• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamic modeling of cochlea and numerical simulation for cochlear traveling wave with consideration of fluid-structure interaction*

    2013-06-01 12:29:57RENLiujie任柳杰HUACheng華誠(chéng)DINGGuanghong丁光宏
    關(guān)鍵詞:楊琳天宇

    REN Liu-jie (任柳杰), HUA Cheng (華誠(chéng)), DING Guang-hong (丁光宏)

    Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433, China,

    E-mail: 10110290005@fudan.edu.cn

    YANG Lin (楊琳), DAI Pei-dong (戴培東), ZHANG Tian-yu (張?zhí)煊?

    Research Center, Eye and ENT Hospital of Fudan University, Shanghai 200031, China

    Hydrodynamic modeling of cochlea and numerical simulation for cochlear traveling wave with consideration of fluid-structure interaction*

    REN Liu-jie (任柳杰), HUA Cheng (華誠(chéng)), DING Guang-hong (丁光宏)

    Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433, China,

    E-mail: 10110290005@fudan.edu.cn

    YANG Lin (楊琳), DAI Pei-dong (戴培東), ZHANG Tian-yu (張?zhí)煊?

    Research Center, Eye and ENT Hospital of Fudan University, Shanghai 200031, China

    (Received December 17, 2011, Revised March 15, 2013)

    The cochlea is an important structure in the hearing system of humanity. Its unique structure enables the sensibility to the sound waves of varied frequencies. The widely accepted model of the cochlea is expressed as a long tube longitudinally divided by a membrane named the Basilar Membrane (BM), into two fluid-filled channels. Based on various assumptions for the cochlear fluid and structure, simplified mathematical and mechanical cochlear models were developed to help to understand the mechanism of the complex coupled system in the past decades. This paper proposes a hydrodynamic numerical cochlear model with consideration of the Fluid-Structure Interaction (FSI). In this model, the cochlear lymph is considered as in a Newtonian viscous fluid, and the basilar membrane is modeled as a composite structure. The traveling wave is simulated. Also focusing on the pressure in the fluid field, the results are compared with studies of Peterson and Bogert, where it was assumed that the slow compressive waves are traveling along the BM. Furthermore, the transmitting time of the cochlear traveling wave is also discussed.

    cochlea, traveling wave, finite-element method, Fluid Structure Interaction (FSI)

    Introduction

    The cochlea, the auditory transducer and sensor, is an essential part of the human hearing system. As shown in Fig.1(a), the sound waves are usually conducted sequentially through the external acoustic meatus, the tympanic membrane, the ossicular chain in the middle ear, to the cochlea in the inner ear (called the air conduction). The human cochlea is a spiral-shaped cavity in the bony labyrinth, making 2.5-2.75 turns around the osseous spiral lamina. In a local view of the cochlea, as shown in Fig.1(b), the snail-shell like structure is divided longitudinally by two membranes into three channels filled with the lymph, a watery fluid. Two of the channels named the scala vestibula and the scala tympani are connected at the helicotrema. At the basal end of the cochlea in the scala vestibula is the oval window, a membrane-covered opening directly contacted by the stapes in the middle ear; and in the scala tympani is the round window. The third channel, the scala media, is a close and relatively small duct filled with the endolymph and contains the organ of corti, which is the sensory organ of hearing.

    Figure 1(c) is a usual 2-D mechanical model of the cochlea. Although the coiling of the cochleae affects the cochlear response, especially, in the low frequency range[1], the cochlea here is unwrapped, for the traveling wave features are similar; and the scala media is merged with the scala vestibula for the Reissner’s membrane is thin and soft so that it moves simultaneously with the surrounding fluid. The sound waves are transmitted to the oval window of the cochlea to create a pressure difference between the scala vestibula and the scala tympani, thus displacing the Basilar Membrane (BM), which separates the two scalae, in the transverse direction. Along the BM,

    Fig.1 Human cochlea

    Traveling Waves (TW) propagate from the basal end towards the apical end. This important phenomenon was first confirmed in the pioneer experiments conducted by Von Békésy[2]. It is also observed that the TW amplitude reaches a peak at a small region (which is called the characteristic frequency location or the CF location). The CF location depends broadly on the sound frequency: high frequencies lead to the maximum vibrations near the basal end of BM, where the membrane is narrow and stiff, while low frequencies lead to the maximum vibrations near the apical end, where the membrane is wider and more compliant.

    Studies of the cochlear modeling and numerical simulations related to the traveling waves were carried out over the past decades. Many mechanical and mathematical cochlear models of various dimensions were proposed. Since the Fluid-Structure Interaction (FSI) features the cochlear dynamics, the cochlear modeling should involve the modeling of the fluid domain (lymph), the structure domain (mainly the BM, or the partition) and the interaction between them. For the modeling of the BM, in some models (usually in 1-D and 2-D models), the BM is considered to be a series of locally reacting structures, of which the mechanical behavior is expressed by the impedance function[3-8], while in other models (mostly seen in 3-D models), the BM is modeled as an orthogonal plate controlled by laws of elasticity[9-12]. For the fluid domain, the lymph is modeled as an invicid potential flow[3,13]or a Newtonian viscous flow[12,14]governed by corresponding governing equations. Various methods were used to solve these cochlear models, such as the finite difference[3], the finite element[12,13], the WKB method[7-10], and the immersed boundary method[14].

    In this paper, a new cochlear hydrodynamic model with consideration of the FSI is developed to simulate the TW phenomenon, one of the most notable features of the cochlear dynamic behaviors. Based on our simulation results, the vibration patterns of the BM and the pressure properties of the cochlear lymph at different sound input frequencies are discussed, and compared with experimental observations or previous studies. Furthermore, this study also explores the transmitting time of cochlear traveling waves.

    Fig.2 Schematic diagram of the 2-D cochlear model

    Table 1 Geometric parameters

    1. Method

    The 2-D cochlear model is considered. The duct height varies linearly from the base to the apex (see Fig.2, the geometric parameters are listed in Table 1). The cochlear fluid is modeled as the incompressible viscous flow. The body forces are neglected, but the nonlinear convection terms in the Navier-Stokes equation are retained. Thus, the governing equations for the fluid are

    where Viand p are, respectively, the fluid velocity in the vector form and the fluid pressure, which are the basic unknowns of the PDEs,μandρa(bǔ)re, respectively, the dynamic viscosity and the density of the fluid: these two parameters are close to those of water (see Table 2 for a list). Non-slip conditions are assumed for all the fluid boundaries.

    Table 2 Fluid properties

    Fig.3 Schematic diagram of the BM model. Springs with varying properties are attached to the BM segments of length Δx

    The entire BM model is illustrated inFig.3. The model has two components. The first component is the spring-damper structures attached to the BM, with varying properties in the longitudinal direction(x). This component models the stiffness variation of the BM from the base to the apex. The corresponding dynamic equation is

    where m is the mass of the BM per unit length,c andk are the damping coefficient and the stiffness of the springs, respectively, per unit length,ζis the transverse displacement of the BM, andP is the driving force contributed by the fluid domain. As previous cochlear models suggest, approximately, the stiffness k( x)decreases exponentially longitudinally, and the mathematical description of k( x)is

    where k0anda are constants.

    The second component is a 2-D plane-strain model of the BM, which models the longitudinal coupling of the BM. The equilibrium equation, the constitutive relation, and the geometric relation for the elastic BM are

    where ρs,E andνare the density, the Young’s modulus, and the Poisson’s ratio of the BM, respectively. All material properties for the BM and the springs are listed in Table 3.

    Table 3 Material properties of the BM structure

    In the FSI, the Lagrangian coordinate system is used for the BM and the Arbitrary-Lagrangian-Eulerian (ALE) coordinate system is used for the fluid. The primary variable for the BM is the displacements, and the primary variables for the fluid are the fluid pressure, the velocity, and the displacement. Denote X =(Xf, Xs)as the solution vector of the coupled system, where Xfand Xsare the variable vectors for the fluid and the BM, respectively. The coupled system can be written as

    where Ffand Fsare, respectively, the fluid and BM equations corresponding to Eqs.(1)-(2) and Eqs.(3), (5)-(7),usand τfare the BM displacement and the fluid stress, respectively, defined on the fluid-BM interface only. Eq.(8) shows that the BM displacementsmodify the fluid domain (as in the us(Xs)term), and the fluid applies the force on the BM (as in the τf(Xf)term). The nonlinear system is solved iteratively. The convergence criteria for the stress and displacements are

    where the superscript k denotes the index of the step in the iteration,ετand εuare the tolerances for the stress and the displacement, respectively,ε0is a predetermined constant (10–8).

    The system is solved numer?ically through the finite element package ADINA. As shown in Fig.4(a), the BM is modeled by 2 000 4-node solid elements. The black dots in the figure are the places where the springs are attached. The fluid domain is also modeled by 4-node 2-D elements (see Fig.4(b)). The entire model contains 32 310 elements and 33 343 nodes.

    Fig.4 Finite element model

    2. Simulation results and analyses

    In this section, the simulation results are presented and some cochlear dynamic problems are discussed. For these simulations, a sinusoidal time-dependent velocity,Vs, of various frequencies, is applied on the oval window (x =0,Tb/2<y<Sb) in the form of

    where Dsrepresents the displacement amplitude of the oval window, and f is the exciting frequency, Ds,maxis assumed to beμm, so that the average amplitude of the oval window,Ds,avgis equal to 1 μm. Five different cases, with the exciting frequency ranging from 250 Hz to 4 000 Hz, are simulated, under the simulation conditions as listed in Table 4.

    Table 4 Simulation conditions

    Fig.5 A sketch for the simulation results. The contour represents the fluid velocity in vertical direction

    Fig.6 Partial enlarged view of the deformations of the fluid and solid elements

    Fig.7 BM vibration patterns at different frequencies

    The cochlear dynamic response is simulated phenomenally. The CF location differs according to the exciting frequency, as shown in Fig.5, in which the deformation of the model is magnified by 50-100 times for a clear view of the BM’s movement. Partial enlarged details (2 000 times) of the deformation of elements near the CF location are given in Fig.6, where the fluid and the solid elements converge together while moving. The z -directional displacement of the BM is obtained and the vibration patterns are shown as in solid lines in Fig.7, where the dash lines are the vibration envelopes. The BM displacement is normalized by the stapes displacement,Ds,avg. The simulation results are in qualitative agreement with the traveling wave theory: for high frequency sounds, the BM vibration peak is closer to the stapes, and as the frequency decreases, the wave peak moves towards the apical end.

    Fig.8 Pressure properties

    There are two different pressures in the scala vestibula (PSV)and in the scala tympani (PST). Figure 8 gives this two pressure distribution along the scalae when the stapes moves inwards. The pressures are normalized by the pressure at the oval window. It is universally agreed that the intracochlear pressure is closely interacted with the BM motion. The difference (Pd= PSV-PST)between the two pressures causes the BM to deflect, that is, the vibration of the BM. The simulation results show that the magnitude ofPdis large at the base of cochlea and it decreases as it goes far from the stapes. Where the pressure difference vanishes, that is,PSVis equal to PST, the BM motion dies away.

    Fig.9 TW transmitting process

    Another important feature of the cochlear traveling wave is the transmitting time, which can be defined as the required time for a single wave traveling from the basal end of the BM to the CF location. The transmitting time is an essential feature of cochlear dynamical behaviors because it is an important part of the delay time for human to perceive sounds. So far there is no available way to directly measure the transmitting time in the human cochlea. In this simulation, the transmitting time of the cochlear traveling wave can be calculated by tracing the propagation process of a single wave peak (see Fig.9). At timet0, the stapes moves outward, thus a traveling wave peak forms and it travels in the direction of the apical, and till timetswhen the wave peak reaches the CF location. The time duration,ts-t0, is regarded as the transmitting time, and is listed in Table 5 for different frequencies. It is obvious that the higher the frequency is applied, the shorter the transmitting time is. This is due to two facts: (1) the CF location of a higher frequency is closer to the stapes and (2) the TW travels faster when it is closer to the stapes.

    Table 5 Frequencies, CF locations and transmitting times

    Several indirect ways were developed to measure the time and the velocity properties of the traveling wave. Zerlin[15], Kimberley[16]analyzed the traveling velocity of the cochlear travelling wave. Strelcyk and Dau[17]re-conducted Zerlin’s experiments and the same phenomena were duplicated. Moreover, the Auditory Brainstem Responses (ABRs) were measured. The ABR results also show that human response time to the sounds increases with lowering of frequencies.

    3. Conclusions

    A new hydrodynamic cochlear model is proposed in this paper with consideration of the FSI between the BM and the cochlear lymph. The following conclusions are drawn:

    (1) The model simulates the phenomena of the cochlear traveling wave phenomena, first observed by Von Békésy. It is confirmed by the simulation that sounds of high frequencies cause the maximum vibration near the basal end of the BM, and sounds of low frequencies cause the maximum vibration near the apical end of the BM.

    (2) The pressure difference along the BM vanishes when the BM’s amplitude reaches the maximum. The result is in good agreement with the theoretical analysis by Peterson and Bogert.

    (3) The transmitting time of the traveling wave to reach the CF location varies with the frequency. Lower frequencies lead to longer time.

    This model is a very simplified cochlear model, and more complicated features such as the 3-D spiral structure and the nonlinear effects should be considered in further studies of cochlear dynamics.

    Acnowledgement

    We are very grateful to Professor Steele C. R. (Stanford University) and to one of anonymous reviewers for their helpful suggestions and detailed corrections regarding the original manuscript.

    [1] MANOUSSAKI D. CHADWICK R. S. and KETTEN D. R. et al. The influence of cochlear shape on low-frequency hearing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(16): 6162-6166.

    [2] Von BéKéSY G. Experiments in hearing[M]. New York, USA: McGraw-Hill, 1960.

    [3] NEELY S. T. Finite difference solution of a two-dimensional mathematical model of the cochlea[J]. Journal of the Acoustical Society of America, 1981, 69(5): 1386-1393.

    [4] PETERSON L. C., BOGERT B. P. A dynamical theory of the cochlea[J]. Journal of the Acoustical Society of America, 1950, 22(3): 369-381.

    [5] LüLING H., FRANOSCH J. M. and Van HEMMEN J. L. A two-dimensional cochlear fluid model based on conformal mapping[J]. Journal of the Acoustical Society of America, 2010, 128(6): 3577-3584.

    [6] VETE?NíK A., NOBILI R. The approximate scaling law of the cochlea box model[J]. Hearing Research, 2006, 222(1-2): 43-53.

    [7] STEELE C. R. Comparison of WKB and Finite difference calculations for a two-dimensional Cochlear model[J]. Journal of the Acoustical Society of America, 1979, 65(4): 1001-1006.

    [8] STEELE C. R., TABER L. A. Comparison of WKB calculations and experimental results for three-dimensional cochlear models[J]. Journal of the Acoustical Society of America, 1979, 65(4): 1007-1018.

    [9] LIM K.-M., STEELE C. R. A Three-dimensional nonlinear active Cochlear model analyzed by the WKB-numeric method[J]. Hearing Research, 2002, 170(1-2): 190-205.

    [10] LIM K.-M., STEELE C. R. Response suppression and transient behavior in a nonlinear active cochlear model with feed-forward[J]. International Journal of Solids and Structure, 2003, 40(1): 5097-5107.

    [11] B?HNKE F., ARNOLD W. 3D-finite element model of the human cochlea including fluid-structure couplings[J]. Journal for Oto-Rhino-Laryngology, Head and Neck Surgery, 1999, 61(5): 305-310.

    [12] CHENG L., WHITE R. D. and GROSH K. Three-dimensional viscous finite element formulation for acoustic fluid-structure interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49-50): 4160-4172.

    [13] PARTHASARATHI A. A., GROSH K. and NUTTAL A. L. Three-dimensional numerical modeling for global cochlear dynamics[J]. Journal of the Acoustical Society of America, 2000, 107(1): 474-485.

    [14] GIVELBERG E., BUNN J. A comprehensive three-dimensional model of the cochlea[J]. Journal of Computational Physics, 2003, 191(2): 377-391.

    [15] ZERLIN S. Travelin wave velocity in the human cochlea[J]. Journal of the Acoustical Society of America, 1969, 46(4B): 1011-1015.

    [16] KIMBERLEY B. P. Measuring human cochlear traveling wave delay using distortion product emission phase responses[J]. Journal of the Acoustical Society of America, 1993, 94(3): 1343-1350.

    [17] STRELCYK O., DAU T. Estimaion of cochlear response times using lateralization of frequency-mismatched tones[J]. Journal of the Acoustical Society of America, 2009, 126(3): 1302-1311.

    10.1016/S1001-6058(13)60351-0

    * Project supported by the Shanghai Committee of Science and Technology of China (Grant No. 10ZR1403500, 10ZR1405800), the National Basic Research Development Program of China (973 Program, Grant No. 2012CB518502) and the National Natural Science Foundation of China (Grant No. 30971528).

    Biography: REN Liu-jie (1987- ), Male, Ph. D. Candidate

    HUA Cheng,

    E-mail:huacheng@fudan.edu.cn

    猜你喜歡
    楊琳天宇
    西安交通大學(xué)新聞與新媒體學(xué)院博士生導(dǎo)師
    ——楊琳教授
    快樂(lè)的小草
    人性化護(hù)理在婦產(chǎn)科護(hù)理中的應(yīng)用效果觀察
    室內(nèi)設(shè)計(jì)作品
    Instructional Design Is A System
    青年生活(2020年19期)2020-10-14 21:54:16
    你最珍貴
    Galloping Horse Treading on a Flying Swallow and Its Influence in Modern Advertising
    我的摳門(mén)女友
    三月三(2016年7期)2016-08-23 03:33:32
    當(dāng)你翱翔天宇 我在舉頭仰望
    太空探索(2016年11期)2016-07-12 10:32:49
    小老板悟出的很實(shí)用“商道”
    日本黄色日本黄色录像| 91精品国产国语对白视频| 国产免费av片在线观看野外av| www.av在线官网国产| 亚洲 欧美一区二区三区| 日韩欧美一区视频在线观看| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 久久久水蜜桃国产精品网| 天堂俺去俺来也www色官网| 欧美成狂野欧美在线观看| 老司机午夜福利在线观看视频 | 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看 | 99精品久久久久人妻精品| 亚洲国产毛片av蜜桃av| 午夜视频精品福利| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 久久久国产成人免费| 91麻豆精品激情在线观看国产 | 久久精品国产a三级三级三级| 狠狠狠狠99中文字幕| 欧美激情久久久久久爽电影 | 国产男人的电影天堂91| 亚洲午夜精品一区,二区,三区| 老熟女久久久| 搡老岳熟女国产| 亚洲成国产人片在线观看| 国产av一区二区精品久久| 看免费av毛片| 亚洲九九香蕉| 女人高潮潮喷娇喘18禁视频| 老司机午夜福利在线观看视频 | 久久精品久久久久久噜噜老黄| 日韩 亚洲 欧美在线| 香蕉丝袜av| 国产xxxxx性猛交| 一边摸一边抽搐一进一出视频| 亚洲av日韩在线播放| 亚洲熟女毛片儿| 亚洲 欧美一区二区三区| av福利片在线| 午夜福利一区二区在线看| 久久人人爽人人片av| 搡老乐熟女国产| 国产主播在线观看一区二区| 亚洲专区中文字幕在线| 丝袜美足系列| 国产极品粉嫩免费观看在线| 国产有黄有色有爽视频| 两个人免费观看高清视频| 热99国产精品久久久久久7| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 日韩大码丰满熟妇| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 久久国产精品大桥未久av| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| 十八禁网站网址无遮挡| 久久天堂一区二区三区四区| 99久久综合免费| 大香蕉久久成人网| 久久久久精品人妻al黑| 欧美日韩精品网址| 可以免费在线观看a视频的电影网站| 宅男免费午夜| av不卡在线播放| 99国产综合亚洲精品| 国产日韩欧美视频二区| 成人三级做爰电影| av欧美777| 国产日韩一区二区三区精品不卡| 波多野结衣av一区二区av| 久久久久久久精品精品| 国产亚洲欧美精品永久| 别揉我奶头~嗯~啊~动态视频 | 国产精品秋霞免费鲁丝片| 久久久水蜜桃国产精品网| 国产精品一二三区在线看| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 黄色怎么调成土黄色| 可以免费在线观看a视频的电影网站| 免费女性裸体啪啪无遮挡网站| 老汉色∧v一级毛片| 国产精品一区二区在线不卡| 在线观看免费午夜福利视频| av线在线观看网站| 日韩人妻精品一区2区三区| 99国产极品粉嫩在线观看| 另类精品久久| 亚洲一区二区三区欧美精品| 丁香六月天网| 一本久久精品| av福利片在线| 免费女性裸体啪啪无遮挡网站| 亚洲精品中文字幕在线视频| 精品国产国语对白av| av天堂久久9| bbb黄色大片| 国产91精品成人一区二区三区 | 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 日本av免费视频播放| av线在线观看网站| 天天躁日日躁夜夜躁夜夜| 午夜激情久久久久久久| 国产av一区二区精品久久| 少妇 在线观看| 18在线观看网站| 亚洲av成人不卡在线观看播放网 | 色精品久久人妻99蜜桃| av在线app专区| 一区二区三区乱码不卡18| 香蕉国产在线看| 深夜精品福利| 日本91视频免费播放| 午夜激情av网站| 精品一区在线观看国产| 午夜老司机福利片| 精品免费久久久久久久清纯 | av不卡在线播放| 精品一品国产午夜福利视频| 成人三级做爰电影| 两人在一起打扑克的视频| 久久性视频一级片| 久久中文看片网| 亚洲欧美清纯卡通| 多毛熟女@视频| 亚洲天堂av无毛| 老司机影院毛片| tube8黄色片| 久久国产精品影院| 色播在线永久视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品久久久久久婷婷小说| 国产成人系列免费观看| 午夜激情av网站| 一区二区三区精品91| 国产日韩欧美视频二区| 亚洲国产欧美在线一区| 麻豆av在线久日| a级片在线免费高清观看视频| 成年人午夜在线观看视频| 精品国产乱码久久久久久男人| 在线十欧美十亚洲十日本专区| 亚洲avbb在线观看| 国产极品粉嫩免费观看在线| 天天添夜夜摸| 美国免费a级毛片| 免费高清在线观看日韩| 大型av网站在线播放| 国产成人精品久久二区二区免费| 亚洲久久久国产精品| 久久久久网色| 在线精品无人区一区二区三| 久热这里只有精品99| 91麻豆av在线| 亚洲精华国产精华精| 悠悠久久av| 在线十欧美十亚洲十日本专区| 18禁裸乳无遮挡动漫免费视频| 国产精品自产拍在线观看55亚洲 | 色播在线永久视频| 少妇人妻久久综合中文| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 天天影视国产精品| 亚洲精品在线美女| 亚洲精品成人av观看孕妇| 丝袜脚勾引网站| 在线观看免费高清a一片| 国产黄频视频在线观看| 亚洲av成人不卡在线观看播放网 | 91精品三级在线观看| av免费在线观看网站| 亚洲国产av影院在线观看| 亚洲欧美精品自产自拍| 成人免费观看视频高清| 80岁老熟妇乱子伦牲交| 久久久久久免费高清国产稀缺| 亚洲中文日韩欧美视频| 国产免费一区二区三区四区乱码| 免费看十八禁软件| 嫩草影视91久久| 亚洲成人免费电影在线观看| 中文字幕最新亚洲高清| 亚洲精品国产精品久久久不卡| 99久久精品国产亚洲精品| 欧美日韩亚洲综合一区二区三区_| 日本av手机在线免费观看| 性少妇av在线| 国产欧美日韩综合在线一区二区| av网站免费在线观看视频| 天堂俺去俺来也www色官网| 不卡av一区二区三区| 亚洲久久久国产精品| 三上悠亚av全集在线观看| 久久精品亚洲av国产电影网| 宅男免费午夜| 亚洲午夜精品一区,二区,三区| 成人国语在线视频| 亚洲五月婷婷丁香| 亚洲一码二码三码区别大吗| 亚洲人成77777在线视频| 欧美日韩亚洲高清精品| 午夜福利在线免费观看网站| 免费久久久久久久精品成人欧美视频| 日韩精品免费视频一区二区三区| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| av视频免费观看在线观看| 免费在线观看影片大全网站| 欧美精品亚洲一区二区| 一本大道久久a久久精品| 亚洲欧美一区二区三区黑人| 在线天堂中文资源库| 久久精品国产亚洲av香蕉五月 | 搡老熟女国产l中国老女人| 女人精品久久久久毛片| 亚洲精品自拍成人| 精品人妻1区二区| 99久久综合免费| 亚洲avbb在线观看| 色婷婷av一区二区三区视频| 久久99一区二区三区| 岛国在线观看网站| 男男h啪啪无遮挡| 国产成人啪精品午夜网站| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩高清在线视频 | 国产一区有黄有色的免费视频| 99久久综合免费| 免费看十八禁软件| 中文字幕人妻丝袜制服| 黑丝袜美女国产一区| 国产精品麻豆人妻色哟哟久久| svipshipincom国产片| 久久精品国产a三级三级三级| 一本大道久久a久久精品| 日本av手机在线免费观看| 亚洲av成人一区二区三| 手机成人av网站| 欧美亚洲日本最大视频资源| 飞空精品影院首页| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av片中文字幕在线观看| 欧美激情极品国产一区二区三区| 色94色欧美一区二区| 最新的欧美精品一区二区| 热99re8久久精品国产| 一级毛片电影观看| 亚洲国产精品一区三区| 欧美乱码精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 日韩一区二区三区影片| 午夜影院在线不卡| 日本精品一区二区三区蜜桃| 丝袜美腿诱惑在线| 国产熟女午夜一区二区三区| 国产精品欧美亚洲77777| 久久精品国产综合久久久| 97精品久久久久久久久久精品| 亚洲国产欧美日韩在线播放| 80岁老熟妇乱子伦牲交| 国产亚洲精品久久久久5区| 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| 欧美国产精品一级二级三级| 人妻人人澡人人爽人人| 成年av动漫网址| 老汉色av国产亚洲站长工具| 亚洲熟女精品中文字幕| xxxhd国产人妻xxx| 丝袜在线中文字幕| 日韩三级视频一区二区三区| 久久九九热精品免费| 人人澡人人妻人| 999久久久精品免费观看国产| 美女午夜性视频免费| 大型av网站在线播放| 老司机午夜十八禁免费视频| 精品少妇内射三级| 午夜精品国产一区二区电影| 国产在线免费精品| 热99re8久久精品国产| 免费在线观看日本一区| 丝袜在线中文字幕| 欧美激情极品国产一区二区三区| 欧美xxⅹ黑人| 成人三级做爰电影| 成年人午夜在线观看视频| 在线观看免费视频网站a站| 午夜福利在线观看吧| 黑人猛操日本美女一级片| 一二三四在线观看免费中文在| videos熟女内射| 精品国产一区二区三区久久久樱花| 午夜老司机福利片| 亚洲成人手机| 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| av不卡在线播放| 午夜福利乱码中文字幕| 亚洲一区二区三区欧美精品| 9色porny在线观看| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦在线免费观看视频4| 纯流量卡能插随身wifi吗| 国产免费现黄频在线看| 免费人妻精品一区二区三区视频| 成人国语在线视频| 色播在线永久视频| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美色中文字幕在线| 国产精品 国内视频| 久久影院123| 激情视频va一区二区三区| 在线天堂中文资源库| 精品久久久久久电影网| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区三区综合在线观看| 这个男人来自地球电影免费观看| 精品一区在线观看国产| 久久国产精品影院| 久久久欧美国产精品| 亚洲人成电影观看| 高潮久久久久久久久久久不卡| 婷婷色av中文字幕| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 久久久久国产精品人妻一区二区| 午夜福利一区二区在线看| tocl精华| 人妻人人澡人人爽人人| 亚洲精品久久成人aⅴ小说| 亚洲熟女精品中文字幕| 国产成人精品久久二区二区免费| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 18禁裸乳无遮挡动漫免费视频| 搡老熟女国产l中国老女人| 天天影视国产精品| 国产成人影院久久av| 看免费av毛片| 欧美精品高潮呻吟av久久| 久久精品成人免费网站| av在线播放精品| 无遮挡黄片免费观看| 男女免费视频国产| av天堂久久9| 91字幕亚洲| 久久中文字幕一级| 一级毛片电影观看| 黄色 视频免费看| 亚洲性夜色夜夜综合| av网站在线播放免费| 动漫黄色视频在线观看| 免费高清在线观看日韩| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 操出白浆在线播放| a级毛片黄视频| 91精品三级在线观看| 亚洲av男天堂| 日韩 亚洲 欧美在线| 国产精品九九99| 午夜激情久久久久久久| 手机成人av网站| 亚洲精品一二三| 少妇人妻久久综合中文| 日韩 亚洲 欧美在线| 亚洲精品粉嫩美女一区| 91麻豆av在线| 蜜桃国产av成人99| 俄罗斯特黄特色一大片| 19禁男女啪啪无遮挡网站| 美女主播在线视频| 日韩免费高清中文字幕av| 亚洲国产精品999| 亚洲国产av新网站| 国产精品1区2区在线观看. | 国产免费福利视频在线观看| 大片电影免费在线观看免费| 蜜桃国产av成人99| 久久人妻熟女aⅴ| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 久久精品成人免费网站| 丁香六月欧美| 一区福利在线观看| 亚洲天堂av无毛| 9191精品国产免费久久| 国产淫语在线视频| 最黄视频免费看| 9热在线视频观看99| 欧美日本中文国产一区发布| 国产成人欧美在线观看 | 少妇裸体淫交视频免费看高清 | 丝袜脚勾引网站| 一二三四社区在线视频社区8| 黄色片一级片一级黄色片| 成年人午夜在线观看视频| 亚洲第一青青草原| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看 | 亚洲五月婷婷丁香| 欧美乱码精品一区二区三区| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| 人人妻人人爽人人添夜夜欢视频| 国产成人一区二区三区免费视频网站| 美女福利国产在线| 国产精品久久久人人做人人爽| 午夜精品久久久久久毛片777| 亚洲av片天天在线观看| 91麻豆精品激情在线观看国产 | 狂野欧美激情性xxxx| 少妇 在线观看| 日韩三级视频一区二区三区| 久久久久视频综合| 黄色 视频免费看| 日韩视频一区二区在线观看| 国产一区二区三区综合在线观看| 视频在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 精品一区二区三卡| 在线观看免费午夜福利视频| 一级a爱视频在线免费观看| 黄色视频,在线免费观看| 老汉色av国产亚洲站长工具| 国产成人一区二区三区免费视频网站| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 亚洲激情五月婷婷啪啪| 搡老熟女国产l中国老女人| 欧美老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 久久人人爽人人片av| 久久人妻熟女aⅴ| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| 久久久久久久久久久久大奶| 精品少妇内射三级| 十八禁网站免费在线| 午夜成年电影在线免费观看| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| 乱人伦中国视频| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三区在线| 国产精品免费大片| 麻豆乱淫一区二区| 黄色视频,在线免费观看| 在线av久久热| 日韩 亚洲 欧美在线| 91精品三级在线观看| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 日韩电影二区| 国产精品偷伦视频观看了| 国产成人精品久久二区二区免费| 国产在线一区二区三区精| 亚洲国产欧美一区二区综合| 久久99热这里只频精品6学生| 纯流量卡能插随身wifi吗| 老司机影院毛片| 欧美国产精品一级二级三级| 飞空精品影院首页| 满18在线观看网站| 久久 成人 亚洲| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 99国产精品99久久久久| 一个人免费看片子| tocl精华| 色老头精品视频在线观看| 亚洲中文av在线| 国产激情久久老熟女| 纯流量卡能插随身wifi吗| 这个男人来自地球电影免费观看| 天堂8中文在线网| tube8黄色片| 男人操女人黄网站| 下体分泌物呈黄色| 国产亚洲欧美在线一区二区| 久久久精品94久久精品| 97在线人人人人妻| 成年人黄色毛片网站| 国产老妇伦熟女老妇高清| 国产免费现黄频在线看| 国产精品一区二区在线不卡| 国产成人系列免费观看| 日韩有码中文字幕| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 亚洲成人国产一区在线观看| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 99国产综合亚洲精品| 免费在线观看日本一区| 新久久久久国产一级毛片| 国产精品 国内视频| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 老司机福利观看| 97在线人人人人妻| 久久香蕉激情| 国产精品国产三级国产专区5o| 成在线人永久免费视频| 中文字幕最新亚洲高清| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 动漫黄色视频在线观看| 伊人亚洲综合成人网| 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看| 黄片播放在线免费| 热99久久久久精品小说推荐| 精品欧美一区二区三区在线| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 高潮久久久久久久久久久不卡| 新久久久久国产一级毛片| 成人黄色视频免费在线看| 日韩 亚洲 欧美在线| 亚洲av日韩在线播放| 美国免费a级毛片| 美女高潮到喷水免费观看| 国产成人av激情在线播放| 久热这里只有精品99| 国产成人欧美在线观看 | 一区福利在线观看| 狂野欧美激情性xxxx| 国产高清视频在线播放一区 | 啦啦啦在线免费观看视频4| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 国产精品一二三区在线看| av超薄肉色丝袜交足视频| 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 欧美久久黑人一区二区| 久热这里只有精品99| 中文字幕色久视频| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 日韩 亚洲 欧美在线| 老鸭窝网址在线观看| 久久精品亚洲熟妇少妇任你| 男女之事视频高清在线观看| 日韩免费高清中文字幕av| 一个人免费在线观看的高清视频 | 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 91精品伊人久久大香线蕉| 国产精品九九99| 两个人看的免费小视频| a级片在线免费高清观看视频| 欧美黄色淫秽网站| 久久久国产欧美日韩av| 一本—道久久a久久精品蜜桃钙片| 美女视频免费永久观看网站| 超色免费av| 另类精品久久| 中文欧美无线码| 婷婷成人精品国产| 久9热在线精品视频| 丝袜在线中文字幕| 麻豆国产av国片精品| 老司机靠b影院| 亚洲 国产 在线| 亚洲av电影在线进入| 国产1区2区3区精品| 精品久久久久久久毛片微露脸 | 热re99久久国产66热| av有码第一页| 成人影院久久| 午夜福利,免费看| 精品一区二区三区av网在线观看 | 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 久久久久精品人妻al黑| 色综合欧美亚洲国产小说| 日韩电影二区| 法律面前人人平等表现在哪些方面 | 亚洲 国产 在线| 极品人妻少妇av视频| 97在线人人人人妻| 日本vs欧美在线观看视频| 久久精品国产a三级三级三级| 亚洲人成电影免费在线| 老司机靠b影院| 99热网站在线观看| 欧美精品高潮呻吟av久久| 日本猛色少妇xxxxx猛交久久| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 50天的宝宝边吃奶边哭怎么回事|