| 久久久久视频综合| 亚洲精品国产精品久久久不卡| 欧美精品亚洲一区二区| 亚洲人成伊人成综合网2020| 国产精品免费一区二区三区在线 | 中文亚洲av片在线观看爽 | 五月天丁香电影| 日本一区二区免费在线视频| 欧美午夜高清在线| 女人爽到高潮嗷嗷叫在线视频| 日本av免费视频播放| 精品视频人人做人人爽| 亚洲av片天天在线观看| 久久精品亚洲av国产电影网| 精品一区二区三卡| 精品少妇内射三级| 91国产中文字幕| 国产成人系列免费观看| 日日摸夜夜添夜夜添小说| 母亲3免费完整高清在线观看| 97在线人人人人妻| 黄色怎么调成土黄色| av网站免费在线观看视频| 亚洲少妇的诱惑av| 黄色怎么调成土黄色| 一级片免费观看大全| 精品亚洲成a人片在线观看| 精品少妇久久久久久888优播| 欧美精品一区二区大全| 亚洲少妇的诱惑av| 一级毛片女人18水好多| 久久天躁狠狠躁夜夜2o2o| 国产男靠女视频免费网站| 亚洲欧美日韩高清在线视频 | 纯流量卡能插随身wifi吗| 色尼玛亚洲综合影院| 99国产综合亚洲精品| 12—13女人毛片做爰片一| 国产片内射在线| 肉色欧美久久久久久久蜜桃| 纯流量卡能插随身wifi吗| 久久午夜综合久久蜜桃| 久久99一区二区三区| 亚洲精品在线观看二区| 精品国产乱子伦一区二区三区|