• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heat transfer characteristics in micro-fin tube equipped with double twisted tapes: Effect of twisted tape and micro-fin tube arrangements*

    2013-06-01 12:29:57EIAMSAARD

    EIAMSA-ARD S.

    Department of Mechanical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand, E-mail: smith@mut.ac.th

    WONGCHAREE K.

    Department of Chemical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand

    Heat transfer characteristics in micro-fin tube equipped with double twisted tapes: Effect of twisted tape and micro-fin tube arrangements*

    EIAMSA-ARD S.

    Department of Mechanical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand, E-mail: smith@mut.ac.th

    WONGCHAREE K.

    Department of Chemical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand

    (Received June 30, 2012, Revised October 31, 2012)

    An experimental study was carried out to investigate the influence of double twisted-tape inserts (DTs) in micro-fin tubes (MFs) on heat transfer, friction factor and thermal performance factor characteristics of the compound devices in the following configurations: (1) twisted tapes acted in the same direction (for co-swirl) while MF and twisted tapes acted in the same (parallel) direction (MF-CoDTs:P), (2) twisted tapes acted in the same direction (for co-swirl) while micro-fin tube and twisted tapes acted in opposite directions (MF-CoDTs:O) and (3) twisted tapes acted in opposite directions for counter swirl (MF-CDTs). The MF alone and the MF equipped with a single twisted tape in parallel/opposite arrangement were also considered for comparison. The experiments were conducted for the flows with the Reynolds numbers between 5 650 and 17 000, under uniform heat flux condition. The experimental results indicate that MF-CDTs induce stronger swirl/turbulence flow, resulting in higher heat transfer rate, friction factor and thermal performance factor than other combined devices. The thermal performance factors associated with the use of MF-CDTs were found to be higher than those associated with the uses of MF-CoDTs:P, MF-CoDTs:O and MF alone up to 9.3%, 6.5% and 56.4%, respectively. The empirical correlations developed using the present experimental data for the Nusselt number, friction factor and thermal performance factor are also reported.

    micro-fin tube (MF), double twisted-tapes (DTs), co-swirl, counter-swirl, heat transfer enhancement

    Introduction

    Swirl flow devices and modified surfaces have been widely employed in thermal engineering to enhance heat transfer. The typical actions of swirl flow devices are reducing the hydraulic diameter, increasing the effective axial Reynolds number and generating a tangential velocity component. Modified surfaces (such as finned and corrugated surfaces) increase the heat transfer surface area, disturb thermal boundary layer and promote fluid mixing[1-4].

    To extend the potential of heat transfer enhancement, swirl flow devices have been combined with modified surfaces. Eiamsa-ard and Wongcharee[5]studied the characteristic of turbulent heat transfer in a micro-fin tube (MF) fitted with dual twisted tapes (DTs). Naphon and Sriromruln[6]applied a coiled wire as the swirl generator in a MF. Nagarajan et al.[7]used a modified twisted tape (left/right twisted tape) in a MF for heat transfer enhancement in a turbulent regime. Bharadwaj et al.[8]examined the heat transfer and friction in a spirally grooved tube with twisted tape insert. Saha et al.[9]and Saha[10]combined an axially corrugated circular duct with a center-cleared twisted-tape for greater enhancement than that offered by the corrugated circular duct alone. Similarly, Bhattacharyya and Saha[11]utilized a helically ribbed duct with a center-cleared twisted-tape. Recently, Promvonge et al.[12]reported the heat transfer enhancement in a helical-ribbed tube with double twisted tape inserts. In addition, Wongcharee and Eiamsa-ard[13]investigated the effect of corrugated tube equipped with twisted tape on the heat transfer enhancement using CuO/water nanofluid as a working fluid. The compound devices in the previous studies are shown in Fig.1. In general, compound devices offer superior heat enhancement to a single device due to a synergetic effect. Although many compound devices have been examined, the one consisting of a MF and DTs,has not been found. Therefore, the present work proposes the compound device. In addition, this work aims to find the optimum configuration and also geometry of the device. The configurations and geometries considered in the present work are described in the following section.

    Fig.1 Compound devices for heat transfer enhancement found in the previous studies

    1. MF fitted with DTs

    The MF was made from copper, and its inner diameter, outer diameter and length were 8.64 mm, 9.52 mm and 700 mm, respectively. The geometry of the tube is shown in Fig.2(a). Twisted tape was made of aluminum sheet that was 0.8 mm thick and 700 mm long. DTs consisted of two identical tapes, and each tape was 4 mm wide while the single twisted tape was 8 mm wide. The twist ratio (y/ W)of twisted tape was varied from 3.0 to 5.0 (yis defined as the length with 180orotation). The MF and double twisted tape were arranged in 3 different forms: (1) twisted tapes acted in the same direction (for co-swirl) while MF and twisted tapes acted in the same (parallel) direction (MF-CoDTs:P), (2) twisted tapes acted in the same direction (for co-swirl) while MF and twisted tapes acted in opposite directions (MF-CoDTs:O) and (3) twisted tapes acted in opposite directions for counter swirl (MF-CDTs). The MF with a single twisted tape was arranged in 2 different forms: (1) micro-fin and single twisted tape acted in the same (parallel) direction (MF-ST:P), (2) micro-fin and single twisted tape acted in opposite directions (MF-ST:O). The single twisted tape and dual twisted tapes as well as their geometries and arrangements are shown in Fig.2(b) while the combined devices are shown in Fig.3.

    2. Experimental set-up

    A schematic view and sectional view of the experimental set-up is shown in Fig.4. The test section consisted of three consecutive parts: a calm (entrance) section, a test section and an exit section with the lengths of 1 000 mm, 700 mm and 500 mm, respectively. The outer surface the MF was covered with a heating wire and subsequently well insulated to minimize heat transfer to surroundings. Fifteen thermocouples (T type) were located on the outer tube wall to measure the local wall temperature while the RTDs were used to measure inlet and outlet water temperatures of the test section. Heat flux was varied via the variac transformer connected to the electric heater. A mixing chamber was located downstream of the test section. The volumetric water flow rate was controlled using a globe valve and measured using a rotameter, located upstream of the test section. The pressure drop across the test tube was measured using two static pressure taps.

    During experiments, cold water was pumped through the test section under a uniform wall heat flux condition. Temperatures of the inlet and outlet water, as well as a pressure drop were recorded in steady state. Experiments were performed for Reynolds numbers ranging from 5 650 to 17 000, based on the inlet tube diameter.

    3. Data acquisition and uncertainty analysis

    The average Nusselt number and the friction factor are based on the hydraulic diameter of the MF. Heat absorbed by the cold water under a uniform heat flux condition,Qccan be expressed as

    Fig.2 Picture view of single twisted tape and double twisted tapes with different arrangements and MF

    where m˙is the mass flow rate of water,Cp,wateris the specific heat of water,Tiand Toare the inlet and outlet water temperatures, respectively. At thermal equilibrium, heat absorbed by water was found to be 4% to 8% lower than the heat supplied by the heater wire to the MF due to convection and radiation hea losses from the MF to surroundings. The heat transfer rate in steady state is assumed to be t

    The heat transfer rate through the test section can be written as

    Fig.3 Photographs of MF fitted with twisted tapes with different arrangements

    Fig.4 Schematic diagram of heat transfer apparatus

    Fig.5 Validation of the plain tube

    The Reynolds number is given by

    The uncertainty of the Reynolds number can be determined by the following equation[14]

    Fig.6 Effect of MF equipped with DTs on heat transfer

    The uncertainty of friction factor can be determined by the following equation[14]

    The maximum uncertainties of the Reynolds number, Nusselt number and friction factor (non-dimensional parameters) in the present work were 3.5%, 5.2% and 4.8%, respectively.

    Fig.7 Effect of MF fitted with DTs on friction factor

    To assess the practical use of the enhanced tube, the performance of the enhanced tube is evaluated relatively to that of the plain tube at an identical pumping power in the form of thermal performance factor which can be expressed as

    4. Experimental results

    The experimental results of heat transfer in a MF with DTs of in different arrangements (MF-CoDTs:P, MF-CoDTs:O, MF-CDTs, MF-ST:P, MF-ST:O) are described in this section. The results of heat transfer and friction are reported in terms of the Nusselt number(Nu)and friction factor(f), respectively. To evaluate the reliability of the present experimental set-up, the results of the present plain tube were validated with those obtained from the correlations available in the previous work[15], and the validations are shown in Fig.5. The comparisons reveal that the pre-sent data agree well with those from the correlations within ±2.7% and ±3.8% for the friction factor and Nusselt number, respectively.

    4.1 Heat transfer

    Figures 6(a)-6(b) presents the variation of the Nusselt number with the Reynolds number. For all cases, the Nusselt number increases with increasing Reynolds number while the Nusselt number ratio (Nu/ Nup)exhibits an opposite trend. This indicates that the heat transfer enhancement is less significant as the Reynolds number increases, in view of the fact that a thermal boundary layer is thinner at higher Reynolds number. In addition, the Nusselt number increases as the twist ratio decreases, due to an increase of turbulence intensity. In general, the MFs with twisted tapes offers significantly higher Nusselt number than the one without twisted tape. This reveals the influence of the effective disruption of a thermal boundary layer by swirl flow. The MFs with DTs provides noticeably higher Nusselt number than the one with a single twisted tape, because double swirl flows generate higher turbulence intensity than a single swirl flow as was reported by Wongcharee and Eiamsaard[13]. It could also be observed that the heat transfer enhancement is influenced by the arrangement of MF and twisted tapes. The DTs arranged to produce counter swirl flows (CDTs) give higher Nusselt number than the ones arranged to produce co-swirl flows (CoDTs). Similarly, MF and twisted tapes acted in opposite (O) directions provide higher Nusselt number than the ones acted in the same direction (parallel (P) arrangement). The superior heat transfer can be explained by the extra turbulence caused by the counter flow resulting in better fluid mixing between core and wall regions. For the range determined, MF-CDTs give higher Nusselt number than MF-CoDTs:P, MFCoDTs:O, MF-ST:P and MF-ST:O by around 11.4%-22.6%, 6.7%-14.6%, 53.6%-72.3% and 39.3%-60.6%, respectively. The average Nusselt numbers associated by the uses of MF-CoDTs:P, MF-CoDTs:O, MFCDTs, MF-ST:P and MF-ST:O are respectively found to be around 91%-201%, 108%-214%, 129%-235%, 34%-118% and 43%-140% higher than that given by the MF alone. However, with twisted tape inserts, heat transfer rate increases at the expenses of high pressure losses.

    4.2 Friction factor

    The variation of the friction factor with the Reynolds number is demonstrated in Figs.7(a)-7(b). Apparently, the friction factor slightly decreases with increasing Reynolds number. However, the friction factor change is insignificant in case of MF alone. The effect of twist ratio and the arrangement of MF and twisted tapes on friction factor are in similar manner found for the Nusselt number. This can be explained by the fact that the dissipation of dynamic pressure increases as turbulence intensity becomes stronger. The friction factors associated with MF-CoDTs:P, MFCoDTs:O, MF-CDTs, MF-ST:P and MF-ST:O are respectively around 71%-81%, 75%-83%, 79%-84%, 57%-74% and 60%-75% higher than that caused by the MF alone. Comparatively, the friction factor generated by the DTs acted in opposite directions is noticeably higher than that generated by the ones acted in the same direction. As was found, the use of MFCDTs results in higher mean friction factor than the uses of MF-CoDTs:P and MF-CoDTs:O by around 47.2% and 46.5%, respectively

    Fig.8 Effect of MF fitted with DTs on thermal performance factor

    4.3 Thermal performance factor

    The variation of the thermal performance factor with the Reynolds number is shown in Fig.8. It is found that the thermal performance of the MF equipped with twisted tapes considerably decreases with increasing Reynolds number. For all cases examined, thermal performances factors are found to be higher than unity. This is attributed to a good trade-off between the heat transfer improvement and the increase of pressure drop or friction penalty. In addition, the thermal performance factor associated by DTs is higher than that associated by a single twisted tape. The DTs arranged to produce counter swirl (CDTs) give higher thermal performance factor than the ones arranged to produce co-swirl (CoDTs). The MF and twisted tapes acted in opposite directions provided higher thermal performance factor than the ones acted in the same direction (or parallel (P) arrangement). The higher thermal performance factor is explained by the dominant effect of heat transfer enhancement over that of the increase friction factor at the same pumping power.

    Fig.9 Predicted data by empirical correlations versus measured data

    The thermal performance factors for the studied cases are between 1.03 and 1.12 for MF alone, 1.29 and 1.94 for MF-CoDTs:P, 1.35 and 1.97 for MFCoDTs:O, 1.41 and 2.03 for MF-CDTs, 1.04 and 1.57 for MF-ST:P, and 1.08 and 1.71 for MF-ST:O. The highest thermal performance factor is offered by MFCDTs. For the range investigated, MF-CDTs give higher thermal performance factor than MF alone, MF-CoDTs:P, MF-CoDTs:O, MF-ST:P and MF-ST:O by around 37%-81%, 5%-12%, 3%-9.5%, 29%-37% and 19%-32%, respectively.

    4.4 Empirical correlations

    The experimental results in the present work are subjected to the development of empirical correlations. The resultant correlations are shown below.

    For MF-CoDTs:P:

    The reliability of the correlations is evaluated by comparing the predicted data to the measured data. The comparison in Figs.9(a)-9(b) suggests that the predicted data agree well with the measured data within ±5% and ±7% for the Nusselt number and friction factor.

    5. Conclusions

    The effects of a MF equipped with single twisted tape/DTs in different arrangements on heat transfer enhancement are reported. The major findings are drawn as follows:

    (1) The MF with DTs provides noticeably higher Nusselt number and thermal performance factor than the one with a single twisted tape.

    (2) The DTs arranged to produce counter swirl (CDTs) give higher Nusselt number and thermal performance factor than the ones arranged to produce coswirl (CoDTs).

    (3) The MF tube and twisted tapes acted in opposite (O) directions offer higher Nusselt number as well as thermal performance factor than the ones acted in the same direction (in parallel (P) arrangement).

    (4) The maximum thermal performance factor of 2.03 is achieved by the use of the MF and DTs which generated counter swirl (MF-CDTs).

    Acknowledgments

    The authors would like to acknowledge with appreciation, the Thailand Research Fund (TRF), Office of Higher Education Commission and Mahanakorn University of Technology (MUT) for financial support of this research (Grant No. MRG5480026).

    [1] CUI Yong-zhang, TIAN Mao-cheng. Three-dimensional numerical simulation of thermal-hydraulic performance of a circular tube with edgefold-twisted-tape inserts[J]. Journal of Hydrodynamics, 2010, 22(5): 662-670.

    [2] JAISANKAR S., RADHAKRISHNAN T. K. and SHEEBA K. N. Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and leftright twisted tapes[J]. Energy Conversion and Management, 2011, 52(5): 2048-2055.

    [3] MURUGESAN P., MAYILSAMY K. and SURESH S. et al. Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert[J]. International Communications in Heat and Mass Transfer, 2011, 38(3): 329-334.

    [4] MURUGESAN P., MAYILSAMY K. and SURESH S. Heat transfer and friction factor studies in a circular tube fitted with twisted tape consisting of wire-nails[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 1038-1042.

    [5] EIAMSA-ARD S. and WONGCHAREE K. Singlephase heat transfer of CuO/water nanofluids in microfin tube equipped with dual twisted-tapes[J]. International Communications in Heat and Mass Transfer, 2012, 39(9): 1453-1459.

    [6] NAPHON P., SRIROMRULN P. Single-phase heat transfer and pressure drop in the micro-fin tubes with coiled wire insert[J]. International Communications in Heat and Mass Transfer, 2006, 33(2): 176-183.

    [7] NAGARAJAN P. K., MUKKAMALA Y. and SIVASHANMUGAM P. Studies on heat transfer and friction factor characteristics of turbulent flow through a micro-finned tube fitted with left–right inserts[J]. Applied Thermal Engineering, 2010, 30(13): 1666-1672.

    [8] BHARADWAJ P., KHONDGE A. D. and DATE A. W. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert[J]. International Journal of Heat and Mass Transfer, 2009, 52(7-8): 1938-1944.

    [9] SAHA S. K., BHATTACHARYYA S. and PAL P. K. Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with center-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2012, 41: 121-129.

    [10] SAHA S. K. Thermohydraulics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with centre-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2012, 38: 201-209.

    [11] BHATTACHARYYA S., SAHA S. K. Thermohydraulics of laminar flow through a circular tube having integral helical rib roughness and fitted with centre-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2012, 42: 154-162.

    [12] PROMVONGE P., PETHKOOL S. and PIMSARN M. et al. Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts[J]. International Communications in Heat and Mass Transfer, 2012, 39(7): 953-959.

    [13] WONGCHAREE K., EIAMSA-ARD S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape[J]. International Communications in Heat and Mass Transfer, 2012, 39(2): 251-257.

    [14] SAHA S. K. Thermohydraulics of turbulent flow through rectangular and square ducts with axial corrugation roughness and twisted-tapes with and without oblique teeth[J]. Experimental Thermal and Fluid Science, 2010, 34(6): 744-752.

    [15] INCROPERA F. P., DEWITT P. D. and BERGMAN T. L. et al. Fundamentals of heat and mass transfer[M]. New York, USA: John-Wiley and Sons, 2006.

    Nomenclature

    A– Heat transfer surface area

    Cp– Specific heat of fluid

    Dh– Hydraulic diameter of MF

    f – Friction factor = ΔP /[(L/ D )(ρ u2/2)]

    h

    h– Heat transfer coefficient

    k – Thermal conductivity of fluid

    L– Length of the test section

    m˙– Mass flow rate

    Nu – Nusselt number =hD/ k

    P– Pressure of flow in stationary tube

    ΔP– Pressure drop

    Pr – Prandtl number =μCp/k

    Q– Heat transfer rate

    Re – Reynolds number =ρUDh/μ

    T– Local temperature

    T– Mean temperature

    U– Mean axial flow velocity

    W– Twisted tape width

    y– Twisted tape pitch

    Greek symbols

    ρ– Fluid density

    μ– Fluid dynamic viscosity

    η– Thermal performance factor

    Subscripts

    b– Bulk

    c – Convection

    i – Inlet

    o– Outlet

    p– Plain tube

    w– Wall

    Abbreviations

    MF– Micro-fin tube

    MF-CoDTs:P– Micro-fin tube equipped with double twisted tapes: twisted tapes produced co-swirl while micro-fin tube and twisted tapes acted in the same direction (parallel (P) arrangement)

    MF-CoDTs:O– Micro-fin tube equipped with double twisted tapes: twisted tapes produced co-swirl while micro-fin tube and twisted tapes acted in opposite (O) directions

    MF-CDTs– Micro-fin tube equipped with double twisted tapes: twisted tapes produced counter swirl

    MF-ST:P– Micro-fin tube equipped with single twisted tape: micro-fin tube and twisted tape acted in the same direction (parallel (P) arrangement)

    MF-ST:O– Micro-fin tube equipped with single twisted tape: micro-fin tube and twisted tape acted in opposite (O) directions

    10.1016/S1001-6058(13)60355-8

    * Biography: EIAMSA-ARD S. (1973-), Male, Ph. D., Associate Professor

    国产精品1区2区在线观看.| 国内毛片毛片毛片毛片毛片| 国产爱豆传媒在线观看| 精品国产乱子伦一区二区三区| 久久久久国内视频| 十八禁网站免费在线| 色哟哟哟哟哟哟| 少妇的逼水好多| 欧美极品一区二区三区四区| 欧美xxxx黑人xx丫x性爽| 免费高清视频大片| 夜夜看夜夜爽夜夜摸| xxx96com| 老司机午夜十八禁免费视频| 欧美成人性av电影在线观看| 日韩三级视频一区二区三区| 久久精品亚洲精品国产色婷小说| 成人精品一区二区免费| 免费看日本二区| 久久九九热精品免费| 琪琪午夜伦伦电影理论片6080| 伊人久久大香线蕉亚洲五| 国产亚洲精品综合一区在线观看| 精品日产1卡2卡| 国产精品 国内视频| 99riav亚洲国产免费| 精品久久久久久久毛片微露脸| 国产高清视频在线播放一区| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 精品一区二区三区四区五区乱码| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 免费高清视频大片| 不卡av一区二区三区| 99riav亚洲国产免费| 国产欧美日韩精品一区二区| 老汉色av国产亚洲站长工具| 亚洲自偷自拍图片 自拍| 91久久精品国产一区二区成人 | 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 精品久久久久久,| 麻豆成人av在线观看| 欧美绝顶高潮抽搐喷水| 看片在线看免费视频| 国产av一区在线观看免费| 亚洲成a人片在线一区二区| 香蕉国产在线看| 国产高清有码在线观看视频| 亚洲av免费在线观看| 97人妻精品一区二区三区麻豆| 日本免费一区二区三区高清不卡| 老汉色∧v一级毛片| 黄色成人免费大全| 看黄色毛片网站| 免费一级毛片在线播放高清视频| 亚洲欧美日韩高清在线视频| 精品99又大又爽又粗少妇毛片 | 欧美激情在线99| 嫩草影院精品99| 男女床上黄色一级片免费看| 久久久国产欧美日韩av| 亚洲专区中文字幕在线| 亚洲一区二区三区色噜噜| 精品国产亚洲在线| 一二三四在线观看免费中文在| 99久久99久久久精品蜜桃| 高潮久久久久久久久久久不卡| 午夜精品一区二区三区免费看| 亚洲欧美精品综合久久99| 国产麻豆成人av免费视频| 男插女下体视频免费在线播放| 日日干狠狠操夜夜爽| 亚洲性夜色夜夜综合| 亚洲中文av在线| 最新中文字幕久久久久 | 久久精品国产亚洲av香蕉五月| 久久久国产欧美日韩av| 亚洲成人精品中文字幕电影| 麻豆久久精品国产亚洲av| 国产精品久久久久久久电影 | 国产成+人综合+亚洲专区| 一级毛片女人18水好多| 成人亚洲精品av一区二区| 在线免费观看不下载黄p国产 | 一级a爱片免费观看的视频| 丁香欧美五月| 午夜精品一区二区三区免费看| 国产成人影院久久av| 日本黄色视频三级网站网址| 亚洲国产精品合色在线| 国产精品亚洲美女久久久| 又黄又粗又硬又大视频| 国产亚洲精品一区二区www| 99久久99久久久精品蜜桃| 免费一级毛片在线播放高清视频| 中文字幕久久专区| 国产成人av激情在线播放| 国产精品野战在线观看| 一级毛片精品| 观看免费一级毛片| 国产人伦9x9x在线观看| 青草久久国产| 18禁裸乳无遮挡免费网站照片| 老鸭窝网址在线观看| 成在线人永久免费视频| 亚洲精品美女久久av网站| 精品国产美女av久久久久小说| 亚洲美女黄片视频| 精华霜和精华液先用哪个| 国产三级中文精品| 国内少妇人妻偷人精品xxx网站 | 最近最新免费中文字幕在线| 日韩av在线大香蕉| 别揉我奶头~嗯~啊~动态视频| 精品免费久久久久久久清纯| 久久中文字幕一级| 国产精品精品国产色婷婷| 亚洲精品粉嫩美女一区| 哪里可以看免费的av片| 美女黄网站色视频| 97超视频在线观看视频| 欧美午夜高清在线| 长腿黑丝高跟| 久久久水蜜桃国产精品网| 日本精品一区二区三区蜜桃| 一级a爱片免费观看的视频| 一区福利在线观看| 午夜影院日韩av| 男女做爰动态图高潮gif福利片| 久久精品aⅴ一区二区三区四区| 婷婷六月久久综合丁香| 美女大奶头视频| 亚洲片人在线观看| 他把我摸到了高潮在线观看| 国产高清激情床上av| 国产私拍福利视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久久久久久午夜电影| 欧美成人性av电影在线观看| 性色avwww在线观看| 欧美日韩一级在线毛片| 热99re8久久精品国产| 国产成人一区二区三区免费视频网站| 欧美日韩乱码在线| 久久精品国产亚洲av香蕉五月| 亚洲成人免费电影在线观看| 真人做人爱边吃奶动态| 亚洲avbb在线观看| 久久久久久久精品吃奶| 国产成年人精品一区二区| ponron亚洲| 国产毛片a区久久久久| 国产又黄又爽又无遮挡在线| 美女cb高潮喷水在线观看 | 国产成人av教育| 日本 欧美在线| 国产亚洲欧美在线一区二区| 美女免费视频网站| 亚洲电影在线观看av| 特级一级黄色大片| 国产在线精品亚洲第一网站| 特级一级黄色大片| 亚洲人成网站在线播放欧美日韩| 国产三级在线视频| 国产伦精品一区二区三区视频9 | 国产精品久久久久久久电影 | 午夜影院日韩av| 亚洲av免费在线观看| 精品免费久久久久久久清纯| 国产精品女同一区二区软件 | 嫁个100分男人电影在线观看| 99精品久久久久人妻精品| 亚洲人与动物交配视频| 少妇的丰满在线观看| av黄色大香蕉| 看免费av毛片| 一本综合久久免费| 久久香蕉精品热| 国内精品美女久久久久久| 久久人人精品亚洲av| 97超视频在线观看视频| 制服丝袜大香蕉在线| 成年人黄色毛片网站| www.精华液| 中文字幕av在线有码专区| 成人高潮视频无遮挡免费网站| 不卡一级毛片| 精品久久久久久,| 国产私拍福利视频在线观看| 嫩草影院精品99| 香蕉国产在线看| 中出人妻视频一区二区| xxx96com| 色老头精品视频在线观看| 日本免费一区二区三区高清不卡| 国产成年人精品一区二区| 俄罗斯特黄特色一大片| 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码| 国产亚洲av嫩草精品影院| 日韩欧美免费精品| 欧美性猛交╳xxx乱大交人| 亚洲,欧美精品.| 国产不卡一卡二| 亚洲成人中文字幕在线播放| 大型黄色视频在线免费观看| av天堂中文字幕网| 久久久久久久久中文| 国产在线精品亚洲第一网站| 99久国产av精品| 露出奶头的视频| 国产精品av视频在线免费观看| 亚洲精品一区av在线观看| 亚洲人成网站在线播放欧美日韩| 一区二区三区国产精品乱码| 男女那种视频在线观看| 久久精品国产99精品国产亚洲性色| 1024手机看黄色片| 在线观看午夜福利视频| 欧美成人性av电影在线观看| 淫秽高清视频在线观看| 国产精品久久久久久人妻精品电影| 久9热在线精品视频| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 国产极品精品免费视频能看的| 97人妻精品一区二区三区麻豆| 欧美性猛交黑人性爽| 俺也久久电影网| 亚洲男人的天堂狠狠| 欧美乱码精品一区二区三区| 三级国产精品欧美在线观看 | 无人区码免费观看不卡| 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 成人国产一区最新在线观看| 国产av不卡久久| 亚洲精品久久国产高清桃花| 久久草成人影院| 亚洲国产欧美网| 每晚都被弄得嗷嗷叫到高潮| 丰满的人妻完整版| 少妇裸体淫交视频免费看高清| aaaaa片日本免费| 两个人看的免费小视频| 国产黄片美女视频| 国产精品影院久久| 久久中文看片网| 观看美女的网站| 免费在线观看亚洲国产| 黄色丝袜av网址大全| 757午夜福利合集在线观看| 人人妻,人人澡人人爽秒播| 变态另类丝袜制服| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 欧美日本视频| 国内精品美女久久久久久| 久久天堂一区二区三区四区| 久久久久久久午夜电影| 久久午夜亚洲精品久久| 级片在线观看| 国产黄片美女视频| 美女午夜性视频免费| 最近视频中文字幕2019在线8| 久久久久九九精品影院| 亚洲欧洲精品一区二区精品久久久| 老熟妇乱子伦视频在线观看| 国内揄拍国产精品人妻在线| av视频在线观看入口| 久久草成人影院| 国产精品乱码一区二三区的特点| 久久久久亚洲av毛片大全| 中文字幕人妻丝袜一区二区| 十八禁人妻一区二区| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| av欧美777| 国产精品久久久久久人妻精品电影| 精品午夜福利视频在线观看一区| 欧美日韩国产亚洲二区| 久久欧美精品欧美久久欧美| 成年女人永久免费观看视频| 免费看十八禁软件| 国产成人啪精品午夜网站| 在线观看舔阴道视频| 久久精品人妻少妇| 久久香蕉国产精品| 亚洲人成伊人成综合网2020| 看片在线看免费视频| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 无人区码免费观看不卡| 亚洲欧美日韩高清在线视频| 亚洲中文字幕日韩| 久久精品国产亚洲av香蕉五月| 一个人观看的视频www高清免费观看 | 又黄又爽又免费观看的视频| 亚洲av成人不卡在线观看播放网| 久久精品aⅴ一区二区三区四区| cao死你这个sao货| 国产激情久久老熟女| 亚洲午夜精品一区,二区,三区| 日韩 欧美 亚洲 中文字幕| 黄片大片在线免费观看| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 免费高清视频大片| 亚洲成人久久爱视频| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| 久久中文看片网| 一边摸一边抽搐一进一小说| 久久伊人香网站| 黄色成人免费大全| 日韩欧美三级三区| 日本一二三区视频观看| 天堂影院成人在线观看| 国产黄片美女视频| 色噜噜av男人的天堂激情| 日日干狠狠操夜夜爽| 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜精品一区,二区,三区| 精品国产三级普通话版| 中亚洲国语对白在线视频| 欧美极品一区二区三区四区| 白带黄色成豆腐渣| 久久这里只有精品中国| 日韩av在线大香蕉| 在线播放国产精品三级| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| 又粗又爽又猛毛片免费看| 少妇裸体淫交视频免费看高清| 欧美中文日本在线观看视频| 又黄又粗又硬又大视频| 亚洲成人精品中文字幕电影| 久久中文字幕人妻熟女| 成熟少妇高潮喷水视频| 精品福利观看| 91麻豆精品激情在线观看国产| 欧美成人一区二区免费高清观看 | 男人舔奶头视频| 色综合站精品国产| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影| 午夜a级毛片| 久久九九热精品免费| 成人一区二区视频在线观看| 日韩免费av在线播放| 琪琪午夜伦伦电影理论片6080| xxxwww97欧美| 特级一级黄色大片| 一区福利在线观看| 久久九九热精品免费| 久久热在线av| 午夜两性在线视频| 一二三四社区在线视频社区8| 国产亚洲av嫩草精品影院| 亚洲在线观看片| 伊人久久大香线蕉亚洲五| 淫秽高清视频在线观看| 免费在线观看成人毛片| 欧美日本视频| 啦啦啦免费观看视频1| 久久久久国内视频| 欧美一级a爱片免费观看看| 亚洲一区二区三区色噜噜| 成年女人永久免费观看视频| 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 最新中文字幕久久久久 | 久久草成人影院| 黄色日韩在线| 日韩欧美三级三区| 三级毛片av免费| 在线十欧美十亚洲十日本专区| 久久婷婷人人爽人人干人人爱| 给我免费播放毛片高清在线观看| 91老司机精品| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| www.精华液| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 99久久精品国产亚洲精品| 国产精品国产高清国产av| avwww免费| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 一级黄色大片毛片| 亚洲熟妇熟女久久| 午夜激情欧美在线| 丁香六月欧美| 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 国产精品野战在线观看| 91av网一区二区| 色播亚洲综合网| 真实男女啪啪啪动态图| 午夜福利在线在线| 搡老妇女老女人老熟妇| 欧美大码av| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 午夜精品一区二区三区免费看| 又紧又爽又黄一区二区| 久久精品影院6| 99久国产av精品| 精品国产亚洲在线| 在线观看美女被高潮喷水网站 | 国产精品亚洲美女久久久| 久久婷婷人人爽人人干人人爱| 99久久国产精品久久久| 欧美绝顶高潮抽搐喷水| 男女床上黄色一级片免费看| 免费看日本二区| 999久久久精品免费观看国产| 我要搜黄色片| 人妻丰满熟妇av一区二区三区| 久久久国产欧美日韩av| 午夜精品在线福利| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 亚洲中文av在线| 亚洲男人的天堂狠狠| 嫩草影视91久久| 老鸭窝网址在线观看| 一本综合久久免费| 亚洲国产欧洲综合997久久,| 欧美黄色淫秽网站| 日本黄大片高清| 黄频高清免费视频| 国产成人av激情在线播放| 99re在线观看精品视频| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 免费高清视频大片| 欧美极品一区二区三区四区| 亚洲 国产 在线| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| 亚洲熟妇中文字幕五十中出| 男人的好看免费观看在线视频| 中文在线观看免费www的网站| 亚洲午夜精品一区,二区,三区| 18禁黄网站禁片免费观看直播| 99re在线观看精品视频| 性色av乱码一区二区三区2| 欧美丝袜亚洲另类 | 美女免费视频网站| 岛国在线免费视频观看| 亚洲天堂国产精品一区在线| 成人国产一区最新在线观看| 久久精品91无色码中文字幕| netflix在线观看网站| 一进一出好大好爽视频| 99热6这里只有精品| 日本黄色视频三级网站网址| 亚洲av熟女| 亚洲av成人一区二区三| 久久久久久久久久黄片| 99久久综合精品五月天人人| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| 国内精品一区二区在线观看| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 国产三级在线视频| 国产美女午夜福利| 亚洲 欧美 日韩 在线 免费| 色播亚洲综合网| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 亚洲第一电影网av| 久久人人精品亚洲av| 久99久视频精品免费| 日本黄色视频三级网站网址| 一个人观看的视频www高清免费观看 | 国产美女午夜福利| 又紧又爽又黄一区二区| 少妇裸体淫交视频免费看高清| 啦啦啦观看免费观看视频高清| 国产一区在线观看成人免费| 热99re8久久精品国产| 亚洲 欧美 日韩 在线 免费| 免费人成视频x8x8入口观看| 99国产精品99久久久久| 男女做爰动态图高潮gif福利片| 国产97色在线日韩免费| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产欧美一区二区综合| 国产伦在线观看视频一区| 国产一区二区在线av高清观看| 日本在线视频免费播放| 美女大奶头视频| 国产成人一区二区三区免费视频网站| 小说图片视频综合网站| 18禁美女被吸乳视频| 中文字幕av在线有码专区| 久久精品国产亚洲av香蕉五月| 久久久久性生活片| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 99国产精品99久久久久| 国产高清视频在线观看网站| 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 在线观看免费午夜福利视频| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 久久久久久久久中文| 少妇丰满av| 精品一区二区三区视频在线 | 欧美成人性av电影在线观看| 欧美乱妇无乱码| 国产久久久一区二区三区| 美女扒开内裤让男人捅视频| 国产亚洲精品综合一区在线观看| 国产黄片美女视频| 久久中文字幕一级| 欧美高清成人免费视频www| 精品乱码久久久久久99久播| 日韩欧美在线二视频| 在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| av天堂在线播放| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| 欧美乱妇无乱码| 精品国产亚洲在线| 成年人黄色毛片网站| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 免费搜索国产男女视频| 成人国产综合亚洲| 国产高清有码在线观看视频| 天天一区二区日本电影三级| 黄频高清免费视频| 欧美乱码精品一区二区三区| 嫩草影院精品99| 看黄色毛片网站| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 精品一区二区三区av网在线观看| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 在线免费观看的www视频| 制服人妻中文乱码| 男女做爰动态图高潮gif福利片| 成人18禁在线播放| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 丰满人妻一区二区三区视频av | 国产精品 国内视频| 黄色日韩在线| 18美女黄网站色大片免费观看| 变态另类成人亚洲欧美熟女| 欧美成人一区二区免费高清观看 | 欧美激情在线99| 老熟妇乱子伦视频在线观看| 久久亚洲真实| 在线a可以看的网站| 久久久久九九精品影院| 一区二区三区激情视频| 午夜福利视频1000在线观看| 身体一侧抽搐| 在线观看日韩欧美| 欧美又色又爽又黄视频| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 免费看a级黄色片| 在线观看免费午夜福利视频| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| av中文乱码字幕在线| 91麻豆av在线| 亚洲美女视频黄频| 制服人妻中文乱码| 久久精品影院6| 看黄色毛片网站| 叶爱在线成人免费视频播放| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 国产精品一区二区三区四区免费观看 | 国产成人啪精品午夜网站| 国产精品久久久久久精品电影| 日韩欧美在线二视频| 18禁国产床啪视频网站| 日韩大尺度精品在线看网址| 国产三级黄色录像| 亚洲国产欧美网| 91在线精品国自产拍蜜月 | 日韩欧美在线二视频| 美女黄网站色视频| 成人一区二区视频在线观看| or卡值多少钱| 一个人看视频在线观看www免费 | 十八禁人妻一区二区| 两个人的视频大全免费| 国产成人一区二区三区免费视频网站| 精品久久久久久,| 亚洲精品乱码久久久v下载方式 | 国产97色在线日韩免费| 在线视频色国产色|