• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orientation of the fiber suspending in the flow through a tube containing a sphere*

    2013-06-01 12:29:57LIANGXiaoyu梁曉瑜
    水動力學研究與進展 B輯 2013年2期

    LIANG Xiao-yu (梁曉瑜)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China,

    E-mail: liangxiaoyu002@sina.cn

    KU Xiao-ke

    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norwegian, Norway

    WANG Ye-long (王葉龍)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    Orientation of the fiber suspending in the flow through a tube containing a sphere*

    LIANG Xiao-yu (梁曉瑜)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China,

    E-mail: liangxiaoyu002@sina.cn

    KU Xiao-ke

    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norwegian, Norway

    WANG Ye-long (王葉龍)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    (Received June 27, 2012, Revised September 9, 2012)

    Fiber suspensions flow through a tube containing a sphere in the dilute and concentrated regimes is simulated numerically with the Lattice Boltzmann Method (LBM). The numerical results of fiber orientation distribution based on a statistical scheme are obtained and agree qualitatively with the experimental ones for the flow through a parallel plate channel containing a cylinder. The results show that the sphere in the tube results in a change in the fiber orientation distribution downstream of the sphere along the flow and transverse directions. The influences of the sphere on the fiber orientation distribution are more significant for the concentrated suspensions than for the dilute one. The effect of the initial fiber orientations on the fiber orientation distribution is significant upstream of the sphere but small downstream of the sphere.

    fiber suspension, laminar flow, tube containing a sphere, orientation distribution, Lattice Boltzmann Method (LBM)

    Introduction

    Fiber suspension occurs in a wide variety of natural and man-made materials. The orientation behavior of fibers is a major concern in many industrial processes, such as extrusion, injection, and compression molding. The fiber orientation distribution determines the mechanical, thermal and electrical properties of the fiber suspensions. In order to design and control manufacturing processes that generate favorable fiber orientation states, the description of the orientation pattern and the ways to control it must be well understood.

    Over the past twenty years the fiber orientation distribution in the flow has been studied[1-4]. The main numerical methods for simulating the fiber orientation distribution include the Lttice Boltzmann Method (LBM)[5], the method of combining the slender body theory and the spectral method[6], and the Lagrangian method[7]. The LBM used in this study is a particletracing scheme. Application of the discrete Boltzmann method to analyze particles suspended in fluid was first proposed by Ladd et al.[8]. Ladd’s model requires fluid to cross the boundary of the suspended solid particle and occupy the entire domain. Aidun et al.[9]developed a method which does not require transfer of fluid into the solid particle and, therefore, applied to real suspension. Ding and Aidun[10]added“virtual nodes” to the solid boundaries and extended the LBM for direct simulation of suspended particles near con- tact. They also proposed a local link-by-link impleme- ntation of the lubrication force when the gapbetween spherical particles becomes very small. In the present study, the equations for fiber suspension in a Newtonian solvent are solved numerically by coupling flow field with fiber orientation. In the computation, the interactions between fibers, between fiber and cylinder in the channel, and between fiber and channel wall are taken into account.

    Fiber orientation in a suspension flow through a tube is of scientific interest and is of importance in the actual application[11,12]. However, there are few studies[13,14]on the fiber orientation in flows through complex geometries. In the present study, we present a more complete model for the simulation of fiber orientation, and apply it to the computation of fiber orientation distributions in a flow through a tube containing a sphere. Such flow offers the possibilities of studying the behavior of the fibers in a variety of flows varying from simple shear or pure elongational flows, to more complex flows especially around the obstacle. Analyzing the flow in such geometry will beneficially contribute to reach a better understanding of flow properties in many important manufacturing processes of producing composites.

    1. Numerical methods

    1.1 Lattice Boltzmann Method

    The original lattice Boltzmann equation in the discrete microscopic velocity space is given as

    in which fiis the density distribution function,eiis the streaming velocity in the ithdirection in the phase space,i =0,1,… ,N,τis the single relaxation time, and fieqis the local equilibrium distribution and, for the square or cubic lattice, is taken as[15]

    In the 9-bit LBGK model, two-dimensional velocity in the phase space is discretized in the following nine directions:

    The kinematic viscosity for the nine-speed model is ν = c2Δt(τ -0.5)/3, and c =Δx /Δtis the lattice speed. In Eq.(2),wiis equal to 4/9 for i =0, 1/9 for i =1-4, and 1/36 for i=5-8.

    In the limit of long wavelengths, the LBE recovers the following quasi-incompressible N-S equations by the Chapman-Enskog multi-scaling expa-nsion[15]:

    1.2 Force and torque exerted on fiber

    The LBM has been a promising numerical tool to effectively model complex physics in computational fluid dynamics. Ladd et al.[8]and Aidun et al.[9]used the momentum exchange method to propose a modified bounce-back rule which is for a moving wall. We place the boundary nodes on the links connecting the interior and exterior nodes, then

    where “t+” denotes the post-collision time,iis the incident direction,i′is the reflected direction,Bi= 3ρwi/ c2,ubis the velocity on the particle surface,ub=u0+Ω×xb, where u0is the translational velocity of the mass center of the particle,Ωis the angular velocity of the particle, and xb= x+ei/2-x0with x0being the position of the mass center. The force and torque exerted by the fluid at xbare

    1.3 Virtual fluid nodes

    When simulating the discrete fibers, the LBM isusually limited to the case where the gap between fibers is much larger than the size of lattice unit. As the fibers get close to each other and the gap between them becomes smaller than a unit lattice dimension as shown in Fig.1, there is no fluid node within the gap. Thus two nodes on the gap link are covered by fibers and the LBM can not accurately calculate the hydrodynamic interaction between the fibers. In order to overcome this difficulty, Ding et al.[10]added “virtual nodes” to the boundaries and extended the LBM to the direct simulation of suspended fibers near contact. There are two fibers,IandJ , as shown in Fig.2. The initial point of link eiis nodex , just inside the boundary of fiber I , while the final point of link eiis nodey , just inside the boundary of fiberJ . Both nodes x and y are considered to be virtual fluid nodes. They serve as the real fluid nodes when the interaction between fiber I( J )and fluid in the gap area is being considered. Taking fiberI for example, the distribution function at nodex at time t +1on link eiis given by

    wherei′always means the link with the direction opposite to that of linki,ubis the velocity of fiber I at x+ei/2, and Bi′=3ρwi′/c2. Consequently,the force and torque exerted on the fiberI by the node x are

    where xb=x+ei/2-x0with x0being the position of centroid of fiberI.

    Fig.1 Two fibers with very small distance

    Fig.2 Interaction between two fibers near contact

    The same rule is used to calculate the interaction between node y and fiberJ . When a fiber is very close to a wall, the interaction between the wall and the fiber is treated in a similar manner. Combining Eqs.(6) and (8), we have the total force and torque on the fiber during [t, t+1], excluding the lubrication force

    1.4 Lubrication forces

    To further represent the forces separating two fibers about to collide, the lubrication forces are included using links connecting two virtual boundary nodes from two surfaces near contact, defined as“bridge” links. The basic idea is to determine an element of force for each bridge link which accurately accounts for the lubrication force. The direction of the element of force is along the bridge link and given as d f =3ν ρU /2λ δ2, whereδis the surface separa

    rtion,νis the kinematic viscosity,U is the relative velocity of the linked surface elements, and λrdepends on the surface curvature and is given by λr=(1/ R1+1/R2)/2for two spheres, where R1and R2are the radii of curvature of the linked two surface elements. It can be seen thatdf has a significant contribution to the lubrication force only when δis very small.df can be neglected ifδis larger than the length of the link. For two-dimensional case,df is given by

    The force and the torque exerted on the particle along this link are given by

    where xb= x+ ei/2-x0(x0is the position of the centroid of particle). So the total lubrication force and its torque exerted on a particle is then given by

    If the fiber concentration is not too high, the end-toend or side-to-side proximity of two fibers rarely occurs. In most cases, the end of one fiber is close to the side of another one. Thus the lubrication approximation given above cannot be used if the fiber has a sharp edge. Therefore, we assume that the fibers have circular caps of diameterD (Dis the diameter of fiber) at their ends, and use the above lubrication approximation. When a fiber is very close to a wall, the fiber is treated in a similar manner.

    From above equations, the net force and torque exerted on a fiber fromtto t +1are given by

    The fiber velocity and angular velocity are updated based on Newton’s laws.

    Fig.3 Collision model

    2. Collision model

    2.1 Collision between fibers

    The collision of two fibers is assumed to be instantaneous and elastic. The contact point and its normal direction are determined by the relative positions of two fibers as shown in Fig.3. After collision, each fiber attains an impulse Ialong the normal direction. The translational and angular velocities of two fibers after collision depend on the impulse and are given as

    where m and vare the mass and velocity of fiber, respectively,pis unit vector along the normal direction, the Subscripts 1 and 2 are used to distinguish two fibers, and the superscript ‘ ' ’means “after collision”. Based on the law of elastic collision, we have

    where k is the elastic coefficient,v1Oand v2Oare the velocity components of two fibers along the normal direction at contact point before collision. The torques exerted on the two fibers arel1×Ipand -l2× Ip , respectively, where l1,l2are the vectors from mass centreO1and O2of two fibers to the contact pointO . Then the rotational equations of fibers are

    where ωis the angular velocity of the fiber, and J1and J2are the rotation inertia of the fiber. Then the impulseI can be written as

    2.2 Collision with wall or sphere

    When fibers collide with wall or sphere, the model of collision between fibers is also used as long as taking m2as infinite and v2Oas 0. Then the transient impulse formula is obtained by reducing Eq.(17) to

    3. Simulation details

    3.1 Computational parameters

    Fig.4 Schematic illustration of tube containing a sphere

    3.2 Evolution of the orientation ellipses

    In order to analyze the fiber orientation quantitatively, the flow region is divided into many small statistical cells (2L×1L). Then the second-order orientation tensorais calculated in each statistical cell from the orientation anglesθof fibers.θis defined as the angle between fiber axis and x-axis. The components of the tensora are given by

    whereN and θnare the total number of fibers in each statistical cell and the orientation angle of each fiber, respectively. Whena12is equal to zero, the fiber axis coincides with the coordinate axis, and if furthermore,a11(or a22) is zero, the fibers are perfectly aligned with ther(orx) axis.

    The preferred angleαof the fibers for each statistical cell is given by

    Fig.5 Illustration of the relation between the orientation state and the orientation parameters

    Fig.6 Distributions of preferred angle at x/ R =–2

    4. Results and discussions

    4.1 Orientation distributions of fibers along the radial direction

    Fig.7 Distributions of orientation order parameter at x/ R=–2

    Fig.8 Distributions of preferred angle at x/ R =–2

    Fig.9 Distributions of orientation order parameter at x/ R =–2

    Fig.10 Preferred angles in the flow direction for the fibers with completely aligned orientation initially at inlet (a11=1, a12=0) (nL2=0.125)

    4.2 Fiber orientation distributions along the flow direction

    The numerical results of the preferred anglesα along the flow direction at r/ R=0, 0.5 and 0.88 are shown in Figs.10 and 11 for the dilute and concentrated regimes. The region of-1 < x/ R <1is the location of the sphere. On the centerline(r/ R =0),α for the dilute case suddenly decreases from α=0oto–50° in the region immediately upstream of the sphere, andαis zero in the downstream region of the sphere. In contrast, for concentrated caseαabruptly increases from α=0oto 88oin front of the sphere, furthermore in the immediately downstream region it increases from -75oto 10o. In the regions between the centerline and the side wall (r/ R =0.5)and near the side wall(r/ R =0.88),αrapidly returns to zero in a short distance behind the sphere(x/ R ≈2.0)for the dilute case, and in the further downstream region, αshows very little change. However, for the concentrated one,αgrows more slowly compared with those for the dilute one, and gradually returns to the flow direction in the far downstream region(x/ R≥4.0) for r/ R =0.88, whereasαreaches a plateau at x/ R ≈4.0and keeps the value around -10ofor r/ R =0.5. It demonstrates that the obstacle such as the sphere in the flow strongly disturbs the fiber orientation state in the concentrated suspension, while it gives relatively small effect on the orientation state in the dilute one.

    Fig.11 Preferred angles in the flow direction for the fibers with moderately orientation initially at inlet (nL2=2.0)

    Fiber orientation distribution depends on the flow field and the fiber interactions including the mechanical and hydrodynamic effects. In the present study, the initial flows in all the cases are the same. Therefore, the difference of fiber orientation for the dilute and concentrated regimes is resulted from the fiber interaction. For the dilute one, the mechanical interactions between fibers are insignificant, and the centroid of fiber is generally expected to move on the streamline. In this case, the hydrodynamic interaction plays an important role on the fiber orientation distribution. However, in the concentrated one, the mechanical interactions between fibers are significant. In the region where the flow suddenly changes, e.g., immediately downstream of sphere, the fibers quickly rotate and even the slight mechanical interactions between fibers play a significant role in the fiber orientation distribution.

    4.3 Effect of initial orientations at inlet

    The fiber orientation distributions with different initial orientations at inlet are studied in order to explore the effect of initial conditions on the fiber orie-ntation. Here the completely aligned fibers at inlet are introduced andλis defined as the angle between the fiber axis and thex -axis.

    Fig.12 Preferred angles at x/ R=–2 for various initial orientation at inlet (nL2=0.125)

    Fig.13 Preferred angles at x/ R=–2 for various initial orientation at inlet (nL2=2.0)

    Fig.14 Preferred angles atx/ R=2 for various initial orientation at inlet (nL2=0.125)

    Figures 12-15 show the transverse distributions of the preferred anglesα, in the upstream region (x/ R = -2)and the downstream region (x/ R =2) of the sphere, for the two concentration regimes with various initial orientations at inlet. As is shown in Figs.12 and 13, the fiber orientation is strongly dependent on the initial orientation at inlet in the upstream region of the sphere, and this is particularly true for the dilute suspension. Therefore, aligning the fibers at inlet along the flow direction has a beneficial effect on the fiber alignment with the flow direction in the upstream region of the sphere. However, the initial orientation angles have little effect on the fiber orientation in the downstream region(x/ R =2)of the sphere because the profiles of the preferred angles for differentλare nearly the same as shown in Figs.14 and 15.

    Fig.15 Preferred angles atx/ R=2 for various initial orientation at inlet (nL2=2.0)

    Based on the above discussion we can conclude that the fiber orientation in the upstream of the sphere is greatly influenced by the initial orientation at inlet, while downstream of the sphere is relatively insensitive to the initial orientation because the fibers with any initial orientation at inlet will align with the flow direction when they flow through the region between the sphere and wall.

    5. Conclusion

    For dilute and concentrated suspensions the fiber orientation distributions have been simulated numerically with the LBM in fiber suspensions flow through a tube containing a sphere. In the simulations the interactions between fibers, fiber and sphere, fiber and tube wall are taken into account. The numerical results of orientation distribution are in agreement with the experiment performed in a channel containing a cylinder qualitatively. The results show that the existence of sphere in the tube results in a change of the fiber orientation in the downstream region of the sphere along the flow and transverse directions because of the stretching and shearing effect caused by the sphere. The effects of the sphere on the fiber orientation distribution are more significant for the concentrated suspensions than for the dilute one. The fiber orientation distribution in the upstream of the sphere is greatly influenced by the initial orientation at inlet, whereas no apparent difference in the fiber orientation in the downstream of the sphere is observed.

    References

    [1] YASUDA K., MORI N. and NAKAMURA K. A new visualization technique for short fibers in a slit flow of fiber suspensions[J]. International Journal of Engi- neering Science, 2002, 40(9): 1037-1052.

    [2] LIN J., ZHANG W. and YU Z. Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows[J]. Journal of Aerosol Science, 2004, 35(1): 63-82.

    [3]SALAHUDDIN A., WU J. S. and AIDUN C. K. Numerical study of rotational diffusion in sheared semidilute fibre suspension[J]. Journal of Fluid Mechanics, 2012, 692: 153-182.

    [4]NISKANEN H.,ELORANTA H. and TUOMELA J. et al. On the orientation probability distribution of flexible fibres in a contracting channel flow[J]. International Journal of Multiphase Flow, 2011, 37(4): 336-345.

    [5] LIN J., SHI X. and YOU Z. Effects of the aspect ratio on the sedimentation of a fiber in Newtonian fluids[J]. Journal of Aerosol Science, 2003, 34(7): 909-921.

    [6] LIN J., SHI X. and YU Z. The motion of fibers in an evolving mixing layer[J]. International Journal of Multiphase Flow, 2003, 29(8): 1355-1372.

    [7]YU Z.,PHAN-THIEN N. and TANNER R. I. Rotation of a spheroid in a couette flow at moderate Reynolds numbers[J]. Physical Review E, 2007, 76(2): 026310.

    [8] LADD A. J. C., COLVIN M. E. and FRENKEI D. Application of lattice-gas cellular automata to the Brownian motion of solids in suspension[J]. Physical Review Letters, 1988, 60(11): 975-978.

    [9] AIDUN C. K., LU Y. and DING E. Direct analysis of particulate suspension with inertia using the discrete Boltzmann equation[J]. Journal of Fluid Mecha- nics,1998, 373: 287-311.

    [10] DING E.-J., AIDUN C. K. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact[J]. Journal of Statistical Physics, 2003, 112(3-4): 685-708.

    [11]VENTURA C.,GARCIA F. and FERREIRA P. et al. Flow dynamics of pulp fiber suspensions[J]. TAPPI Journal, 2008, 7(8): 20-26.

    [12]WIKLUND J. A.,STADING M. andPETTERSSON A. J. et al. A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow[J]. AICHE Journal, 2006, 56(2): 484-495.

    [13] YASUDA K., KYUTO T. and MORI N. An experimental study of flow-induced fiber orientation and concentration distributions in a concentrated suspension flow through a slit channel containing a cylinder[J]. Rheolo- gica Acta, 2004, 43(2): 137-145.

    [14] YASUDA K., HENMI S. and MORI N. Effects of abrupt expansion geometries on flow-induced fiber orientation and concentration distributions in slit channel flows of fiber suspensions[J]. Polymer Composi- tes, 2005, 26(5): 660-670.

    [15] CHEN S., DOOLEN G. D. Lattice Boltzmann method for fluid flows[J]. Annual Review Fluid Mechanics, 1998, 30: 329-364.

    [16] GUO Z., ZHAO T. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates[J]. Physical Review E, 2003, 67(6): 066709.

    10.1016/S1001-6058(13)60352-2

    * Project supported by the Doctoral Program of Higher Education in China (Grant No. 20120101110121).

    Biography: LIANG Xiao-yu (1975-), Male, Ph. D. Candidate, Associate Professor

    午夜福利在线在线| 99热网站在线观看| 99国产极品粉嫩在线观看| 乱系列少妇在线播放| 亚洲成人中文字幕在线播放| 国产精品一区二区三区四区免费观看 | 精品免费久久久久久久清纯| 少妇裸体淫交视频免费看高清| 国产成人a∨麻豆精品| av卡一久久| 久久韩国三级中文字幕| 给我免费播放毛片高清在线观看| 午夜久久久久精精品| 欧美最黄视频在线播放免费| 欧美人与善性xxx| av天堂中文字幕网| 最好的美女福利视频网| 日韩欧美免费精品| 亚洲成人久久爱视频| 成年女人毛片免费观看观看9| 精品人妻一区二区三区麻豆 | 欧美+日韩+精品| av天堂中文字幕网| 深夜a级毛片| 少妇丰满av| www.色视频.com| 日日摸夜夜添夜夜爱| 美女cb高潮喷水在线观看| 热99re8久久精品国产| 国产视频内射| 亚洲丝袜综合中文字幕| 国产高清不卡午夜福利| 亚洲欧美日韩无卡精品| 亚洲熟妇中文字幕五十中出| 国产亚洲av嫩草精品影院| 色视频www国产| 99久久成人亚洲精品观看| 欧美+日韩+精品| 欧美三级亚洲精品| av国产免费在线观看| 亚洲真实伦在线观看| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区 | 一级毛片我不卡| 国产爱豆传媒在线观看| 亚洲成av人片在线播放无| 中文字幕人妻熟人妻熟丝袜美| 一本一本综合久久| 男女边吃奶边做爰视频| 国产午夜精品久久久久久一区二区三区 | 欧美性猛交╳xxx乱大交人| 欧美日韩在线观看h| 国产精品一及| 精品免费久久久久久久清纯| 最近的中文字幕免费完整| 一级毛片我不卡| 别揉我奶头 嗯啊视频| 天堂av国产一区二区熟女人妻| 两性午夜刺激爽爽歪歪视频在线观看| 黄片wwwwww| 亚洲国产欧洲综合997久久,| 亚洲av熟女| 如何舔出高潮| 91在线观看av| 91久久精品电影网| 香蕉av资源在线| 久久久久久国产a免费观看| 成人午夜高清在线视频| 人妻久久中文字幕网| 成人美女网站在线观看视频| 欧美最新免费一区二区三区| 久久精品人妻少妇| 成人三级黄色视频| 亚洲国产精品成人综合色| 简卡轻食公司| 精品久久久久久久久久免费视频| 午夜视频国产福利| 国产欧美日韩一区二区精品| 18禁裸乳无遮挡免费网站照片| 高清日韩中文字幕在线| 久久精品人妻少妇| 婷婷精品国产亚洲av| 亚洲性久久影院| 亚洲人成网站高清观看| 在线免费十八禁| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 少妇熟女欧美另类| 国产aⅴ精品一区二区三区波| 联通29元200g的流量卡| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 夜夜爽天天搞| 校园春色视频在线观看| 91久久精品电影网| 欧美高清成人免费视频www| 日韩欧美国产在线观看| 亚洲国产精品久久男人天堂| 欧美一级a爱片免费观看看| 国产精品亚洲美女久久久| 啦啦啦观看免费观看视频高清| 少妇高潮的动态图| 精品一区二区免费观看| 亚洲七黄色美女视频| 好男人在线观看高清免费视频| 51国产日韩欧美| 国产高清三级在线| 在线观看66精品国产| 村上凉子中文字幕在线| 国产av不卡久久| 国产美女午夜福利| 日韩欧美在线乱码| h日本视频在线播放| 日产精品乱码卡一卡2卡三| 亚洲一级一片aⅴ在线观看| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 淫妇啪啪啪对白视频| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 狂野欧美激情性xxxx在线观看| 久久久久久久午夜电影| 国产亚洲精品av在线| 亚洲国产色片| 亚洲国产色片| 给我免费播放毛片高清在线观看| 精品久久久久久成人av| 久久久久久久久中文| 人妻制服诱惑在线中文字幕| 成年女人看的毛片在线观看| 深夜a级毛片| 久久久久久大精品| 偷拍熟女少妇极品色| 亚洲最大成人手机在线| 18禁裸乳无遮挡免费网站照片| 精品国产三级普通话版| 午夜久久久久精精品| 国内久久婷婷六月综合欲色啪| 成人欧美大片| 寂寞人妻少妇视频99o| 一区福利在线观看| 亚洲av第一区精品v没综合| 国产中年淑女户外野战色| 国产又黄又爽又无遮挡在线| 欧美日韩一区二区视频在线观看视频在线 | eeuss影院久久| 乱人视频在线观看| 少妇熟女欧美另类| 亚洲中文日韩欧美视频| 嫩草影视91久久| 深夜精品福利| 国产亚洲精品久久久com| 精品久久久久久成人av| 国产探花极品一区二区| 看非洲黑人一级黄片| 中文字幕熟女人妻在线| 插阴视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av在线有码专区| 国产高清不卡午夜福利| 深夜a级毛片| 舔av片在线| 国产片特级美女逼逼视频| 欧美极品一区二区三区四区| 大香蕉久久网| 亚洲精品成人久久久久久| 噜噜噜噜噜久久久久久91| 毛片女人毛片| 久久久久久久亚洲中文字幕| 日本成人三级电影网站| 婷婷六月久久综合丁香| 中国美女看黄片| 又爽又黄无遮挡网站| 人人妻人人看人人澡| 我的老师免费观看完整版| 久久久久久久久久黄片| 一本久久中文字幕| 高清毛片免费看| 天天一区二区日本电影三级| 久久国产乱子免费精品| 最近中文字幕高清免费大全6| 亚洲五月天丁香| 免费看av在线观看网站| 欧美人与善性xxx| 中文字幕av成人在线电影| 免费高清视频大片| 插阴视频在线观看视频| 尤物成人国产欧美一区二区三区| 国产精品亚洲一级av第二区| 搡女人真爽免费视频火全软件 | 天美传媒精品一区二区| 亚洲成人久久爱视频| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 精品少妇黑人巨大在线播放 | 又爽又黄无遮挡网站| 国产精品人妻久久久久久| 不卡一级毛片| 男女做爰动态图高潮gif福利片| 国产一区亚洲一区在线观看| 亚洲av美国av| 不卡视频在线观看欧美| 久久综合国产亚洲精品| 亚洲国产欧洲综合997久久,| 哪里可以看免费的av片| 麻豆国产97在线/欧美| or卡值多少钱| 天堂√8在线中文| 久久久精品94久久精品| 一级毛片久久久久久久久女| 99在线人妻在线中文字幕| 淫秽高清视频在线观看| 综合色av麻豆| 国产精品人妻久久久影院| 一进一出好大好爽视频| 国产亚洲91精品色在线| videossex国产| 欧美3d第一页| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 卡戴珊不雅视频在线播放| av黄色大香蕉| h日本视频在线播放| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 真实男女啪啪啪动态图| 亚洲成人久久性| 五月玫瑰六月丁香| 国产视频内射| 九九在线视频观看精品| 亚洲精品粉嫩美女一区| av女优亚洲男人天堂| 国产大屁股一区二区在线视频| 老熟妇仑乱视频hdxx| 嫩草影院入口| 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 亚洲第一电影网av| 国产真实伦视频高清在线观看| 日韩亚洲欧美综合| 亚洲专区国产一区二区| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 国产精品免费一区二区三区在线| 欧美极品一区二区三区四区| 国产精品无大码| 亚洲最大成人手机在线| 亚洲成人av在线免费| 久久婷婷人人爽人人干人人爱| 俄罗斯特黄特色一大片| 成年av动漫网址| 亚洲专区国产一区二区| 国产黄a三级三级三级人| 麻豆乱淫一区二区| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 久久久久国内视频| 一级av片app| 国产极品精品免费视频能看的| 久久人人爽人人爽人人片va| 久久人人爽人人片av| 久久久久免费精品人妻一区二区| 欧美bdsm另类| 丝袜美腿在线中文| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 欧美一区二区亚洲| 亚洲图色成人| 欧美一区二区精品小视频在线| 97在线视频观看| 国产亚洲欧美98| 亚洲av五月六月丁香网| 高清日韩中文字幕在线| 好男人在线观看高清免费视频| 亚洲中文日韩欧美视频| 亚洲精品亚洲一区二区| 亚洲精品影视一区二区三区av| 久久久久精品国产欧美久久久| 两个人的视频大全免费| 99九九线精品视频在线观看视频| 老师上课跳d突然被开到最大视频| 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| 亚洲va在线va天堂va国产| 国内精品久久久久精免费| 国产探花极品一区二区| 国内少妇人妻偷人精品xxx网站| 黄色视频,在线免费观看| 亚洲av不卡在线观看| 国产精品1区2区在线观看.| 精品午夜福利在线看| 精品人妻熟女av久视频| 日韩精品中文字幕看吧| 国产精品国产三级国产av玫瑰| 国产麻豆成人av免费视频| 欧美人与善性xxx| 国产精品av视频在线免费观看| 久久综合国产亚洲精品| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 欧美性感艳星| 久久久久久久久久久丰满| 国内精品美女久久久久久| 97在线视频观看| 国产精品久久久久久av不卡| 国产综合懂色| 日本与韩国留学比较| 69人妻影院| 别揉我奶头 嗯啊视频| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 精品久久久久久久末码| 又爽又黄a免费视频| 日韩av不卡免费在线播放| 偷拍熟女少妇极品色| 亚洲人成网站在线播| 日韩大尺度精品在线看网址| 国产三级在线视频| 欧美性猛交黑人性爽| 亚洲av不卡在线观看| 国产精品爽爽va在线观看网站| 色尼玛亚洲综合影院| 国产成人精品久久久久久| 国产精品三级大全| 免费看av在线观看网站| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| av黄色大香蕉| 男人舔奶头视频| 岛国在线免费视频观看| 啦啦啦观看免费观看视频高清| 深夜a级毛片| 久久韩国三级中文字幕| 99热6这里只有精品| 成人亚洲精品av一区二区| 最近最新中文字幕大全电影3| 免费人成在线观看视频色| av在线亚洲专区| 中文资源天堂在线| 赤兔流量卡办理| 成人一区二区视频在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲精华国产精华液的使用体验 | 国产一区二区激情短视频| 亚洲精品影视一区二区三区av| 在线看三级毛片| 久久人妻av系列| av.在线天堂| 亚洲无线在线观看| 可以在线观看的亚洲视频| 亚洲欧美成人精品一区二区| 亚洲综合色惰| 美女 人体艺术 gogo| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久一区二区三区 | 日韩av不卡免费在线播放| 亚洲五月天丁香| 午夜视频国产福利| 亚洲av.av天堂| 51国产日韩欧美| 精品福利观看| 综合色av麻豆| 午夜久久久久精精品| 精品福利观看| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 亚洲真实伦在线观看| 在线观看午夜福利视频| 中国美白少妇内射xxxbb| 日日撸夜夜添| 国产中年淑女户外野战色| 精品福利观看| 淫秽高清视频在线观看| 高清毛片免费看| 我的老师免费观看完整版| 日韩av在线大香蕉| 精品久久久久久久人妻蜜臀av| 热99在线观看视频| 欧美性猛交╳xxx乱大交人| 级片在线观看| 97碰自拍视频| 噜噜噜噜噜久久久久久91| 天堂影院成人在线观看| 22中文网久久字幕| 久久午夜福利片| 亚洲av中文字字幕乱码综合| 久久精品久久久久久噜噜老黄 | 亚洲18禁久久av| 国产欧美日韩精品亚洲av| 免费av毛片视频| 中国国产av一级| av中文乱码字幕在线| 一进一出好大好爽视频| 亚洲无线在线观看| 日日摸夜夜添夜夜爱| 99久国产av精品国产电影| 一级av片app| 国产激情偷乱视频一区二区| 中国美白少妇内射xxxbb| 亚洲专区国产一区二区| 最好的美女福利视频网| 国产私拍福利视频在线观看| 久久久久久大精品| 免费观看的影片在线观看| 成人亚洲精品av一区二区| 99热精品在线国产| 人人妻,人人澡人人爽秒播| 99九九线精品视频在线观看视频| 老司机福利观看| 可以在线观看毛片的网站| 又黄又爽又免费观看的视频| 亚洲一区二区三区色噜噜| 香蕉av资源在线| 偷拍熟女少妇极品色| 亚洲四区av| 看黄色毛片网站| 91av网一区二区| 18禁在线无遮挡免费观看视频 | 亚洲国产精品合色在线| 日韩中字成人| 久久久成人免费电影| 亚洲人成网站在线播放欧美日韩| 嫩草影视91久久| 少妇的逼好多水| 久久6这里有精品| 亚洲四区av| 久久久久久久亚洲中文字幕| 亚洲一区二区三区色噜噜| 久久婷婷人人爽人人干人人爱| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 成人精品一区二区免费| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 如何舔出高潮| 一个人看视频在线观看www免费| 美女免费视频网站| 一夜夜www| 欧美另类亚洲清纯唯美| 欧美不卡视频在线免费观看| 日产精品乱码卡一卡2卡三| 黄色视频,在线免费观看| 日本黄色片子视频| 亚洲在线观看片| 在线观看66精品国产| 免费av毛片视频| 男插女下体视频免费在线播放| 在线播放国产精品三级| 欧美三级亚洲精品| 国产精品日韩av在线免费观看| 久久精品夜色国产| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 亚洲av熟女| 如何舔出高潮| 国产精品一区二区三区四区免费观看 | 丝袜喷水一区| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影| 男女视频在线观看网站免费| 极品教师在线视频| 色综合色国产| 久久99热这里只有精品18| 日韩欧美精品免费久久| 欧美潮喷喷水| 久久鲁丝午夜福利片| 香蕉av资源在线| 欧美一区二区国产精品久久精品| 午夜精品在线福利| 免费观看精品视频网站| 寂寞人妻少妇视频99o| 欧美一区二区国产精品久久精品| 免费看av在线观看网站| 不卡视频在线观看欧美| 香蕉av资源在线| 成人性生交大片免费视频hd| 国产亚洲精品综合一区在线观看| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 性插视频无遮挡在线免费观看| 欧美潮喷喷水| 少妇被粗大猛烈的视频| 精品免费久久久久久久清纯| 老师上课跳d突然被开到最大视频| 亚洲成人久久性| 午夜亚洲福利在线播放| 亚洲人成网站在线播| 亚洲中文字幕日韩| 久久久精品94久久精品| 特大巨黑吊av在线直播| av福利片在线观看| 成年女人永久免费观看视频| 色视频www国产| 精品一区二区三区人妻视频| 超碰av人人做人人爽久久| 观看免费一级毛片| 美女大奶头视频| 国产亚洲精品久久久com| 日韩欧美在线乱码| 国内揄拍国产精品人妻在线| 久久久色成人| 色5月婷婷丁香| 国产高清激情床上av| 亚洲国产精品成人久久小说 | 国产视频内射| 亚洲经典国产精华液单| 麻豆国产97在线/欧美| 又爽又黄无遮挡网站| 身体一侧抽搐| 日韩欧美免费精品| 成人美女网站在线观看视频| av天堂在线播放| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 午夜影院日韩av| av卡一久久| 99热精品在线国产| 成人三级黄色视频| 禁无遮挡网站| 日韩在线高清观看一区二区三区| 少妇人妻一区二区三区视频| 美女cb高潮喷水在线观看| 亚洲中文日韩欧美视频| 久久精品国产自在天天线| 久久久国产成人免费| 内射极品少妇av片p| 亚洲av免费在线观看| 麻豆乱淫一区二区| 一级黄色大片毛片| 99九九线精品视频在线观看视频| 亚洲av成人精品一区久久| 99热网站在线观看| 精品午夜福利视频在线观看一区| 波多野结衣高清无吗| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 少妇被粗大猛烈的视频| 成人性生交大片免费视频hd| 99久国产av精品国产电影| 特级一级黄色大片| 国产精品一区二区三区四区久久| 成人亚洲精品av一区二区| ponron亚洲| 91在线精品国自产拍蜜月| 中文字幕av在线有码专区| АⅤ资源中文在线天堂| 观看免费一级毛片| 美女免费视频网站| 麻豆av噜噜一区二区三区| 永久网站在线| 夜夜爽天天搞| 不卡视频在线观看欧美| 综合色av麻豆| 精品一区二区三区av网在线观看| 久久精品国产自在天天线| aaaaa片日本免费| 午夜福利高清视频| 最近手机中文字幕大全| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 变态另类成人亚洲欧美熟女| 一区二区三区免费毛片| 黄色日韩在线| 亚洲婷婷狠狠爱综合网| 又黄又爽又免费观看的视频| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添小说| 97超视频在线观看视频| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| a级毛色黄片| 欧美日本亚洲视频在线播放| 老司机影院成人| 成人亚洲欧美一区二区av| 欧美在线一区亚洲| 成人永久免费在线观看视频| 精品午夜福利在线看| 国产在视频线在精品| 久久国产乱子免费精品| 99热这里只有是精品在线观看| 久久精品91蜜桃| 69av精品久久久久久| 亚洲精华国产精华液的使用体验 | 黄色配什么色好看| 激情 狠狠 欧美| 黄色欧美视频在线观看| 热99在线观看视频| 亚洲精品456在线播放app| 大型黄色视频在线免费观看| 麻豆成人午夜福利视频| 国产老妇女一区| 在线观看美女被高潮喷水网站| 一级毛片aaaaaa免费看小| 美女黄网站色视频| 色尼玛亚洲综合影院| 国产不卡一卡二| 久久久国产成人精品二区| 欧美又色又爽又黄视频| 亚洲欧美中文字幕日韩二区| 亚洲电影在线观看av| 国产精品久久视频播放| 日韩,欧美,国产一区二区三区 | 99热6这里只有精品| 国产午夜福利久久久久久| 六月丁香七月| 国产成人freesex在线 | 国产精品永久免费网站| 此物有八面人人有两片| 精品欧美国产一区二区三| av福利片在线观看| av视频在线观看入口| 国产毛片a区久久久久|