• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radiation and diffraction analysis of a cylindrical body with a moon pool*

    2013-06-01 12:29:57ZHOUHuawei周華偉
    水動力學研究與進展 B輯 2013年2期

    ZHOU Hua-wei (周華偉)

    State Key Laboratory of Ocean Engineering, College of Naval Architecture, Ocean and Civil Engineering,

    Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: zhouhuawei1010@hotmail.com

    ZHANG Hong-sheng (張洪生)

    Ocean Environmental and Engineering College, Shanghai Maritime University, Shanghai 201306, China

    Radiation and diffraction analysis of a cylindrical body with a moon pool*

    ZHOU Hua-wei (周華偉)

    State Key Laboratory of Ocean Engineering, College of Naval Architecture, Ocean and Civil Engineering,

    Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: zhouhuawei1010@hotmail.com

    ZHANG Hong-sheng (張洪生)

    Ocean Environmental and Engineering College, Shanghai Maritime University, Shanghai 201306, China

    (Received May 22, 2012, Revised July 19, 2012)

    An analytical solution is presented for the radiation and the diffraction of a cylindrical body with a moon pool floating on the surface of water with a finite depth. The expressions for the potentials are obtained by the method of separation of variables, and the unknown coefficients are determined by the boundary conditions and the matching requirements on the interface. The effects of the moon pool on the hydrodynamic characteristics of the body are investigated. Some peaks are observed on the curves of the added mass and damping coefficients, corresponding to the resonant frequencies of the moon pool. The internal free surface moves like a piston at a certain low resonant frequency.

    radiation and diffraction, cylindrical body, moon pool, variable separation method, resonant frequencies

    Introduction

    Over the last few decades, with the mushrooming of offshore marine structures, the hydrodynamics of the cylindrical body with a moon pool has attracted a great attention. This geometric configuration represents a generic shape of a variety of ocean facilities and finds a wide range of applications. One of the typical examples is the classical spar platform, consisting of a vertical cylindrical hull with a centre well for storage purposes or protecting risers. Furthermore, it is also the characteristic feature of some drilling ships and wave power devices. Through the opening at the bottom, the sea water flows into the moon pool and some complex internal motions would ensue. Compared with the bottomless cylindrical body shown in Mavrakos[1], the moon pool has a number of resonant frequencies. When the frequency of the incident wave or the motion of the body is close to one of these frequencies, the piston or sloshing motion would occur, which will induce a large motion of the structures and further affect their integrity. This problem has an important bearing on the fundamental properties of this body, especially the complex behaviours of the moon pool.

    Generally speaking, there are two basic approaches to analyze the hydrodynamic characteristics of floating bodies. The frequency domain method is usually employed to calculate the added mass, the damping coefficients and the excitation forces, to predict the response of the body to the wave and the current, as used by Tao et al.[2], Sadeghi et al.[3], Lee et al.[4], Taghipour and Moan[5]and others. However, for some time dependent dynamic behaviours of the body, such as the coupled effects among the mooring lines, the moon pool and other components, the frequency domain method will lead to low accuracy and bring in some errors. To study their effects on the performance of the floating body, one has to adopt an alternative approach, the time domain method, as used by Ma and Patel[6], Agarwal and Jain[7], Koo et al.[8], Zhang et al.[9], and others.

    However, in this paper, we are interested in the mechanism of the moon pool, without considering the effects of mooring lines and other components. The time domain solutions would be expensive and provide little insight into the nature of the moon pool. With the cylindrical geometry of the body, the method of separation of variables in the framework of thelinear potential theory is definitely an efficient and economical way. This method was adopted by Garrett[10], Zhu and Mitchell[11,12], Mavrakos[1,13]to study the radiation and diffraction problems for thin or thick-walled bottomless cylindrical bodies. But, the influence of the partially closed bottom plate is not appropriately considered, and it is usually used in the spar platform and drilling ship.

    Due to the existence of the holed plates at the bottom, the hydrodynamic properties of the body may be different from those of bottomless bodies, especially in the vicinity of resonant frequencies. In view of this, this paper uses the method of separation of variables to study the linear hydrodynamic characteristics of a thick-walled cylindrical body with a moon pool floating on the water surface of finite depth. Specifically, the whole fluid domain is divided into four coaxial ring-shaped domains. The velocity potential in each sub-domain is expanded into a series based on the method of separation of variables. The expansion satisfies the governing equation, the radiation condition and the boundary conditions along the horizontal plan. The remaining boundary conditions and the continuity of the velocity and the pressure on the interfaces of the sub domains are used to obtain the unknown coefficients in the expansion. Based on this procedure, the effects of the holed bottom and the wall thickness of the body on the added mass and the damping coefficients can be revealed. The resonance inside the moon pool will also be studied.

    Fig.1 Sketch of the problem of a floating body with a cylindrical moon pool

    1. Governing equation and boundary conditions

    We consider a thick-walled cylindrical body with the external radiusb , the internal radiuscand the draughth1, floating on the free surface. The body has a concentric hole of radiusa at its bottom (see Fig.1). The depth of the open water outside the body is h, which means the distance between the bottom of the body and the bottom of the liquid is h2=h-h1. A cylindrical coordinate system orθ zis used, in whichorθis on the still water level and zaxis points upwards and passes through the centre of the body.

    Assuming that the fluid is incompressible and inviscid, the flow is irrotational and the motion is small, the fluid flow can be described by the linearized velocity potential theory. When the motion is periodic with frequencyω, the total velocityΦcan be expressed as

    where Re means the real part of a complex function, i=,φ(0)and φ(4)are the spatial velocity potentials due to the incident and diffracted waves, and η(0)is the incoming wave amplitude,φ(l)(l=1,2,3) are the spatial velocity potentials corresponding to the surge (horizontal), heave (vertical) and pitch (rotational) motions, respectively, and η(l)(l=1,2,3)are the corresponding motion amplitudes. Due to the symmetrical configuration of the present body, the sway and roll modes are not considered here. Additionally, the yaw motion about thezaxis does not create any fluid motion and is omitted here too. Each of these complex spatial potentialsφ(l)(l=1,...,4)satisfies the Laplace equation,

    where v=ω2/g , the point at r =0and z=0is assumed to be the centre of rotation,δjlis the Kronecker delta function given by

    In the above equation,φ(0)represents an incident wave propagating in the positivexdirection and can be written as

    2. Solution procedure

    To solve the above boundary value problem analytically, the fluid domain can be divided into four regions as depicted in Fig.1, which are I (b≤r≤∞, -h≤ z≤0), II (a ≤ r≤ b, - h ≤ z ≤-h1), III(r≤a, -h≤ z≤0)and IV (a ≤r≤ c, - h1≤z≤0), respectively. The corresponding potential in each domain is distinquished by subscripts1to4. Based on the method of separation of variables and taking into account some of the boundary conditions, the potential in each domain can be expressed as

    We may notice that the above expansions satisfy the boundary conditions on all the horizontal planes. For this reason, the particular solutions φ(l)are defined as

    Equation (38) can be solved by the Gauss elimination method or some other iteration method.

    Once the velocity potentials are known, the hydrodynamic force on the body can be obtained from the integration of the pressure based on the linear Bernoulli equation over the wetted body surface. For the radiation force due to the body oscillation per unit amplitude, we have

    where Sbis the wetted body surface,n1= nx,n2= nzandn3= znx-xnz,nis the unit inward normal of the body surface with nxand nzbeing its components in thexandzdirections, respectively.

    The force due to the wave radiation can also be written in terms of the added mass μijand the damping coefficientλij. They can be non-dimensionalized as follows:

    3. Results and discussions

    In the numerical simulation, unless otherwise stated, the geometrical parameters are h/ b =3.0,h1/ b =1.0,a/ b =0.2and c/ b=0.5.

    3.1 Verification

    Fig.2 Wave excitation force by the method of direct integration and the Haskind relationship

    Fig.3 Added mass and damping coefficients of a cylinder with moon pool and an intact cylinder

    where Cgis the group velocity and Ai(π)is the complex wave amplitude asr→∞, due to the body motion at the modei , which can be obtained from Eq.(12) as

    The wave excitation force calculated by the method of the direct integration of Eq.(43) and the Haskind relationship in Eq.(44) are plotted in Fig.2. The good agreement between them indicates the correctness of the present solution.

    Fig.4 Free surface elevation inside the moon pool around vb≈0.425

    3.2 Resonant behaviours

    Fig.5 Added mass and damping coefficients of body with hole of a/ b =0.1, 0.25, 0.4

    where κnis the root of J1′(κnc )=0. When n =1, the first natural frequency of the sloshing modes in the present cylindrical tank is v1=3.678, which is close to vb≈3.675 and can be used to explain the peaks in Figs.3(a) and 3(e).

    As for the symmetrical mode, both the added mass and the damping coefficient of the present body are different from those of an intact cylinder. Specifically, for Case 1, the peaks of μ22and λ22occur at vb≈0.425 in Figs.3(c) and 3(d), which might be the response of the piston motion. To confirm it, we consider the wave elevation ζ(2)inside the moon pool, which can be expressed as

    The results alongx axis at vb =0.40,0.425and 0.45are plotted in Fig.4, which are non-dimensionalized by η(2). It is observed that the whole free surface moves up and down together and the piston mode is evident.

    3.3 Effect of the size of the opening at the bottom

    To investigate the effect of the size of the opening at the bottom, three cases are considered, including a/ b =0.1,a/ b =0.25and a/ b =0.4. The other geometrical parameters are h/ b =3.0, h1/b=1.0 and c/ b =0.5. The added mass and the damping coefficients are shown in Fig.5. Some peaks are found in the curves, which are related to the resonant behaviors discussed above. It can be seen that the size of the opening does not affect the behaviors of the hydrodynamic coefficients for the asymmetrical modes. Specifically, in Figs.5(a) and 5(e), the peaks of μ11in the surge motion and μ33in the pitch motion at different a/ b all occur atvb≈3.675, which is close to the first resonant frequency of the cylindrical tank. This also indicates that the first resonant frequency of the sloshing motions in the present body is not affected by the size of the opening and can be predicted by Eq.(46) approximately.

    However, for the heave motion, the size of the opening affects the added mass and the damping coefficients significantly. As shown in Figs.5(c) and 5(d), the peaks of μ22and λ22occur atvb≈0.25,0.55, 0.675for a/ b =0.1,0.25,0.4, respectively. It is clearly show n that, with the increase of the size of the opening,theresonantfrequency for the piston motiontends to increase, while the amplitudes of the corresponding hydrodynamic coefficients decrease dramatically.

    Fig.6 Added mass and damping coefficients of body with wall thickness of c/ b =0.6, 0.8, 1.0

    3.4 Effect of the wall thickness of the body

    It is also interesting to investigate the effect of the wall thickness of the body, which is related to the inner radius c and can be denoted byb-c. Three cases withc/ b =0.6,0.8and1.0are considered and other geometrical parameters areh/ b =3.0,h1/ b =1.0 and a/ b=0.2. The added mass and the damping coefficients are plotted in Fig.6. As shown in Figs.6(a) and 6(e), the peaks ofμ11for the surge motion and μ33for the pitch motion occur regularly, which can be predicted by Eq.(46) approximately. More significantly, it is found in Figs.6(c) and 6(d) that the peaks ofμ22and λ22for the heave motion are affected by the wall thickness too. With the decrease of the wall thickness, the resonant frequency for the piston mode becomes smaller.

    4. Conclusions

    The radiation and the diffraction of a thickwalled cylindrical body with a moon pool are studied by an analytical solution procedure based on subdividing the fluid domain and the method of variable separation. The results are verified through the relationship between the radiation and the diffraction problems. The resonant behaviors are found in all motions of the present body. The resonant frequencies for the surge and pitch modes are similar to the sloshing frequencies of a cylindrical tank, which are hardly affected by the opening at bottom while they occur regularly with the variation of the wall thickness. The piston-like motion is found in the heave mode at a special low frequency, which is significantly affected by both the opening at bottom and the wall thickness.

    The present problem is studied in the frequencydomain based on the linear potential theory. Some time-domain methods are suggested to consider more details of the nonlinearity of the present problem.

    Acknowledgements

    This work was supported by the Lloyd’s Register Educational Trust (LRET) through the joint centre involving University College London, Shanghai Jiao Tong University and Harbin Engineering University, to which the authors are most grateful. The LRET is an independent charity institution working to achieve advances in transportation, science, engineering and technology education, training and research worldwide for the benefit of all people.

    [1] MAVRAKOS, S. A. Hydrodynamic coefficients for a thick-walled bottomless cylindrical body floating in water of finite depth[J]. Ocean engineering, 1988, 15(3): 213-229.

    [2] TAO L., LIM K. Y. and THIAGARAJAN K. Heave response of classic spar with variable geometr[J]. Journal of Offshore Mechanics and Arctic Engineering, 2004, 126(1): 90-95.

    [3] SADEGHI K., INCECIK A. and DOWNIE M. J. Response analysis of a truss spar in the frequency domain[J]. Journal of Marine Science and Technology, 2004, 8(3): 126-137.

    [4] LEE H. H., WONG S. H. and LEE R. S. Response mitigation on the offshore floating platform system with tuned liquid column damper[J]. Ocean engineering, 2006, 33(8-9): 1118-1142.

    [5] TAGHIPOUR R., MOAN T. Efficient frequency-domain analysis of dynamic resonponse for the multi-body wave energy converter in multi-directional waves[C]. Proceedings of the Eighteenth Intertional Offshore and Polar Engineering Conference. Vancouver, BC, Canada, 2008.

    [6] MA Q. W., PATEL M. H. On the non-linear forces acting on a floating spar platform in ocean waves[J]. Applied Ocea Research, 2001, 23(1): 29-40.

    [7] AGARWAL A. K., JAIN A. K. Nonlinear coupled dynamic response of offshore spar platforms under regular sea waves[J]. Ocean engineering, 2003, 30(4): 517-551.

    [8] KOO B. J., KIM M. H. and RANDALL R. E. Mathieu instability of a spar platform with mooringand risers[J]. Ocean engineering, 2004, 31(17-18): 2175-2208.

    [9] ZHANG Fan, YANG Jian-min, LI Rui-pei et al. Numerical investigation on the hydrodynamic performances of a new spar concept[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(4): 473-481.

    [10] GARRETT C. J. R. Bottomless harbours[J]. Journal of Fluid Mechanics, 1970, 43(3): 433-449.

    [11] ZHU S., MITCHELL L. Diffraction of ocean waves around a hollow cylindrical shell structure[J]. Wave Motion, 2009, 46(1): 78-88.

    [12] ZHU S., MITCHELL L. Combined diffraction and radiation of ocean waves around an OWC device[J]. Journal of Applied Mathematics and Computing, 2011, 36(1-2): 401-416.

    [13] MAVRAKOS S. A. Hydrodynamic coefficients in heave of two concentric surface-piercing truncated circular cylinders[J]. Applied Ocean Research, 2005, 26(3-4): 84-97.

    [14] CHAKRABARTI S. K. Handbook of offshore engineering[M]. London, UK: Elsevier, 2005.

    [15] LINTON C. M., MCLVER P. Handbook of mathematical techniques for wave/structure interactions[M]. London, UK: CRC Press, 2001.

    10.1016/S1001-6058(13)60354-6

    * Biography: ZHOU Hua-wei (1984-) Male, Ph. D. Candidate

    ZHANG Hong-sheng,

    E-mail: hszhang@shmtu.edu.cn

    久久久久久久久久成人| 高清欧美精品videossex| 日韩av在线大香蕉| 美女cb高潮喷水在线观看| 天堂√8在线中文| 美女cb高潮喷水在线观看| 婷婷色麻豆天堂久久| 久久精品国产亚洲av涩爱| 18禁动态无遮挡网站| 麻豆成人午夜福利视频| 国产综合精华液| 亚洲国产av新网站| 人妻夜夜爽99麻豆av| 看免费成人av毛片| 黄色欧美视频在线观看| 成人无遮挡网站| 国产熟女欧美一区二区| 可以在线观看毛片的网站| 亚洲av在线观看美女高潮| 亚洲精品日本国产第一区| 校园人妻丝袜中文字幕| 国产精品人妻久久久影院| 汤姆久久久久久久影院中文字幕 | 日韩欧美 国产精品| 人体艺术视频欧美日本| 黄色日韩在线| 日韩欧美一区视频在线观看 | 男人和女人高潮做爰伦理| 特大巨黑吊av在线直播| 久久久久精品久久久久真实原创| 青春草视频在线免费观看| 卡戴珊不雅视频在线播放| 亚洲精品成人久久久久久| 男的添女的下面高潮视频| 国产成人精品福利久久| 国产在线男女| 久久久久久久久中文| 又爽又黄a免费视频| 久久人人爽人人片av| 国产亚洲av嫩草精品影院| av在线天堂中文字幕| 又粗又硬又长又爽又黄的视频| 精品久久久久久久久亚洲| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久人人人人人人| 在线天堂最新版资源| 亚洲激情五月婷婷啪啪| 亚洲熟妇中文字幕五十中出| 高清欧美精品videossex| 99久国产av精品| 免费观看精品视频网站| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| 偷拍熟女少妇极品色| 99久久精品国产国产毛片| 国产精品蜜桃在线观看| 欧美日本视频| 久久99精品国语久久久| 欧美日韩在线观看h| av.在线天堂| 国产精品久久视频播放| 久久久久久久久久黄片| 七月丁香在线播放| 亚州av有码| 国产黄色小视频在线观看| 午夜精品在线福利| 国产色爽女视频免费观看| 国产一区二区三区综合在线观看 | 成人毛片60女人毛片免费| 又大又黄又爽视频免费| 一级毛片久久久久久久久女| 熟女人妻精品中文字幕| 国产日韩欧美在线精品| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 少妇裸体淫交视频免费看高清| 国产精品熟女久久久久浪| 免费黄网站久久成人精品| 91精品一卡2卡3卡4卡| 天堂中文最新版在线下载 | 国内揄拍国产精品人妻在线| 精品久久久精品久久久| 午夜精品一区二区三区免费看| 色综合色国产| 国产 一区精品| 一级a做视频免费观看| 亚洲国产最新在线播放| 国产美女午夜福利| 亚洲人成网站高清观看| av福利片在线观看| 日本wwww免费看| 国产精品爽爽va在线观看网站| 午夜福利视频1000在线观看| 国产综合懂色| 99视频精品全部免费 在线| 久久国产乱子免费精品| 少妇裸体淫交视频免费看高清| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 色综合色国产| 国产一区二区在线观看日韩| 乱人视频在线观看| 最近的中文字幕免费完整| 国产色爽女视频免费观看| 亚洲色图av天堂| 自拍偷自拍亚洲精品老妇| 九色成人免费人妻av| 性色avwww在线观看| 免费观看的影片在线观看| eeuss影院久久| 亚洲经典国产精华液单| 日韩电影二区| 国产成人aa在线观看| 我要看日韩黄色一级片| 亚洲欧美精品自产自拍| 黄色欧美视频在线观看| 水蜜桃什么品种好| 日韩av免费高清视频| 精品人妻偷拍中文字幕| 亚洲精品一二三| 久久草成人影院| 丝袜美腿在线中文| 婷婷六月久久综合丁香| 午夜福利高清视频| 黄色配什么色好看| 啦啦啦韩国在线观看视频| 午夜久久久久精精品| 欧美日韩亚洲高清精品| 成年免费大片在线观看| 国产单亲对白刺激| 国产精品国产三级国产专区5o| 久99久视频精品免费| 国产成人aa在线观看| 精品亚洲乱码少妇综合久久| 少妇熟女aⅴ在线视频| av网站免费在线观看视频 | 亚洲精品一二三| 夜夜爽夜夜爽视频| 国产单亲对白刺激| 成年av动漫网址| 乱系列少妇在线播放| 春色校园在线视频观看| 国产亚洲av嫩草精品影院| 99久久人妻综合| 黄色配什么色好看| 日韩制服骚丝袜av| 春色校园在线视频观看| 精品国内亚洲2022精品成人| 国内少妇人妻偷人精品xxx网站| 午夜激情久久久久久久| 久99久视频精品免费| 亚洲三级黄色毛片| 我的老师免费观看完整版| 最近最新中文字幕免费大全7| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 国产精品一区二区三区四区免费观看| 午夜日本视频在线| 纵有疾风起免费观看全集完整版 | 国产亚洲最大av| 一级二级三级毛片免费看| 日日干狠狠操夜夜爽| 国产高清有码在线观看视频| 日韩欧美精品免费久久| 成年人午夜在线观看视频 | 欧美成人a在线观看| 男插女下体视频免费在线播放| 水蜜桃什么品种好| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 18+在线观看网站| 亚洲丝袜综合中文字幕| av在线老鸭窝| 午夜免费男女啪啪视频观看| www.av在线官网国产| 国产精品1区2区在线观看.| 国产一级毛片七仙女欲春2| 亚洲精品,欧美精品| 日韩强制内射视频| 免费看av在线观看网站| 岛国毛片在线播放| 99热网站在线观看| 搡老乐熟女国产| 街头女战士在线观看网站| 免费av不卡在线播放| 国产熟女欧美一区二区| 美女大奶头视频| 日本猛色少妇xxxxx猛交久久| 久久6这里有精品| 亚洲欧美一区二区三区国产| 亚洲三级黄色毛片| 一个人看视频在线观看www免费| 国产永久视频网站| 久久久久久久久大av| 观看美女的网站| 天天躁日日操中文字幕| 亚洲av免费高清在线观看| 老女人水多毛片| 欧美三级亚洲精品| 淫秽高清视频在线观看| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| 欧美激情在线99| 成人亚洲精品av一区二区| 亚洲色图av天堂| 久久99热这里只有精品18| 18禁在线无遮挡免费观看视频| 免费看av在线观看网站| 在线a可以看的网站| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 天堂av国产一区二区熟女人妻| 日韩一本色道免费dvd| 久久久久久久午夜电影| 精品人妻熟女av久视频| 成人一区二区视频在线观看| 最近中文字幕2019免费版| 在线免费观看的www视频| 日韩亚洲欧美综合| 亚洲精品一二三| 91aial.com中文字幕在线观看| 一个人免费在线观看电影| 久热久热在线精品观看| 欧美日韩一区二区视频在线观看视频在线 | 国产成人a∨麻豆精品| 高清毛片免费看| 久久久久久久久久久免费av| 最新中文字幕久久久久| 亚洲精品国产成人久久av| 2018国产大陆天天弄谢| 自拍偷自拍亚洲精品老妇| 九色成人免费人妻av| 国产在视频线精品| 亚洲精品456在线播放app| 亚洲丝袜综合中文字幕| 欧美xxⅹ黑人| 亚州av有码| 亚洲国产最新在线播放| 欧美日韩亚洲高清精品| 高清视频免费观看一区二区 | 男人舔奶头视频| 亚洲18禁久久av| 女人十人毛片免费观看3o分钟| 国产精品久久久久久av不卡| 久99久视频精品免费| 国产在线一区二区三区精| 高清毛片免费看| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲av片在线观看秒播厂 | 蜜桃久久精品国产亚洲av| 亚洲精品一二三| 2021天堂中文幕一二区在线观| 国精品久久久久久国模美| 亚洲精品一区蜜桃| 纵有疾风起免费观看全集完整版 | 日本一二三区视频观看| 成年女人在线观看亚洲视频 | 夫妻性生交免费视频一级片| a级毛片免费高清观看在线播放| 天堂俺去俺来也www色官网 | 22中文网久久字幕| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 久久久久国产网址| 高清午夜精品一区二区三区| 亚洲人成网站高清观看| 国产黄片美女视频| 久久久久精品久久久久真实原创| 99久久精品热视频| 97在线视频观看| 日韩欧美三级三区| 插阴视频在线观看视频| 亚洲av在线观看美女高潮| 99re6热这里在线精品视频| 久久99蜜桃精品久久| 欧美性感艳星| 午夜精品在线福利| 亚洲精品456在线播放app| 中文字幕久久专区| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频 | 熟妇人妻不卡中文字幕| 国产精品99久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美成人精品一区二区| 午夜福利在线观看免费完整高清在| 色综合亚洲欧美另类图片| 一级毛片久久久久久久久女| 亚洲欧美一区二区三区国产| 看十八女毛片水多多多| 97超视频在线观看视频| 国产成人aa在线观看| 精品酒店卫生间| 九九久久精品国产亚洲av麻豆| 简卡轻食公司| 国产白丝娇喘喷水9色精品| 国产欧美另类精品又又久久亚洲欧美| 建设人人有责人人尽责人人享有的 | 日韩人妻高清精品专区| 精品久久久久久久末码| av在线亚洲专区| 国产精品av视频在线免费观看| 久久久久精品性色| 国产毛片a区久久久久| 日韩三级伦理在线观看| 亚洲成人一二三区av| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 一本久久精品| 精品国产露脸久久av麻豆 | 少妇的逼水好多| 黑人高潮一二区| 极品少妇高潮喷水抽搐| 国产精品一及| 老师上课跳d突然被开到最大视频| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 国产av在哪里看| 最近的中文字幕免费完整| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 国产白丝娇喘喷水9色精品| 亚洲熟妇中文字幕五十中出| 99热这里只有精品一区| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 在线观看一区二区三区| 国产成人aa在线观看| 网址你懂的国产日韩在线| 亚洲精品国产成人久久av| 精品久久久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频 | av线在线观看网站| 亚洲精品乱码久久久久久按摩| 一个人观看的视频www高清免费观看| 国产激情偷乱视频一区二区| 美女国产视频在线观看| 久久人人爽人人片av| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 免费少妇av软件| 亚洲精品日韩av片在线观看| 精品欧美国产一区二区三| 久久鲁丝午夜福利片| 亚洲内射少妇av| 晚上一个人看的免费电影| 人妻夜夜爽99麻豆av| 欧美激情在线99| 日韩欧美一区视频在线观看 | 少妇裸体淫交视频免费看高清| 亚洲在线自拍视频| 欧美日韩精品成人综合77777| 国产人妻一区二区三区在| 亚洲丝袜综合中文字幕| 国产精品久久久久久精品电影| 色视频www国产| 日本黄大片高清| 一级毛片久久久久久久久女| 成年女人在线观看亚洲视频 | 美女主播在线视频| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| 免费看美女性在线毛片视频| 日韩一区二区视频免费看| 久久精品国产自在天天线| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 天天躁夜夜躁狠狠久久av| 一级毛片我不卡| 伦精品一区二区三区| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 国产老妇女一区| 床上黄色一级片| 国产一级毛片在线| 久久久亚洲精品成人影院| 久久久久九九精品影院| 国产高清不卡午夜福利| 少妇裸体淫交视频免费看高清| 日韩电影二区| 国产成人免费观看mmmm| 内地一区二区视频在线| av国产免费在线观看| 亚洲国产精品成人久久小说| 老司机影院毛片| 免费看美女性在线毛片视频| 大又大粗又爽又黄少妇毛片口| 国产精品一及| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| 一二三四中文在线观看免费高清| 搞女人的毛片| 搡老乐熟女国产| 日韩视频在线欧美| 久久精品夜夜夜夜夜久久蜜豆| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 国产精品久久久久久久电影| 免费播放大片免费观看视频在线观看| 99久久中文字幕三级久久日本| 69av精品久久久久久| 国产精品久久久久久久久免| 亚洲欧美日韩东京热| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 最后的刺客免费高清国语| 国产单亲对白刺激| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 能在线免费看毛片的网站| a级一级毛片免费在线观看| 麻豆久久精品国产亚洲av| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 国产成人91sexporn| 国产老妇伦熟女老妇高清| 亚洲av二区三区四区| 国产成人免费观看mmmm| 人妻系列 视频| ponron亚洲| 男女视频在线观看网站免费| 成人美女网站在线观看视频| 日韩精品青青久久久久久| 综合色丁香网| 最近最新中文字幕大全电影3| 街头女战士在线观看网站| 51国产日韩欧美| ponron亚洲| 久久久色成人| 午夜福利在线观看免费完整高清在| 亚洲va在线va天堂va国产| 成人亚洲欧美一区二区av| 日韩av在线大香蕉| 伊人久久精品亚洲午夜| 综合色av麻豆| 免费少妇av软件| 日韩大片免费观看网站| 亚洲精品乱码久久久v下载方式| 久久久亚洲精品成人影院| 久久久久网色| 美女脱内裤让男人舔精品视频| 男女视频在线观看网站免费| www.av在线官网国产| 日韩成人av中文字幕在线观看| 国产亚洲精品av在线| 91久久精品国产一区二区三区| 联通29元200g的流量卡| 中文精品一卡2卡3卡4更新| 老女人水多毛片| 精品久久国产蜜桃| 精品久久久精品久久久| 在线天堂最新版资源| 国产精品久久久久久精品电影小说 | 免费黄网站久久成人精品| 亚洲自偷自拍三级| 欧美日本视频| 国产精品久久视频播放| 国产永久视频网站| 欧美 日韩 精品 国产| 七月丁香在线播放| 看黄色毛片网站| 欧美激情在线99| 日本-黄色视频高清免费观看| 午夜爱爱视频在线播放| 日本午夜av视频| 国产综合懂色| 中国国产av一级| 国产黄片美女视频| 国产人妻一区二区三区在| 国产真实伦视频高清在线观看| 精品亚洲乱码少妇综合久久| 国国产精品蜜臀av免费| 天天一区二区日本电影三级| 大香蕉97超碰在线| 国产极品天堂在线| 亚洲av在线观看美女高潮| 床上黄色一级片| 国产探花极品一区二区| 99久久精品国产国产毛片| 日日啪夜夜撸| 久久精品国产鲁丝片午夜精品| 亚洲精品色激情综合| 国产高清三级在线| 亚洲国产欧美在线一区| 伦精品一区二区三区| videossex国产| 色网站视频免费| 性色avwww在线观看| 两个人的视频大全免费| 如何舔出高潮| 亚洲av成人av| 欧美人与善性xxx| 国语对白做爰xxxⅹ性视频网站| 日韩av在线免费看完整版不卡| 国产v大片淫在线免费观看| 国产精品国产三级国产av玫瑰| 18+在线观看网站| 嫩草影院入口| 亚洲精品视频女| 中文字幕制服av| 国产成人精品婷婷| 久久久久国产网址| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 亚洲天堂国产精品一区在线| 最近视频中文字幕2019在线8| 国产精品一区二区三区四区免费观看| av女优亚洲男人天堂| 美女主播在线视频| 日韩电影二区| 丝袜美腿在线中文| ponron亚洲| 精品久久久久久成人av| 亚洲欧洲日产国产| 三级经典国产精品| 97精品久久久久久久久久精品| 热99在线观看视频| 看黄色毛片网站| 一区二区三区免费毛片| 汤姆久久久久久久影院中文字幕 | 免费观看a级毛片全部| 国产一区有黄有色的免费视频 | 看黄色毛片网站| 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕 | 日韩中字成人| 日韩电影二区| 一个人观看的视频www高清免费观看| ponron亚洲| 九九爱精品视频在线观看| 97在线视频观看| 波野结衣二区三区在线| 99热全是精品| 美女黄网站色视频| 精品少妇黑人巨大在线播放| 老司机影院成人| 亚洲国产精品sss在线观看| 欧美一级a爱片免费观看看| 最近中文字幕高清免费大全6| 成年女人看的毛片在线观看| 蜜桃亚洲精品一区二区三区| 久久人人爽人人爽人人片va| 黄色一级大片看看| 狂野欧美白嫩少妇大欣赏| 免费播放大片免费观看视频在线观看| 波多野结衣巨乳人妻| 欧美成人一区二区免费高清观看| 只有这里有精品99| 一级爰片在线观看| 久久6这里有精品| 天天躁夜夜躁狠狠久久av| 亚洲av在线观看美女高潮| 中国国产av一级| 精品熟女少妇av免费看| 又爽又黄无遮挡网站| 午夜激情久久久久久久| 看十八女毛片水多多多| 少妇熟女欧美另类| 亚洲一级一片aⅴ在线观看| av在线亚洲专区| 国产精品熟女久久久久浪| 久久精品国产自在天天线| 午夜视频国产福利| 久久午夜福利片| 亚洲乱码一区二区免费版| 成人综合一区亚洲| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 真实男女啪啪啪动态图| 国产高清有码在线观看视频| 久久久亚洲精品成人影院| 国产综合懂色| 啦啦啦中文免费视频观看日本| 成人毛片a级毛片在线播放| 久久久久久久久久久丰满| 偷拍熟女少妇极品色| 麻豆久久精品国产亚洲av| 精品久久久久久成人av| 嫩草影院精品99| 亚洲欧美精品自产自拍| 成年av动漫网址| 亚洲av电影在线观看一区二区三区 | 神马国产精品三级电影在线观看| 真实男女啪啪啪动态图| 久久6这里有精品| 久久久午夜欧美精品| 高清在线视频一区二区三区| 天美传媒精品一区二区| 成人毛片a级毛片在线播放| 日日啪夜夜爽| 最近中文字幕高清免费大全6| 久久精品人妻少妇| 十八禁国产超污无遮挡网站| 久久99热这里只频精品6学生| 人人妻人人澡人人爽人人夜夜 | 国产真实伦视频高清在线观看| 91精品国产九色| 亚洲国产精品专区欧美| 乱码一卡2卡4卡精品| 国产成人福利小说| 久久精品国产亚洲av涩爱| 插阴视频在线观看视频| 国产乱人视频|