• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media*

    2013-06-01 12:29:58NIUJun牛駿SHIZaihong石在虹

    NIU Jun (牛駿), SHI Zai-hong (石在虹)

    Petroleum Exploration and Production Research Institute of SINOPEC, Beijing 100083, China,

    E-mail: niujun.syky@sinopec.com

    TAN Wen-chang (譚文長(zhǎng))

    State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China

    The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media*

    NIU Jun (牛駿), SHI Zai-hong (石在虹)

    Petroleum Exploration and Production Research Institute of SINOPEC, Beijing 100083, China,

    E-mail: niujun.syky@sinopec.com

    TAN Wen-chang (譚文長(zhǎng))

    State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China

    (Received July 18, 2013, Revised July 24, 2013)

    The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate, while the increase of retardation time tends to stabilize the flow and suppress the heat transfer. The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, resulting in more complicated flow patterns in the porous medium.

    viscoelastic effect, thermal convection, Oldroyd-B fluids, porous medium

    Thermal convection of viscoelastic Oldroyd-B fluids in porous media is an issue of great importance, as applications are found in many fields such as bioengineering and oil reservoir engineering[1]. However, due to the lack of a simple model for the description of viscoelastic flow behavior, the studies of thermal convection of Oldroyd-B fluids in porous media are far less than fruitful as compared with those of Newtonian fluids[2,3].

    Recently, the modified Darcy’s law[4]has drawn much attention in the research of thermal instability problem of Oldroyd-B fluid saturated porous media heated from below. With the modified Darcy’s law, Fu et al.[5]numerically analyzed the thermal convection of an Oldroyd-B fluid in an impermeable porous square box heated from below with a constant bottom temperature. It is found that the thermal convection of Oldroyd-B fluids in porous layers has earlier bifurcations with the increase of the Darcy-Rayleigh number than that of Newtonian fluids. Therefore, their heat transfer characteristics are quite different. However, to the best of our knowledge, no results have been published for thermal convection of an Oldroyd-B fluid in an open-top porous medium under a constant heat flux boundary condition. The objective of this work is to investigate the viscoelastic effects on the thermal convection of an Oldroyd-B fluid in an open-top porous medium with a constant heat flux.

    Our model is a bounded two-dimensional square porous medium of thickness H. The top horizontal boundary of the medium is isothermal with a constant temperature0T, and is permeable along which the pressure is assumed as a constant. The impermeable bottom boundary is exposed to a constant heat flux q. The two vertical boundaries are adiabatic and impermeable. The porous medium has a permeability K and is saturated by an incompressible Oldroyd-B fluid with a constant dynamic viscosity μ, a coefficient of thermal expansion β and a density ρ. The fluid-saturated porous medium has a thermal conductivity k and thermal diffusivity κ. The modified Darcy’s law is employed in this work leading to the following governing equations[5]

    Here, lengths are non-dimensionalized with H, time with2/Hκ, temperature with /qHk, and velocities with /Hκ. The Darcy-Rayleigh number =Ra KβρgH2q/μkκ is the dimensionless parameter de-0termining the vigor of convection within the porous medium.are dimensionless relaxation and retardation and relaxation times, respectively. The constant pressure boundary condition is converted into an equivalent velocity boundary condition

    The bulk-averaged Nusselt number Nu is used to estimate the convection heat transport characteristics in the porous medium, which is given by =Nuwith the angle brackets indicating the long-time average. Equations (5) - (7) are numerically solved with the program we coded based on the finite difference method.

    Our most interest to investigate the effects of the parameters λ and ε on the heat transport characteristics and flow patterns. We consider the following parameter pairs: (1) =0.3λ, =0.2ε, (2) =0.2λ, ε=0.1, (3) λ=0.3, ε=0.1 and calculate the flow and the heat transfer for each case. As Cases (2) and (3) have the same retardation time value, the results can be used to analyze the effect of the relaxation time. Similarly, the comparison of results of Cases (1) and (3) may reveal the effect of retardation time value.

    Fig.1 Comparison of the heat transfer curves for the three cases of the Oldroyd-B fluid. Also shown is the curve for a Newtonian fluid

    The bulk-averaged Nusselt number Nu as a function of the Darcy-Rayleigh number Ra up to 400 are shown in Fig.1 for the three cases of λ and ε as well as Newtonian fluid case. For Cases (1) and (2), interestingly, parts of the two heat transfer curves almost overlap with that for a Newtonian fluid. It can be inferred from this phenomenon that the steady convection after onset can suppress the oscillatory convection and dominate the convection process, as has also been observed in the previous work[5]. This trend persists for Ra up to about 45. As Ra further increases, the heat transfer curve for Case (2) separates first from the curve for a Newtonian fluid and is located above the Newtonian fluid curve. The heat transfer curve for Case (1) will also separate from that for a Newtonian fluid when Ra is larger than about 50. However, contrary to the curve for Case (2), it is located below the curve for a Newtonian fluid when Ra is in the range between 50 and 175. There is a sharp increase in the heat transfer rate for Case (1) at Ra=185, such that this curve jumps up and intersects the curve for a Newtonian fluid at Ra around 200. The heat transfer curve for Case (3), however, has no part overlapping with that for a Newtonian fluid and is located totally above the other three curves shown in Fig.1. These distinct properties of the heat transfer process for Cases (1), (2) and (3) are caused by a series of transitions of the flow pattern inside the porous medium, which in turn are affected by the viscoelasticity of the fluid, as will be discussed in detail later on.

    Comparing the curves in Fig.1 for Cases (1) and (3), in which =0.3λ and ε is equal to 0.2, 0.1, it can be seen that a larger value of ε corresponds to a smaller Nu. Therefore, the increase of the retardation time tends to suppress the heat transfer. The curves forCases (2) and (3), in which =0.1ε and λ is equal to 0.2, 0.3, show that the increase of the relaxation time can enhance the heat transfer rate.

    For the Oldroyd-B fluid, due to the viscoelasticity, both the oscillatory convection mode and the steady convection mode may co-exist after the onset of thermal convection. For Case (1), the steady convection mode dominates the heat transfer process for Ra up to 50. In this range, the flow exhibits a steady one-cell roll pattern and the heat transfer curve overlaps with that for a Newtonian fluid.

    Fig.2 Successive snapshots of the stream function contours for Case (1) at =125Ra with a time interval 0.2, showing the flow is in a one-cell roll alternating with the two-cell roll pattern

    Fig.3 The time history of Nu and the power spectrum for Case (1) at Ra=125

    When Ra is greater than 50, the heat transfer curve for Case (1) deviates from that for a Newtonian fluid and becomes lower than the Newtonian fluid curve. The convection can no longer remain a steady one-cell roll state, but exhibits a flow pattern of a onecell roll alternating with a two-cell roll. Figures 2(a)-2(d) show the snapshots of the stream function contours for Case (1) at =125Ra, with a time interval equal to 0.2. The one-cell roll alternating with the two-cell roll flow pattern is clearly seen and the outer contours of the stream function do not cross the opentop boundary vertically, but bends towards the center of the flow circulation.

    Figure 3(a) shows the time history of Nu for Case (1) at =125Ra, which reveals that the thermal convection is in a quasi-periodic state. Plotted in Fig.3(b) is the corresponding power spectrum of Nu, in which three prevailing frequencies can be identified: f1=1.33, f2=3.1 and f3=f1+f2=4.43. On the other hand, the flow pattern for a Newtonian fluid at Ra=125 is a steady two-cell roll (it is a one-cell roll for Ra=50), resulting in a quick increase in the heat transfer rate. Therefore, though the oscillatory convection due to the viscoelasticity of the fluid affects significantly the heat transfer process, the heat transfer rate for Case (1) can be lower than that for a Newtonian fluid at the same value of Ra.

    Fig.4 The time history of Nu and contours of the stream function for Case (1) at =185Ra

    The heat transfer curve for Case (1) jumps sharply up almost to merge with that for a Newtonian fluid at Ra=185, which indicates the occurrence of another flow pattern transition. Shown in Fig.4(a) is the time history of Nu for Case (1) at =185Ra. In essence, this curve approaches a constant value in a long enough time and its characteristics are different from these shown in Fig. 3(a), though tiny oscillations can be found inherent in it. Figure 4(b) shows a snapshot of the contours of the stream function for Case (1) at Ra=185, a two-cell roll flow pattern is clearly seen. Unlike that shown in Fig.2, this flow pattern persists at any time instant and represents the typical flow pattern. Furthermore, it is interesting to find that the contours of the stream function now change to cross the top boundary vertically, similar to the case for a Newtonian fluid in a steady two-cell roll state[6]. Therefore, it is concluded that the steady convection re-dominates the thermal convection process after the transition, but the effect of viscoelasticity is not com-pletely suppressed, which is manifested by the tiny oscillations in the Nu vs. t curve.

    The two-cell roll flow pattern for Case (1) holds for Ra up to about 275, where the thermal convection experiences the third bifurcation and the flow pattern changes to an unsteady two-cell roll. This unsteady two-cell roll pattern further enhances the heat transfer rate, resulting in the enlargement of the distance between the heat transfer curves for Case (1) and that of the Newtonian case as Ra increases.

    The thermal convection for Case (2) is also dominated by the steady convection after onset for Ra up to approximately 45. Therefore, the flow exhibits a steady one-cell roll pattern and the corresponding heat transfer curve in this range follows that for a Newtonian fluid. When Ra is further increased, however, the flow pattern for Case (2) will transit into unsteady one-cell roll alternating with a two-cell roll, and the heat transfer curve will deviate from that for a Newtonian fluid and become higher than the Newtonian fluid curve. This situation lasts for Ra up to 400.

    Fig.5 Snapshots of the stream function contours for Case (3) at Ra=50, 100 and 250, showing the flow patterns after each bifurcation

    The thermal convection for Case (3) exhibits very different phenomena from those for Cases (1) and (2). A thermal convection bifurcation occurs for Ra between 40 and 45, resulting in transition of the flow pattern from the one-cell roll to an unsteady twocell roll. Another bifurcation occurs for Ra between 65 and 75 and the flow pattern transits from the unsteady two-cell roll to an unsteady three-cell roll after the bifurcation. The third bifurcation appears for Ra between 200 and 225, and the flow pattern varies from the unsteady three-cell roll to an unsteady three-cell roll alternating with four-cell roll. Figures 5(a)-5(c) show the snapshots of the stream function contours for Case (3) at =Ra50, 100 and 250. The flow patterns seem to be under a close-top boundary, which may be induced by the high elastic effect.

    From the above analysis, it can be concluded that the increase of the relaxation time and the decrease of the retardation time can facilitate earlier thermal convection bifurcation and complicates the flow pattern.

    In summary, the effects of two viscoelastic parameters on the thermal convection of an Oldroyd-B fluid saturated in an open-top porous square box with constant heat flux are studied. The results reveal some unique characteristics of the thermal convection process. First, both the steady convection and the oscillatory convection are shown to be possible in the opentop porous medium. For fixed λ and ε, the oscillatory convection starts earlier than the steady convection. Second, the viscoelastic effect may either enhance or diminish the heat transfer rate comparing to the case for a Newtonian fluid at the same Rayleigh number, depending on the values of λ and ε. Third, a larger λ tends to destabilize the thermal convection leading to a higher heat transfer rate and earlier flow bifurcation, while a larger ε has the effect to stabilize the flow and simplify the flow pattern.

    Our results may find applications in the oil engineering. As the heavy oil exhibits viscoelastic rheological behavior, our study suggests that using some chemical to increase its relaxation time parameter and decrease the retardation time parameter may lead to more efficient thermal recovery. Moreover, our work may also be applied to the analysis of fluid behavior underground with terrestrial heat, which may help the research of carbondioxide storage underground.

    [1] NIELD D. A., BEJAN A. Convection in porous media[M]. 4th Edition, New York, USA: Springer-Verlag, 2013.

    [2] SHAN Lian-tao, TONG Deng-ke and XUE Li-li. Unsteady flow of non-Newtonian visco-elastic fluid in dual-porosity media with the fractional derivative[J]. Journal of Hydrodynamics, 2009, 21(5): 705-713.

    [3] ZHANG Li-juan, YUE Xiang-an. Mechanism for viscoelastic polymer solution percolating through porous media[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(2): 241-248.

    [4] BERTOLA B., CAFARO E. Thermal instability of viscoelastic fluids in horizontal porous layers as initial value problems[J]. International Journal of Heat and Mass Transfer, 2006, 49(21): 4003-4012.

    [5] FU Ce-ji, ZHANG Zhi-yong and TAN Wen-chang. Numerical simulation of thermal convection of an Oldroyd-B fluid in a porous square box heated from below[J]. Physics of Fluids, 2007, 19(10): 104107.

    [6] CHERKAUI A. S. M., WILCOCK W. S. D. Characteristics of high Rayleigh number two-dimensional convection in an open-top porous layer heated from below[J]. Journal of Fluid Mechanics, 1999, 394: 241-260.

    10.1016/S1001-6058(11)60406-0

    * Project supported by the National Key Basic Research Development Program of China (973 Program, Grant Nos. 2006CB705803, 2013CB531200).

    Biography: NIU Jun (1985-), Male, Ph. D.

    SHI Zai-hong, E-mail: shizaihong.syky@sinopec.com

    五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 国产精品免费一区二区三区在线| 自拍偷自拍亚洲精品老妇| 三级经典国产精品| 中文字幕av在线有码专区| 丝袜喷水一区| 成年av动漫网址| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久久久免| 久久精品久久久久久久性| 精品欧美国产一区二区三| 禁无遮挡网站| 久久国内精品自在自线图片| 亚洲七黄色美女视频| 免费观看人在逋| 青青草视频在线视频观看| or卡值多少钱| 国产一区二区三区在线臀色熟女| 国产av不卡久久| 亚洲欧美日韩无卡精品| 精品人妻偷拍中文字幕| ponron亚洲| 亚洲第一区二区三区不卡| 欧美日韩国产亚洲二区| 啦啦啦韩国在线观看视频| av黄色大香蕉| 校园春色视频在线观看| 少妇人妻精品综合一区二区 | 国产伦精品一区二区三区视频9| 久久久午夜欧美精品| 久久精品人妻少妇| 日本黄大片高清| 婷婷精品国产亚洲av| 国产精品一区二区在线观看99 | 在线播放无遮挡| 在线国产一区二区在线| 看黄色毛片网站| 久久这里有精品视频免费| 国产乱人偷精品视频| 亚洲av电影不卡..在线观看| 内地一区二区视频在线| 尤物成人国产欧美一区二区三区| 丝袜喷水一区| 中文字幕人妻熟人妻熟丝袜美| 中文在线观看免费www的网站| 又黄又爽又刺激的免费视频.| 精品久久久久久成人av| 国内久久婷婷六月综合欲色啪| 欧美高清性xxxxhd video| 高清毛片免费看| 欧美高清性xxxxhd video| 国产成人精品一,二区 | h日本视频在线播放| 国产精品一区二区在线观看99 | 丰满的人妻完整版| 亚洲一级一片aⅴ在线观看| 美女国产视频在线观看| 国产成人91sexporn| 免费不卡的大黄色大毛片视频在线观看 | 两个人的视频大全免费| 91午夜精品亚洲一区二区三区| 2022亚洲国产成人精品| 日本五十路高清| 日韩中字成人| 菩萨蛮人人尽说江南好唐韦庄 | 欧美+日韩+精品| 国产精品国产高清国产av| 一级黄色大片毛片| 两个人的视频大全免费| 久久99精品国语久久久| 91av网一区二区| 一区福利在线观看| 国产精品免费一区二区三区在线| 国产国拍精品亚洲av在线观看| 哪里可以看免费的av片| 亚洲国产欧洲综合997久久,| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 天堂av国产一区二区熟女人妻| 久久久久免费精品人妻一区二区| 国产白丝娇喘喷水9色精品| 成人亚洲欧美一区二区av| 变态另类成人亚洲欧美熟女| 国产女主播在线喷水免费视频网站 | 在线a可以看的网站| 内射极品少妇av片p| www.av在线官网国产| 国产黄片美女视频| 在线天堂最新版资源| 成人毛片a级毛片在线播放| 欧美日韩一区二区视频在线观看视频在线 | 精品一区二区三区视频在线| 欧美丝袜亚洲另类| 美女高潮的动态| 天堂影院成人在线观看| 少妇的逼水好多| 少妇高潮的动态图| 国内精品美女久久久久久| 只有这里有精品99| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看的www视频| 久久久久久大精品| 国产成人a∨麻豆精品| 毛片女人毛片| 在线免费观看不下载黄p国产| 校园春色视频在线观看| 青春草视频在线免费观看| 亚洲精华国产精华液的使用体验 | 我要看日韩黄色一级片| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区免费毛片| 麻豆精品久久久久久蜜桃| 久久精品国产99精品国产亚洲性色| 国产精品久久电影中文字幕| 性欧美人与动物交配| 亚洲一区高清亚洲精品| 99热这里只有是精品50| 久久鲁丝午夜福利片| 日本黄大片高清| 国产精品无大码| 国产精品人妻久久久影院| 淫秽高清视频在线观看| 成人无遮挡网站| 欧美xxxx性猛交bbbb| 特大巨黑吊av在线直播| 国产高清三级在线| 色5月婷婷丁香| 女同久久另类99精品国产91| 2022亚洲国产成人精品| av免费在线看不卡| 亚洲最大成人av| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 国产精品永久免费网站| 午夜视频国产福利| 人体艺术视频欧美日本| 男女啪啪激烈高潮av片| 国产高清激情床上av| 中文字幕熟女人妻在线| 午夜福利在线观看吧| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 亚洲在线观看片| 国产成人freesex在线| 久久精品91蜜桃| 国产极品天堂在线| 九九久久精品国产亚洲av麻豆| or卡值多少钱| 美女内射精品一级片tv| 老司机影院成人| 欧美丝袜亚洲另类| 亚洲国产精品久久男人天堂| 国产探花在线观看一区二区| 亚洲人成网站在线观看播放| 婷婷亚洲欧美| 边亲边吃奶的免费视频| 日日撸夜夜添| 狠狠狠狠99中文字幕| 99热6这里只有精品| 国产av一区在线观看免费| 亚洲人成网站在线观看播放| 你懂的网址亚洲精品在线观看 | 亚洲精品乱码久久久久久按摩| 男女做爰动态图高潮gif福利片| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 晚上一个人看的免费电影| 国产激情偷乱视频一区二区| 国产熟女欧美一区二区| 美女大奶头视频| 淫秽高清视频在线观看| 国产精华一区二区三区| 晚上一个人看的免费电影| 国产午夜精品论理片| 小说图片视频综合网站| 成人亚洲欧美一区二区av| 日本与韩国留学比较| 国产成人福利小说| 五月玫瑰六月丁香| 丝袜美腿在线中文| 最近中文字幕高清免费大全6| 最后的刺客免费高清国语| 色视频www国产| 亚洲在线自拍视频| 看免费成人av毛片| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| 日日干狠狠操夜夜爽| 欧美xxxx性猛交bbbb| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区免费观看| 日日啪夜夜撸| 国产精品三级大全| 免费观看的影片在线观看| 直男gayav资源| 亚洲精华国产精华液的使用体验 | 午夜精品在线福利| 国产久久久一区二区三区| 91狼人影院| 国内少妇人妻偷人精品xxx网站| 看非洲黑人一级黄片| 我要看日韩黄色一级片| 国产老妇伦熟女老妇高清| 精品久久久久久成人av| 国产成人一区二区在线| 精品人妻偷拍中文字幕| 国产成人精品婷婷| 97热精品久久久久久| 91精品国产九色| 亚洲成av人片在线播放无| 1000部很黄的大片| 国产精品久久久久久精品电影| 岛国在线免费视频观看| 在线免费观看不下载黄p国产| 久久久久久久亚洲中文字幕| 白带黄色成豆腐渣| 少妇人妻一区二区三区视频| 26uuu在线亚洲综合色| 久久久久久久久久成人| 色综合亚洲欧美另类图片| 久久久久久伊人网av| 一级黄片播放器| 五月伊人婷婷丁香| 哪个播放器可以免费观看大片| 男女做爰动态图高潮gif福利片| 日本av手机在线免费观看| 简卡轻食公司| 天堂影院成人在线观看| 日本熟妇午夜| 亚洲激情五月婷婷啪啪| 免费电影在线观看免费观看| 女人十人毛片免费观看3o分钟| 非洲黑人性xxxx精品又粗又长| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区免费观看| 日本五十路高清| 男女边吃奶边做爰视频| 精品欧美国产一区二区三| 老女人水多毛片| 看免费成人av毛片| 男的添女的下面高潮视频| 色吧在线观看| 少妇猛男粗大的猛烈进出视频 | 中文字幕制服av| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 一级毛片电影观看 | 在线免费观看的www视频| 亚洲av熟女| 精品久久久久久成人av| 三级经典国产精品| 最好的美女福利视频网| 国产一区二区激情短视频| 禁无遮挡网站| 日本三级黄在线观看| 岛国毛片在线播放| 热99在线观看视频| 亚洲七黄色美女视频| 韩国av在线不卡| 成人综合一区亚洲| 亚洲一区二区三区色噜噜| 亚洲精品色激情综合| 一区二区三区免费毛片| 成熟少妇高潮喷水视频| 伊人久久精品亚洲午夜| 永久网站在线| 亚洲欧美精品自产自拍| 亚洲一级一片aⅴ在线观看| 禁无遮挡网站| 国产综合懂色| 变态另类成人亚洲欧美熟女| 精品国产三级普通话版| 好男人视频免费观看在线| 成人二区视频| 搞女人的毛片| 最新中文字幕久久久久| 69人妻影院| 国产精品伦人一区二区| 午夜免费男女啪啪视频观看| 一进一出抽搐gif免费好疼| 少妇的逼好多水| 午夜激情福利司机影院| 国产av麻豆久久久久久久| 边亲边吃奶的免费视频| 97在线视频观看| 人妻少妇偷人精品九色| 成人欧美大片| 日韩欧美 国产精品| 五月玫瑰六月丁香| 午夜福利在线观看吧| 日本在线视频免费播放| 亚洲国产精品合色在线| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| 中文字幕精品亚洲无线码一区| 赤兔流量卡办理| 我要看日韩黄色一级片| 久久精品久久久久久久性| kizo精华| 亚洲欧美精品专区久久| a级毛片a级免费在线| a级毛色黄片| 日本熟妇午夜| 最新中文字幕久久久久| 亚洲国产精品成人综合色| 亚洲第一电影网av| 国产精品久久久久久久电影| 亚洲国产欧美在线一区| 日本欧美国产在线视频| 国产精品野战在线观看| 日韩精品青青久久久久久| 在线观看美女被高潮喷水网站| 成人二区视频| 黄色日韩在线| 亚洲综合色惰| 午夜爱爱视频在线播放| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 女人被狂操c到高潮| 色综合色国产| 菩萨蛮人人尽说江南好唐韦庄 | 97人妻精品一区二区三区麻豆| 精品免费久久久久久久清纯| 午夜精品国产一区二区电影 | 欧美日本视频| 国产三级在线视频| 国产高清有码在线观看视频| 午夜福利成人在线免费观看| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 日韩 亚洲 欧美在线| 可以在线观看毛片的网站| 只有这里有精品99| 亚洲aⅴ乱码一区二区在线播放| 午夜久久久久精精品| 天堂中文最新版在线下载 | 精品人妻视频免费看| 国产成人a∨麻豆精品| 老女人水多毛片| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 精品99又大又爽又粗少妇毛片| 欧美区成人在线视频| 长腿黑丝高跟| 国产中年淑女户外野战色| 搞女人的毛片| 亚洲av.av天堂| 一进一出抽搐动态| 内射极品少妇av片p| 国产精品久久久久久精品电影| 精品欧美国产一区二区三| 91精品一卡2卡3卡4卡| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 青春草视频在线免费观看| 亚洲精品亚洲一区二区| 69人妻影院| 天堂网av新在线| 亚洲乱码一区二区免费版| 亚洲五月天丁香| 中文字幕av在线有码专区| 少妇被粗大猛烈的视频| 高清毛片免费观看视频网站| 小蜜桃在线观看免费完整版高清| 久久精品久久久久久噜噜老黄 | 亚洲va在线va天堂va国产| 久久久精品大字幕| 亚洲精品乱码久久久久久按摩| а√天堂www在线а√下载| 最近最新中文字幕大全电影3| 午夜福利在线在线| 好男人视频免费观看在线| 国产精品野战在线观看| 久久99精品国语久久久| 丝袜美腿在线中文| 国产成人a区在线观看| 亚洲真实伦在线观看| 嫩草影院入口| 国产精品野战在线观看| 少妇丰满av| 好男人在线观看高清免费视频| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 99热这里只有是精品在线观看| 少妇熟女aⅴ在线视频| 久久久久久伊人网av| 高清毛片免费观看视频网站| 国产精品人妻久久久久久| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 人妻制服诱惑在线中文字幕| 国产精品一及| 日本撒尿小便嘘嘘汇集6| 欧美区成人在线视频| 国产一区二区激情短视频| 成人亚洲精品av一区二区| av在线蜜桃| 我要看日韩黄色一级片| 国产在视频线在精品| 亚洲精品久久久久久婷婷小说 | 波多野结衣高清作品| 老司机福利观看| 男的添女的下面高潮视频| а√天堂www在线а√下载| 亚洲在线观看片| 欧美bdsm另类| av女优亚洲男人天堂| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 久久精品国产99精品国产亚洲性色| 欧美三级亚洲精品| 观看美女的网站| 最近最新中文字幕大全电影3| 国产三级在线视频| 在现免费观看毛片| 国产免费男女视频| 久久久久久久久久黄片| 久久精品夜色国产| 国产熟女欧美一区二区| 亚洲av一区综合| 久久久精品大字幕| 91av网一区二区| 乱系列少妇在线播放| 在线观看66精品国产| 嫩草影院精品99| 最近最新中文字幕大全电影3| 精品人妻视频免费看| 亚洲最大成人手机在线| 两性午夜刺激爽爽歪歪视频在线观看| 一本久久中文字幕| 精品久久久久久久人妻蜜臀av| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看| 麻豆一二三区av精品| 热99在线观看视频| 青春草国产在线视频 | 久久精品国产亚洲av香蕉五月| 麻豆精品久久久久久蜜桃| 色哟哟哟哟哟哟| 国模一区二区三区四区视频| 欧美高清成人免费视频www| 亚洲国产精品国产精品| 国产av一区在线观看免费| 日本与韩国留学比较| 男插女下体视频免费在线播放| 国产免费男女视频| 丰满乱子伦码专区| 国产色爽女视频免费观看| 少妇丰满av| 免费看av在线观看网站| 久久热精品热| 一本久久精品| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月| 免费看av在线观看网站| 边亲边吃奶的免费视频| 欧美成人a在线观看| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 观看免费一级毛片| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 一级毛片我不卡| 两性午夜刺激爽爽歪歪视频在线观看| or卡值多少钱| 99热精品在线国产| 日日撸夜夜添| 99久国产av精品| 国产一区二区三区av在线 | 国产极品精品免费视频能看的| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华液的使用体验 | 亚洲在线自拍视频| 亚洲综合色惰| 嘟嘟电影网在线观看| 日韩精品青青久久久久久| 日本一二三区视频观看| 人人妻人人澡人人爽人人夜夜 | 国产精品麻豆人妻色哟哟久久 | 精品久久久久久久久久免费视频| 久久这里只有精品中国| 国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 高清午夜精品一区二区三区 | 少妇熟女aⅴ在线视频| 99九九线精品视频在线观看视频| 小蜜桃在线观看免费完整版高清| 国产一区亚洲一区在线观看| 亚洲图色成人| 色噜噜av男人的天堂激情| 又爽又黄无遮挡网站| 人人妻人人澡欧美一区二区| 午夜爱爱视频在线播放| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看| 搡老妇女老女人老熟妇| 亚洲无线观看免费| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| 国产男人的电影天堂91| 观看免费一级毛片| 色吧在线观看| 国产亚洲av片在线观看秒播厂 | 久久99热6这里只有精品| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 欧美精品一区二区大全| 亚洲国产色片| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 在线观看66精品国产| 嫩草影院入口| .国产精品久久| 国产精品久久久久久av不卡| 欧美激情国产日韩精品一区| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| a级毛片a级免费在线| 久久久欧美国产精品| 淫秽高清视频在线观看| 中文字幕av在线有码专区| 青春草亚洲视频在线观看| kizo精华| 亚洲无线在线观看| 免费av观看视频| 18禁在线播放成人免费| 欧美激情国产日韩精品一区| 免费观看人在逋| 麻豆成人av视频| 我要搜黄色片| 久久亚洲国产成人精品v| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 久久久欧美国产精品| 青春草亚洲视频在线观看| 久久久久久久久久成人| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区 | 色播亚洲综合网| 网址你懂的国产日韩在线| 一级黄色大片毛片| 亚洲va在线va天堂va国产| 亚洲第一区二区三区不卡| 男人和女人高潮做爰伦理| 亚洲欧美精品自产自拍| 精品欧美国产一区二区三| 亚洲精品日韩在线中文字幕 | 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 乱系列少妇在线播放| 一区二区三区高清视频在线| 乱系列少妇在线播放| 天天躁夜夜躁狠狠久久av| 在线免费十八禁| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 国产三级在线视频| 嘟嘟电影网在线观看| 热99在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 亚洲18禁久久av| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 欧美+日韩+精品| 天天躁日日操中文字幕| 小说图片视频综合网站| 好男人在线观看高清免费视频| 一进一出抽搐gif免费好疼| 久久久色成人| 日韩一本色道免费dvd| 午夜激情福利司机影院| 久久99蜜桃精品久久| 国产91av在线免费观看| 色吧在线观看| 免费观看精品视频网站| 欧美一区二区国产精品久久精品| 色5月婷婷丁香| 久久6这里有精品| 美女脱内裤让男人舔精品视频 | 午夜久久久久精精品| 亚洲国产欧洲综合997久久,| 国产午夜精品一二区理论片| 深爱激情五月婷婷| 少妇高潮的动态图| 天天躁日日操中文字幕| 永久网站在线| 精品无人区乱码1区二区| 日韩欧美精品v在线| 亚洲第一电影网av| 亚洲国产欧洲综合997久久,| 联通29元200g的流量卡| 亚洲欧洲日产国产| 欧美激情国产日韩精品一区| 97热精品久久久久久| 一进一出抽搐gif免费好疼|