• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ONEOptimal:A Maple Package for Generating One-Dimensional Optimal System of Finite Dimensional Lie Algebra?

    2014-03-12 08:44:03MIAOQian苗倩HUXiaoRui胡曉瑞andCHENYong
    Communications in Theoretical Physics 2014年2期

    MIAO Qian(苗倩),HU Xiao-Rui(胡曉瑞),and CHEN Yong(陳)

    Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China

    1 Introduction

    Symmetry group theory for diあerential equations built by Sophus Lie[1]plays an important role in constructing explicit solutions for integrable and non-integrable nonlinear equations.For any given subgroup of the full symmetry group,the original nonlinear system can be reduced to a system with fewer independent variables by solving the corresponding characteristic equations.Since there are almost always an inf i nite amount of such subgroups,it is usually not feasible to list all possible groupinvariant solutions to the system.It is anticipated to f i nd those complete but inequivalent group-invariant solutions,that is to say,to classify all the group-invariant solutions.For this problem,some eあective and systematic methods have been developed by Ovsiannikov[2]and Olver[3]respectively,which introduce the concept of“optimal system”for group-invariant solutions.More details on how to perform the classif i cation of subgroup under the adjoint action are clarif i ed in Ref.[3].The problem of f i nding an optimal system of subgroups is equivalent to that of f i nding an optimal system of subalgebras,so people always concentrate on the latter.The classif i cation of symmetry subalgebras for many important partial diあerential equations(PDEs)in physics can be found in[4–14].However,the operation for the classif i cation of subalgebras shows quite complicated and the inf i nitesimal techniques do not seem to be overly useful.To the best of our knowledge,despite these numerous results,there is no literature on the process mechanization by the aid of computer.

    Diあerent algorithms and packages in computer algebra systems have also been developed implementing Lie symmetry computations and related methods:SPDE by Schwarz,[15]LIE and BIGLIE by Head[16?17]in MUMATH and MATHLIE by Baumann[18]in Mathematica.For Maple there are also some useful packages:PDEtools by Cheb–Terrab[19]which is distributed since Release 11,DES-OLV by Vu and Carminati,[20?21]and LieAlgebras provided in the built-in DiあerentialGeometry package.

    Here we devote to constructing one-parameter optimal system of f i nite dimensional Lie algebra on the computer.Then based on the one-dimensional case,higherdimensional optimal system can be constructed.Even in the one-dimensional case,it still requires a lot of mechanical and monotonous calculations by rule of thumb,so it must be a signif i cant job to implement the process mechanization.

    In this paper,we present one Maple package named ONEOptimal to construct one-dimensional optimal system of Lie algebra for nonlinear systems.For a given Lie algebra,the package ONEOptimal is used to f i nd the centers of the vector f i elds,generate the commutator table as well as the adjoint representation table and give out one invariant(i.e.Killing-form).Then,the function Classify can carry out classif i cation and simplif i cation according to the Killing-form automatically.Our program provides a basis for many possible applications.

    This paper is arranged as follows.In Sec.2,a brief review of the methods to construct one-dimensional optimal system for Lie algebra is given.In Sec.3,a systematic computational algorithm based on Olver’s method is established.In Sec.4,the programm commands in the Maple package ONEOptimal are explained.In Sec.5,some diあerent types of examples are given to illustrate and verify the eあectiveness of our program.Finally,a brief conclusion is given in Sec.6.

    2 Theoretical Methods

    Optimal System Let G be a Lie group.An optimal system of s-parameter subgroups is a list of conjugacy inequivalent s-parameter subgroups with the property that any other subgroup is conjugate to precisely one subgroup in the list.Similarly,a list of s-parameter subalgebras forms an optimal system if every s-parameter subalgebra of g is equivalent to a unique member of the list under some element of the adjoint representation ??=Ad g(?),g∈G.

    The method to construct one-dimensional optimal system of Lie algebra was f i rst proposed by Ovisiannikov,[2]taking advantage of the global matrix of adjoint representation.Then a lightly diあerent way was adopted in[3]to deal with one-dimensional subalgebras,making use of the adjoint representation table.It is also pointed out that for one-dimensional subalgebras,the problem of f i nding an optimal system is essentially the same as the problem of classifying the orbits of the adjoint transformations.The essence of this method is that the Killing form of the Lie algebra is an “invariant” for the adjoint representation.Based on the sign of the Killing form,the representatives for each equivalence class were obtained.In this paper,we will apply this method to develop our Maple package.

    For m-dimensional Lie algebra G,its one-dimensional optimal system is computed by the na¨Ive approach of taking a general element v in G and subjecting it to various adjoint transformations so as to “simplify” it as much as possible.Given a nonzero vector

    the key task is to simplify as many of the coeきcients aias possible through judicious applications of adjoint maps to v,where vi(i=1,...,m)are m generators in the vector fi elds of G.The adjoint representation is

    for?v1,v2∈ G.In this process,the detection of an invariant is important since it places restrictions on how far we can expect to simplify v.A real function φ def i ned on G is called an invariant if φ(Adg(v))= φ(v)for all v in G and g in the Lie group G generated by G.Usually,the famous Killing form[10]is computed as an invariant to simplify v.

    The general steps developed by Olver to construct onedimensional optimal system of subalgebras are:

    Step 1 For a nonlinear PDE,get the Lie point symmetry with its generators by the classical Lie symmetry method.

    Step 2 Work out the commutator table(ignoring the inf i nite-dimensional subalgebras which contain arbitrary functions)and the corresponding adjoint representation table for the m-dimensional subalgebra G.

    Step 3 Calculate the Killing form from the commutator table,i.e.f i nding an invariant of G.

    Step 4 For the nonzero vector f i eld(1),on the basis of the Killing form and adjoint representation table calculated in Step 2,select the appropriate group generated by vkto act on v to cancel some coeきcients aias many as possible.

    One remark is given as follows:

    Remark 1 It should be noted that,Olver did not mention the concept of“center” in his method.For simplicity,we have taken the centers of G into account in our algorithm.For the Lie subalgebras G,v1is known as the center if the results of commutator to v1with all other generators are zero.Then,if all the elements except the center v1can form a subalgebra G1of G,we only need to consider the one-dimensional optimal system os1of G1,and construct one-dimensional optimal system os of G by adding cv1to each element in os1,where c is an arbitrary constant.Otherwise,the center v1should not be removed from G.

    3 Key Algorithm for Constructing One-Dimensional Optimal System

    On the basis of the process presented in Sec.2,we have designed the corresponding mechanization algorithm.Since there have been a lot of software packages to get Lie point symmetries in Step 1,we no longer study it here and start from the obtained Lie algebra instead of the original PDE.For the m-dimensional Lie algebra G,the algorithm to construct one-dimensional optimal system can be divided into six main steps:

    Step 1 Single out the centers of the given generators vs and delete the centers,which have no eあect on the closure of G.

    Step 2 Obtain the commutator table of G through computation.Here we def i ne the function of commutator operator,and the calculation result is returned in a linear combination form of each generator.The corresponding expression to each generator is also pointed out in the output.

    Step 3 Give out the corresponding adjoint representation table using the Lie series(2)in conjunction with the commutator table.

    Step 4 Referring to the def i nition of Killing form,calculate the invariant from the commutator table.

    Step 5 Acting on the general non-zero vector f i eld(1)by the groups generated by every element vi(i=1,2,...,m),it results in

    with?aij=?aij(aij,∈)(i=1,2,...,m;j=1,2,...,m).Take the elements?aijto constitute a coeきcient matrix named Cmk,and work out the corresponding solution matrix named Sokwith respect to∈.Here,k specif i es the current steps.

    Step 6 Depending on the sign of the invariant Killing form,there are several diあerent cases according to the expression form of Killing form.For each case,enter into next step.

    Step 7 For each reference variable aiin current case,two subcases(ai=0 and ai/=0)are considered at most.

    Step 7.1 If ai=0,we make the coeきcient,which contains aivanish.

    Step 7.2 If ai/=0,we check whether there are coeき-cients whose denominator contains aiand make it vanish,if any.

    Step 8 Check the current solution matrix Sokto verify whether there are some coeきcients that can be eliminated,that is to say,whether there is any new reference variable ai.If any such aiexists,enter into Step 7.If no coeきcient can be eliminated further,the current case terminates.

    All the steps above can be completely mechanized by computer.

    4 MaplePackage ONEOptimal

    Based on the above algorithm,we have developed an automated Maple package ONEOptimal on Maple versions 13 and above.The package is initialized by the command with(ONEOptimal).Here we brief l y describe some inputoutput parameters and package commands available in ONEOptimal.In Table 1,the abbreviations are used for the input parameters.In Table 2,the abbreviations are used for the output parameters.

    Table 1 Input parameters for package ONEOptimal.

    Some main package commands and corresponding inputs are given in the following listing.In ONEOptimal,the main routine is Get Optimal(vs,cs,pf).This procedure calls six sub-procedures:

    fi nd center(vs,xs,var):Singles out the centers from vs with respect to xs and var,and deletes the centers,which have no eあect on the closure of G.

    commutator table(vf,xs,var):Generates commutator table for G with the(i,j)-th entry indicating[Vi,Vj].

    ad table(vf,order):Computes the adjoint representation table of G with the(i,j)-th entry indicating Adexp(∈Vi)(Vj).For simplicity,the truncated power series expansions up to order in the calculation result are all replaced by the original series name.

    K form(X):Computes the Killing form on the basis of the commutator table X.

    Classify(kf,C):Classif i es the original system to several cases according to Killing form kf and executes opti-mization.

    show optimal():Prints out the optimized results.Other package commands and corresponding inputs are given in the following listing:

    LinearCo(expr,vf,var):Writes the expression expr as a linear combination of the generators in vf with respect to var.

    lie bracket cal(a,b,var):Computes the commutator of a pair of vectors a and b.Here,both a and b are single generators,while the result is returned as a linear combination expression.

    Lie bracket(a,b):Computes the commutator of a and b.Here,a and b can be linear combination of generators.

    ad operator(a,b,order):Acts by adjoint maps generated by a and b up to order order.Here both a and b are single generators.

    ad(a,b):Acts by adjoint maps generated respectively by a and b.Here a and b can be linear combination of generators.Command ad(Vm,Eqn)can also be used to observe and adjust the coeきcient in Eqn.

    replace(result,j,ex,order):Replaces the truncated series expansion trse in the coeきcient of Vjin result with the name of the original series.Here,ex represents the coeきcient of∈determined from current trse.

    coeきcient obtain(eq): Computes the coeきcient matrix Cmkobtained by adjoint maps generated respectively by all generators Viand eq.

    coeきcient solve(C):Solves out ε from every element(expression about∈)in the coeきcient matrix C,and provides the solution matrix to C.

    deno reduce(d,C):Eliminates some Viaccording to the specif i ed generator d from the equation corresponding to matrix C.Here,for d is nonzero,it is possible to eliminate Viif d appears in the denominator of column i in solution matrix corresponding to C.

    reduce(column set,C):Eliminates a best Viin column set from Eqkcorresponding to C in current step k.

    reduce all(column set,C):Eliminates all Viin column set from Eqkcorresponding to C in current step k.

    case classify(case elements,C,level,nonzero set,f l ag):Classif i es current case to n subcases for each reference variable aiin coeきcient set case elements:ai=0(when f l ag=0,2)and ai/=0(when f l ag=1,2).

    check column(s,level,nonzero set):Checks Soswhether the current case can be simplif i ed further,that is to say,whether there are some columns that can be eliminated.Here,s represents the step number.

    check row(s):Picks out the best row number whose corresponding adjoint representation has most ε in Cms.

    optimal calculate(s,nonzero set):Calculates the reduced adjoint representation result according to nonzero set for the case in Step s.

    5 Illustrative Examples

    In this section,several diあerent kinds of examples are given to illustrate the eあectiveness of our package ONEOptimal.

    5.1 Examples with One Variable in Killing Form

    Example 1 Consider the four-dimensional symmetry algebra g of the Korteweg-de Vries equation

    which is generated by the vector f i elds

    From Table 3

    Table 3 The commutator table for Example 1.

    the Killing form is obtained

    An optimal system of one-dimensional subalgebras of this algebra is those spanned by:

    Depending on the sign of a3,we can make the coeき-cient of V3either+1,?1 or 0.Thus the result is consistent with the result given by Olver[3]

    The average running time for this example is 0.2622 seconds.

    Example 2 Consider the four-dimensional symmetry algebra g of the Navier–Stokes equation

    which is generated by the vector f i elds

    From Table 4

    Table 4 The commutator table for Example 2.

    the Killing form is obtained

    An optimal system of one-dimensional subalgebras is provided by those generated by:

    Depending on the sign of a4,we can make the coeき-cient of V4either+1,?1 or 0.Thus the result is consistent with the result given by Hu[22]

    where α is an arbitrary constant.

    The average running time for this example is 0.2356 seconds.

    5.2 Examples with Two Variables in Killing Form

    Example 3 Consider the seven-dimensional symmetry algebra g of the Zakharove–Kuznetsov equation[23]

    which is generated by the vector f i elds

    From Table 5

    Table 5 The commutator table for Example 3.

    the Killing form is obtained

    An optimal system of one-dimensional subalgebras is provided by those generated by:

    Depending on the sign of a4,a5,a6,a7,we can adjust the coeきcient of V4,V5,V6,V7to suitable value.Thus this result is consistent with Ref.[24].

    where α is an arbitrary constant.

    The average running time for this example is 1.2043 seconds.

    Example 4 Consider the seven-dimensional symmetry algebra g of the two layers of atmosphere model equation

    which is generated by the vector f i elds

    From Table 6

    Table 6 The commutator table for Example 4.

    the Killing form is obtained

    A one-dimensional optimal system is those spanned by:

    This is consistent with Ref.[25]after adjusting the coeきcients which contain ∈.

    where λ /=0,α,β,μ are arbitrary constants.

    The average running time for this example is 0.7489 seconds.

    5.3 Examples with Three Variables in Killing Form

    Example 5 Consider the six-dimensional algebra g of the heat equation

    which is generated by the vector f i elds

    From Table 7

    Table 7 The commutator table for Example 5.

    the Killing form is obtained

    A one-dimensional optimal system is:

    This result is consistent with Refs.[3,11]after adjusting the coeきcients which contain ∈.

    where a,b are arbitrary constants.

    The average running time for this example is 0.7427 seconds.

    Example 6 Consider six-dimensional algebra g of the quasilinear equation[26]

    which is generated by the vector f i elds

    From Table 8

    Table 8 The commutator table for Example 6.

    the Killing form is obtained

    A one-dimensional optimal system is provided by:

    This result is in accordance with Ref.[27]after adjusting the coeきcients which contain ∈.

    The average running time for this example is 1.1356 seconds.

    5.4 More Examples of Real Two-,Three-and Four-Dimensional Lie Algebras

    Consider some nontrivial real Lie algebras listed in the fi rst column of Table 9,which have appeared in Ref.[28].Based on the existing nonzero commutation relations presented in the second column,the Killing forms,classi fication results from our program and running times are listed in the last three columns,respectively.Depending on the sign of a1,a2,a3,a4,we can adjust the coeきcients of V1,V2,V3,V4,which contain∈to suitable value such as?1,1,0.In comparison,the output from our program is consistent with Ref.[28].

    Table 9 One-dimensional optimal systems of real two-,three-,and four-dimensional Lie algebras.Parameter description:a1,a2,a3,a4are arbitrary constants.

    5.5 Examples of Some Classical Lie Algebras

    Finally,we also consider some classical Lie algebras using our program.Their corresponding nonzero commutation relations,Killing forms,classif i cation results,and running times are given in Table 10.

    Table 10 One-dimensional optimal systems of classical Lie algebras.

    6 Conclusions

    In this paper,we have presented and clarif i ed the Maple package ONEOptimal to construct one-dimensional optimal system of Lie algebra based on Olver’s method.The program ONEOptimal can compute the commutator table,adjoint representation table and Killing form automatically,while it can also execute the optimization process step by step.ONEOptimal is very easy to perform as it requires minimal user input and the output with instructions is easy to understand.The program will play a signif i cant role in the search of group invariant solutions.How to involve the cases with more variables in the Killing form and realize the mechanization of highdimensional optimal system of subalgebras is worthy of our further study.

    Appendix:The Detailed Usage of Package ONEOptimal

    The package ONEOptimal will work on Maple 13 or higher version.In the following two classical examples(Examples 1 and 5 in Sec.5)are given to illustrate how to use this package.The detailed input and output are demonstrated as follows.

    Example 1 Consider the KdV equation(4),one can proceed as follows:

    #Import the package ONEOptimal

    >with(ONEOptimal):

    #Defination of the function with variables

    >alias(phi=phi(x,t,u));

    #Defination of the vector fields

    >kdv:={diff(phi,x),diff(phi,t),t*diff(phi,x)+diff(phi,u),

    x*diff(phi,x)+3*t*diff(phi,t)-2*u*diff(phi,u)};

    #Run the main routine Get_Optimal

    >Get_Optimal(kdv,{},0); #{}--There is no constant in this algebra.

    0--Do not show the detailed matrices Cm and So.

    The output is:

    There is no center.

    The commutator table for this algebra is:

    with the generators:

    The adjoint representation table is constructed

    The Killing form is:

    Step 1

    The coeきcient matrix is:

    The corresponding solution matrix is:

    Case 1

    Case 2

    Case 2.1

    Case 2.2

    Case 2.2.1

    Case 2.2.2

    In this example,depending on the sign of a3,we can make the coeきcient of V3either+1,?1 or 0 in Case 2.1.Summarize the above cases,the one-dimensional optimal system equals to:V2,V1+V3,V1?V3,V1,V3,V4.

    Example 5 Consider the heat equation(25),one can proceed as follows:

    #Import the package ONEOptimal

    >with(ONEOptimal):

    #Defination of the function with variables

    >alias(phi=phi(x,t,u));

    #Defination of the vector fields

    >heat:={u*diff(phi,u),2*t*diff(phi,x)-x*u*diff(phi,u),x*diff(phi,x)+2*t*diff(phi,t),4*t*x*diff(phi,x)+4*t^2*diff(phi,t)-(x^2+2*t)*u*diff(phi,u),diff(phi,t),diff(phi,x)};

    #Run the main routine Get_Optimal

    >Get_Optimal(heat,{},0);#{}--There is no constant in this algebra.0--Do not show the detailed matrices Cm and So.

    The output is:

    The center of the algebra is:

    The centers can not be deleted.

    The commutator table for this algebra is:

    with the generators:

    The adjoint representation table is constructed:

    The Killing form is:

    Step 1

    The coeきcient matrix is:

    The corresponding solution matrix is:

    Case 1

    Case 2

    Case 2.1

    Case 3

    Case 3.1

    Case 3.1.1

    Case 3.1.2

    Case 4

    Case 4.1

    Case 4.2

    Case 4.2.1

    Case 4.2.2

    In this example,depending on the sign of a5,we can make the coeきcient of V5only+1 in Case 1 and either+1 or?1 in Case 3.1.1.The coeきcient of V1can be set either+1,?1 or 0 in Case 3.1.2,but arbitrary in both Case 1 and Case 2.1.Summarize the above cases,this one-dimensional optimal system equals to:V4+V5+bV1,V3+aV1,V2+V5,V2?V5,V5+V1,V5?V1,V5,V2,V6,V1,where a,b∈R.

    [1]S.Lie,Arch.Math.6(1881)328.

    [2]L.V.Ovsiannikov,Group analysis of diあerential equations,Academic,New York(1982).

    [3]P.J.Olver,Applications of Lie Groups to Diあerential Equations,2nd ed.,Springer,New York(1993).

    [4]F.Galas and E.W.Richter,Physica D 50(1991)297.

    [5]J.C.Fuchs,J.Math.Phys.32(1991)1703.

    [6]S.V.Coggeshall and J.Meyer-Ter-Vehn,J.Math.Phys.33(1992)3585.

    [7]L.Gagnon and P.Winternitz,J.Phys.A 21(1988)1493.

    [8]L.Gagnon and P.Winternitz,J.Phys.A 22(1989)469.

    [9]L.Gagnon,B.Grammaticos,A.Ramani,and P.Winternitz,J.Phys.A 22(1989)499.

    [10]N.H.Ibragimov,CRC Handbook of Lie Group Analysis of Diあerential Equations,CRC Press,Boca Raton(1994).

    [11]K.S.Chou,G.X.Li,and C.Z.Qu,J.Math.Anal.Appl.261(2001)741.

    [12]X.R.Hu and Y.Chen,Commun.Theor.Phys.52(2009)997.

    [13]Z.Z.Dong and Y.Chen,Commun.Theor.Phys.54(2010)389.

    [14]X.R.Hu,Y.Chen,and L.J.Qian,Commun.Theor.Phys.55(2011)737.

    [15]F.Schwarz,SIAM Rev.30(1988)450.

    [16]A.K.Head,Program LIE for Lie Analysis of Diあerential Equations on IBM Type PCs,User’s Manual(2000).

    [17]A.K.Head,Program BIGLIE for Lie Analysis of Diあerential Equations on IBM Type PCs,User’s Manual(2000).

    [18]G.Baumann,Symmetry Analysis of Diあerential Equations with Mathematica,Springer,New York(2000).

    [19]E.S.Cheb-Terrab and K.von Bulow,Comp.Phys.Commun.90(1995)116.

    [20]K.T.Vu,J.Butcher,and J.Carminati,Comp.Phys.Commun.176(2007)682.

    [21]J.Carminati and K.Vu,J.Symbolic Comput.29(2000)95.

    [22]X.R.Hu,Z.Z.Dong,and Y.Chen,Z.Naturforsch.65a(2010)1.

    [23]G.C.Das,J.Sarma,Y.T.Gao,and C.Uberoi,Phys.Plasmas.7(2000)2374.

    [24]Z.Z.Dong,Y.Chen,and Y.H.Lang,Chin.Phys.B 19(2010)090205.

    [25]Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.66a(2011)75.

    [26]G.Aronsson,Ark.Mat.6(1967)551.

    [27]I.L.Freire and A.C.Faleiros,Nonlinear Anal.74(2011)3478.

    [28]J.Patera and P.Winternitz,J.Math.Phys.18(1977)1449.

    久久99热这里只频精品6学生| 日韩伦理黄色片| 不卡视频在线观看欧美| 久久99热6这里只有精品| 久久午夜福利片| 一区二区三区四区激情视频| www.色视频.com| 亚洲精品乱码久久久久久按摩| 肉色欧美久久久久久久蜜桃| 不卡视频在线观看欧美| 一边摸一边做爽爽视频免费| 日日摸夜夜添夜夜爱| 国产极品天堂在线| 日韩在线高清观看一区二区三区| 最近2019中文字幕mv第一页| 中文字幕最新亚洲高清| 中文字幕人妻熟女乱码| 一级毛片黄色毛片免费观看视频| 午夜影院在线不卡| 人妻系列 视频| 大片免费播放器 马上看| 亚洲综合色网址| 婷婷色麻豆天堂久久| 精品酒店卫生间| 又黄又爽又刺激的免费视频.| 97精品久久久久久久久久精品| av在线播放精品| 国产男人的电影天堂91| 欧美日韩视频精品一区| 国产又色又爽无遮挡免| 久久精品国产亚洲av天美| 丝袜在线中文字幕| 我要看黄色一级片免费的| 欧美日韩视频精品一区| 国产成人精品在线电影| 黄色一级大片看看| 精品人妻熟女毛片av久久网站| 熟女av电影| 美女中出高潮动态图| 超碰97精品在线观看| 亚洲 欧美一区二区三区| av天堂久久9| 99热国产这里只有精品6| 永久免费av网站大全| 美女脱内裤让男人舔精品视频| 夫妻性生交免费视频一级片| 成年人免费黄色播放视频| 夜夜爽夜夜爽视频| 在线亚洲精品国产二区图片欧美| 最近的中文字幕免费完整| 免费观看性生交大片5| 欧美国产精品一级二级三级| 欧美少妇被猛烈插入视频| av又黄又爽大尺度在线免费看| 日本黄色日本黄色录像| 熟妇人妻不卡中文字幕| 99热全是精品| 啦啦啦啦在线视频资源| 97人妻天天添夜夜摸| 久久国产亚洲av麻豆专区| 男女国产视频网站| 欧美精品国产亚洲| 看非洲黑人一级黄片| 汤姆久久久久久久影院中文字幕| 在线天堂最新版资源| 深夜精品福利| 日日啪夜夜爽| 日韩制服丝袜自拍偷拍| 久久久久人妻精品一区果冻| 日韩大片免费观看网站| 91aial.com中文字幕在线观看| 亚洲欧美精品自产自拍| 国产精品.久久久| 亚洲欧美成人精品一区二区| 乱码一卡2卡4卡精品| 另类精品久久| 欧美精品亚洲一区二区| 最后的刺客免费高清国语| 黄片播放在线免费| 日本猛色少妇xxxxx猛交久久| 亚洲美女视频黄频| 国产精品成人在线| 欧美精品一区二区大全| 免费高清在线观看日韩| 在线精品无人区一区二区三| 成年动漫av网址| 精品人妻一区二区三区麻豆| 免费黄网站久久成人精品| 少妇熟女欧美另类| 一级毛片我不卡| 又黄又粗又硬又大视频| 欧美人与性动交α欧美软件 | 日韩中文字幕视频在线看片| 波多野结衣一区麻豆| 五月伊人婷婷丁香| 国产一区二区在线观看日韩| 亚洲av日韩在线播放| 亚洲精品乱码久久久久久按摩| 亚洲av中文av极速乱| 国产精品成人在线| 亚洲av中文av极速乱| 精品酒店卫生间| 日韩成人伦理影院| 国产午夜精品一二区理论片| 国产午夜精品一二区理论片| av线在线观看网站| 青春草国产在线视频| 热99国产精品久久久久久7| 丝袜美足系列| 日本av手机在线免费观看| 男女国产视频网站| 一边亲一边摸免费视频| 99久久中文字幕三级久久日本| 如日韩欧美国产精品一区二区三区| av网站免费在线观看视频| 国产av码专区亚洲av| 久久久国产精品麻豆| 久久鲁丝午夜福利片| 18禁国产床啪视频网站| 久热这里只有精品99| 少妇的逼水好多| 深夜精品福利| 亚洲性久久影院| 天天影视国产精品| 新久久久久国产一级毛片| 亚洲欧美色中文字幕在线| 蜜桃在线观看..| 国产在线视频一区二区| 性高湖久久久久久久久免费观看| 91成人精品电影| 晚上一个人看的免费电影| 自线自在国产av| 丁香六月天网| 欧美变态另类bdsm刘玥| 十八禁网站网址无遮挡| 亚洲美女搞黄在线观看| 国产日韩欧美亚洲二区| 国产成人精品一,二区| 巨乳人妻的诱惑在线观看| 热99久久久久精品小说推荐| 亚洲成av片中文字幕在线观看 | 成人影院久久| 看免费av毛片| 亚洲国产最新在线播放| 大香蕉97超碰在线| 久久久久网色| 性色avwww在线观看| 亚洲综合精品二区| 亚洲欧美中文字幕日韩二区| 热re99久久精品国产66热6| 免费日韩欧美在线观看| 日韩欧美精品免费久久| 热99国产精品久久久久久7| 97人妻天天添夜夜摸| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕在线视频| 久热久热在线精品观看| 蜜桃国产av成人99| 欧美日韩亚洲高清精品| 欧美精品高潮呻吟av久久| 97在线人人人人妻| 免费黄网站久久成人精品| 高清毛片免费看| 女的被弄到高潮叫床怎么办| 亚洲精品国产av蜜桃| 韩国精品一区二区三区 | 国产成人精品无人区| 天堂中文最新版在线下载| 午夜福利在线观看免费完整高清在| 国产有黄有色有爽视频| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 街头女战士在线观看网站| 69精品国产乱码久久久| 大码成人一级视频| 免费观看性生交大片5| 黑人欧美特级aaaaaa片| 午夜免费鲁丝| 美国免费a级毛片| 国产亚洲一区二区精品| 97在线人人人人妻| 欧美人与善性xxx| 亚洲欧美精品自产自拍| 制服丝袜香蕉在线| 只有这里有精品99| 色吧在线观看| 在线观看国产h片| av国产久精品久网站免费入址| 丰满少妇做爰视频| 亚洲av免费高清在线观看| 国产精品一区www在线观看| 国产亚洲一区二区精品| 日本欧美视频一区| 日韩精品免费视频一区二区三区 | 亚洲精品美女久久久久99蜜臀 | 精品少妇内射三级| av卡一久久| 王馨瑶露胸无遮挡在线观看| 美女内射精品一级片tv| 男男h啪啪无遮挡| 91精品国产国语对白视频| 国产精品女同一区二区软件| 国产综合精华液| 校园人妻丝袜中文字幕| 美女xxoo啪啪120秒动态图| 精品少妇久久久久久888优播| videossex国产| 一级黄片播放器| 婷婷色综合www| 又黄又粗又硬又大视频| 熟女人妻精品中文字幕| 韩国av在线不卡| 自线自在国产av| 午夜视频国产福利| 精品酒店卫生间| 人妻 亚洲 视频| 久久精品国产亚洲av涩爱| 国产欧美亚洲国产| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久久大奶| 26uuu在线亚洲综合色| √禁漫天堂资源中文www| xxxhd国产人妻xxx| 亚洲欧美清纯卡通| 最近的中文字幕免费完整| 香蕉精品网在线| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看| 国产精品秋霞免费鲁丝片| 黑人猛操日本美女一级片| 久久热在线av| 毛片一级片免费看久久久久| 欧美xxxx性猛交bbbb| 日本爱情动作片www.在线观看| 亚洲精品第二区| 高清毛片免费看| 久久久久国产网址| 欧美精品一区二区免费开放| 日本vs欧美在线观看视频| 国产精品欧美亚洲77777| 日日爽夜夜爽网站| 日韩 亚洲 欧美在线| 99久久人妻综合| 国产伦理片在线播放av一区| 中文字幕另类日韩欧美亚洲嫩草| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产av玫瑰| 97在线视频观看| 春色校园在线视频观看| 狠狠精品人妻久久久久久综合| 国产精品久久久av美女十八| 宅男免费午夜| 国产有黄有色有爽视频| 国产精品成人在线| 免费不卡的大黄色大毛片视频在线观看| 久久午夜综合久久蜜桃| 久久精品国产综合久久久 | 精品人妻在线不人妻| 国产一区二区三区综合在线观看 | 丝袜美足系列| 亚洲精品第二区| 国产亚洲精品第一综合不卡 | 国产激情久久老熟女| 一二三四中文在线观看免费高清| a级毛片黄视频| 三上悠亚av全集在线观看| 日韩一区二区视频免费看| 国产在线免费精品| 国产精品偷伦视频观看了| 美女国产视频在线观看| 午夜免费鲁丝| 一边摸一边做爽爽视频免费| 秋霞伦理黄片| 亚洲欧美精品自产自拍| 国产精品国产三级专区第一集| 日韩制服骚丝袜av| 丰满乱子伦码专区| a级毛片黄视频| 国产日韩欧美在线精品| 精品国产露脸久久av麻豆| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 国产 精品1| 在线观看免费视频网站a站| 国产免费一级a男人的天堂| 在线观看三级黄色| 99九九在线精品视频| 亚洲精品中文字幕在线视频| 精品国产一区二区三区四区第35| 少妇高潮的动态图| 一区在线观看完整版| 久久久久人妻精品一区果冻| 免费黄色在线免费观看| 极品少妇高潮喷水抽搐| 国产精品不卡视频一区二区| 99国产综合亚洲精品| 亚洲色图 男人天堂 中文字幕 | 人人妻人人添人人爽欧美一区卜| 一本—道久久a久久精品蜜桃钙片| 国产av国产精品国产| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| 日韩熟女老妇一区二区性免费视频| 交换朋友夫妻互换小说| 91aial.com中文字幕在线观看| 男女国产视频网站| 亚洲四区av| 青春草视频在线免费观看| 午夜福利网站1000一区二区三区| 大片电影免费在线观看免费| 色婷婷久久久亚洲欧美| 高清在线视频一区二区三区| 日韩,欧美,国产一区二区三区| 汤姆久久久久久久影院中文字幕| 97在线视频观看| 女性被躁到高潮视频| 日韩制服丝袜自拍偷拍| 女性生殖器流出的白浆| 极品人妻少妇av视频| 日韩欧美精品免费久久| 免费黄频网站在线观看国产| 久久精品人人爽人人爽视色| 久久99蜜桃精品久久| 青春草亚洲视频在线观看| 水蜜桃什么品种好| 精品视频人人做人人爽| 母亲3免费完整高清在线观看 | 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 校园人妻丝袜中文字幕| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 九色成人免费人妻av| 欧美精品亚洲一区二区| tube8黄色片| 国产在线免费精品| 国产黄频视频在线观看| 青春草亚洲视频在线观看| 少妇 在线观看| 另类亚洲欧美激情| 亚洲av中文av极速乱| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 18+在线观看网站| freevideosex欧美| 中国国产av一级| 国产白丝娇喘喷水9色精品| 午夜av观看不卡| av在线播放精品| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 2018国产大陆天天弄谢| 精品久久久精品久久久| 飞空精品影院首页| 欧美老熟妇乱子伦牲交| 亚洲一区二区三区欧美精品| 欧美国产精品一级二级三级| 9热在线视频观看99| 日韩精品免费视频一区二区三区 | 制服诱惑二区| 日韩成人av中文字幕在线观看| 韩国高清视频一区二区三区| 熟女av电影| 亚洲精品,欧美精品| 久久热在线av| 久久久久久久国产电影| 波野结衣二区三区在线| 美女国产视频在线观看| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| av福利片在线| 欧美人与性动交α欧美软件 | 男人操女人黄网站| 黄色怎么调成土黄色| 免费看av在线观看网站| 日本黄色日本黄色录像| 成人国语在线视频| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 一本—道久久a久久精品蜜桃钙片| 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 午夜福利乱码中文字幕| 国产黄频视频在线观看| 久久午夜福利片| 国产精品麻豆人妻色哟哟久久| 久久免费观看电影| 一级毛片电影观看| 国产乱来视频区| 日本黄色日本黄色录像| 最新中文字幕久久久久| 大香蕉97超碰在线| 一区二区日韩欧美中文字幕 | 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 老女人水多毛片| 国产免费一级a男人的天堂| 又粗又硬又长又爽又黄的视频| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 亚洲美女搞黄在线观看| 99视频精品全部免费 在线| 大码成人一级视频| 欧美xxxx性猛交bbbb| 欧美+日韩+精品| 亚洲欧洲国产日韩| 一级毛片我不卡| 日韩电影二区| 国产黄频视频在线观看| 免费观看性生交大片5| 97在线人人人人妻| 免费观看在线日韩| 伦理电影免费视频| 国产在线一区二区三区精| 22中文网久久字幕| 国产精品久久久久久av不卡| 两个人免费观看高清视频| 亚洲精品乱码久久久久久按摩| 午夜免费鲁丝| av在线app专区| 母亲3免费完整高清在线观看 | av播播在线观看一区| 王馨瑶露胸无遮挡在线观看| 考比视频在线观看| 少妇被粗大猛烈的视频| 夜夜骑夜夜射夜夜干| 国产成人午夜福利电影在线观看| 精品国产乱码久久久久久小说| 日韩欧美精品免费久久| 国产成人午夜福利电影在线观看| 99热国产这里只有精品6| 99久国产av精品国产电影| 日本黄色日本黄色录像| 久久人人爽人人爽人人片va| 欧美日韩亚洲高清精品| 国产永久视频网站| 99九九在线精品视频| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到 | av黄色大香蕉| 午夜福利网站1000一区二区三区| 天美传媒精品一区二区| 成年动漫av网址| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| 精品国产露脸久久av麻豆| 丰满迷人的少妇在线观看| 丰满饥渴人妻一区二区三| 国产在线视频一区二区| 一本色道久久久久久精品综合| 9热在线视频观看99| 黄色配什么色好看| 亚洲内射少妇av| 久久人人97超碰香蕉20202| 黄色一级大片看看| 国产成人精品婷婷| 欧美 日韩 精品 国产| 亚洲一码二码三码区别大吗| 91在线精品国自产拍蜜月| 欧美97在线视频| 99热国产这里只有精品6| 久久久久精品性色| 日韩熟女老妇一区二区性免费视频| 亚洲精品美女久久av网站| 国产乱来视频区| av网站免费在线观看视频| 2021少妇久久久久久久久久久| 国产探花极品一区二区| 亚洲成国产人片在线观看| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 欧美精品av麻豆av| 亚洲国产精品国产精品| 亚洲一区二区三区欧美精品| av卡一久久| 久久久欧美国产精品| av片东京热男人的天堂| 99热6这里只有精品| 免费av不卡在线播放| 国产亚洲最大av| 国产亚洲精品第一综合不卡 | 亚洲四区av| 九草在线视频观看| 2018国产大陆天天弄谢| 亚洲精品国产av蜜桃| 一区二区三区精品91| 水蜜桃什么品种好| 午夜福利在线观看免费完整高清在| 91精品国产国语对白视频| 熟女av电影| 97在线视频观看| 亚洲伊人色综图| 丝袜人妻中文字幕| 欧美人与性动交α欧美软件 | 亚洲国产精品一区三区| 赤兔流量卡办理| 少妇的逼好多水| 国产色爽女视频免费观看| 少妇人妻 视频| 如何舔出高潮| 只有这里有精品99| 亚洲国产色片| 欧美激情极品国产一区二区三区 | 老司机影院成人| 国产精品.久久久| 亚洲成国产人片在线观看| 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 精品久久久精品久久久| 精品人妻熟女毛片av久久网站| 一级片'在线观看视频| 韩国精品一区二区三区 | 下体分泌物呈黄色| 国产av码专区亚洲av| 男男h啪啪无遮挡| 欧美日本中文国产一区发布| av一本久久久久| 国产亚洲av片在线观看秒播厂| 午夜av观看不卡| 久久久久国产精品人妻一区二区| 香蕉丝袜av| 卡戴珊不雅视频在线播放| a级片在线免费高清观看视频| 久久久久视频综合| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 亚洲中文av在线| 校园人妻丝袜中文字幕| a级片在线免费高清观看视频| 精品久久国产蜜桃| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 如何舔出高潮| 1024视频免费在线观看| 99久国产av精品国产电影| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 欧美老熟妇乱子伦牲交| 激情五月婷婷亚洲| 午夜视频国产福利| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 又粗又硬又长又爽又黄的视频| 精品亚洲成a人片在线观看| 精品一区二区三区四区五区乱码 | 黄片播放在线免费| 国产淫语在线视频| 国产欧美另类精品又又久久亚洲欧美| 十八禁高潮呻吟视频| www.色视频.com| 亚洲图色成人| 日韩制服骚丝袜av| 亚洲精品一区蜜桃| 少妇人妻久久综合中文| 丝瓜视频免费看黄片| 又大又黄又爽视频免费| 亚洲国产成人一精品久久久| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 欧美亚洲 丝袜 人妻 在线| 最近的中文字幕免费完整| 伊人亚洲综合成人网| 久久国内精品自在自线图片| 免费观看在线日韩| 99久国产av精品国产电影| 成年美女黄网站色视频大全免费| 欧美人与性动交α欧美软件 | 久久97久久精品| 久久久久国产网址| 免费观看性生交大片5| 欧美+日韩+精品| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 少妇的逼好多水| 秋霞伦理黄片| 激情五月婷婷亚洲| 日韩在线高清观看一区二区三区| 久久影院123| 久久亚洲国产成人精品v| 精品一区在线观看国产| 成人午夜精彩视频在线观看| 免费久久久久久久精品成人欧美视频 | 国产精品一二三区在线看| 国产黄频视频在线观看| 婷婷成人精品国产| 最黄视频免费看| 免费黄网站久久成人精品| 日韩制服骚丝袜av| 乱码一卡2卡4卡精品| 久久久久视频综合| 在线观看一区二区三区激情| 大码成人一级视频| 巨乳人妻的诱惑在线观看| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| av天堂久久9| 人妻一区二区av| 天美传媒精品一区二区| 看免费成人av毛片| 美女福利国产在线| 国产男女超爽视频在线观看| 精品久久久精品久久久| 免费观看在线日韩| 曰老女人黄片| 亚洲av国产av综合av卡| 久久精品久久久久久久性| 成人黄色视频免费在线看|