柯 鈞,邵華武
(1.中國(guó)科學(xué)院成都生物研究所天然產(chǎn)物研究中心,四川成都 610041;2.中國(guó)科學(xué)院大學(xué),北京 100049)
D-半乳糖基寡糖及其綴合物在生物界廣泛存在[1]。D-吡喃型半乳糖的6-位為活性較高的伯羥基,而4-位的仲羥基與其同位于糖環(huán)一側(cè),故在D-吡喃型半乳糖衍生物的合成中,通常用異丙亞基將 3-位,4-位[2]和芐亞基將 4-位,6-位同時(shí)保護(hù)[3],在不同反應(yīng)體系下可選擇性脫保護(hù),從而控制反應(yīng)的區(qū)域選擇性。而4,6-脫水糖也可以同時(shí)實(shí)現(xiàn)4-位,6-位羥基保護(hù),而四元環(huán)開環(huán)后還可以作為糖基受體參與糖苷化反應(yīng),但到目前為止這類化合物的研究報(bào)道較少。Goren等[4]報(bào)道了 2,3-二-O-芐基-6-對(duì)甲苯磺酰基-α-D-半乳糖在MeONa/MeOH體系中生成 4,6-脫水糖,收率66%;Magnusson 等[5]在 HMPT/CCl4,LiEt3BH/THF條件下制得4,6-脫水半乳糖,收率55%。
本文以甲基-2,3,4,6-四-O-芐基-α-D-吡喃型半乳糖苷(1)為原料,通過對(duì)1-位,2-位進(jìn)行結(jié)構(gòu)修飾,6-位選擇性脫除芐基,再引入保護(hù)基Ms(或Ts)制得 3,4-二-O-芐基-6-磺?;?或?qū)妆交酋;?-α-D-吡喃型半乳糖衍生物(2a~2f);2在堿性條件下發(fā)生分子內(nèi)親核取代反應(yīng)合成了一列新型的4,6-脫水-α-D-吡喃型半乳糖衍生物(3c~3f,Scheme 1),其結(jié)構(gòu)經(jīng)1H NMR,13C NMR 和ESI-HR-MS表征。并對(duì)反應(yīng)條件進(jìn)行了優(yōu)化。合成3的最佳反應(yīng)條件為,以乙酸鉀/二甲亞砜為催化體系,于80℃反應(yīng)24 h。
Scheme 1
Avance Brucker-600 MHz型核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標(biāo));BioTOF Q型質(zhì)譜儀;Perkin Elmer M341型自動(dòng)旋光儀。
2a ~2e和2g 按文獻(xiàn)[7,8]方法合成;硅膠,200目~400目,青島海洋化工廠;其余所有試劑均為分析純。
(1)2f的合成[6]
將 2g[7,8]462 mg(0.90 mmol)溶于混合溶劑[V(AcOH)∶V(Ac2O)=1 ∶2,9 mL]中,攪拌下于0 ℃迅速加入無水 ZnCl21.23 g(9.0 mmol),滴畢,緩慢升至室溫反應(yīng)6 h。用混合溶劑A[V(乙酸乙酯)∶V(水)=1 ∶1,40 mL]萃取,合并有機(jī)層,依次用飽和NaHCO3溶液、飽和食鹽水洗,無水Na2SO4干燥,濃縮后用MeOH(8 mL)溶解,加入K2CO3124 mg,于室溫反應(yīng)2 h。用混合溶劑A萃取,合并有機(jī)層,用經(jīng)和食鹽水洗滌,無水Na2SO4干燥,濃縮后用CH2Cl28 mL溶解。降溫至0℃,依次滴加 Et3N 0.25 mL(1.80 mmol),MsCl 0.11 mL(1.35 mmol),滴畢,于室溫反應(yīng)6 h。用混合溶劑B[V(CH2Cl2)∶V(水)=1 ∶1,40 mL]萃取,合并有機(jī)層,用飽和食鹽水洗滌,無水Na2SO4干燥,濃縮后經(jīng)硅膠柱層析[洗脫劑:C=V(石油醚)∶V(乙酸乙酯)=6∶1]純化得黃色漿狀物2f 320 mg(3 步收率 71%),[α]20D+25.0°(c0.18);1H NMR δ:7.37 ~ 7.28(m,10H),5.80(m,1H),5.12(dd,J=17.2 Hz,1.5 Hz,1H),5.06(d,J=10.2 Hz,1H),4.97(dd,J=12.1 Hz,9.2 Hz,1H),4.74(d,J=12.0 Hz,1H),4.65(d,J=12.1 Hz,1H),4.61(d,J=11.8 Hz,1H),4.57(d,J=11.8 Hz,1H),4.43(dd,J=12.3 Hz,2.1 Hz,1H),4.26 ~ 4.22(m,1H),4.13(t,J=2.4 Hz,2H),4.07(t,J=6.3 Hz,1H),4.01(dd,J=5.7 Hz,2.8 Hz,1H),3.98 ~3.96(m,1H),3.63(d,J=4.4 Hz,1H),3.01(s,3H),2.39(dd,J=14.6 Hz,7.2 Hz,1H),2.36(t,J=2.2 Hz,1H),2.32(dd,J=13.7 Hz,6.7 Hz,1H);13C NMR δ:137.8,134.6,128.5,128.0,127.9,127.8,117.4,79.5,76.0,75.0,73.4,73.3,73.2,72.2,68.3,67.2,58.2,38.0,34.0;ESI-HR-MSm/z:Calcd for C27H32O7SNa{[M+Na]+}523.176 1,found 523.176 9。
(2)3的合成通法
將 2[6,7]1.50 mmol溶于 DMSO(2 mL)中,攪拌下加入AcOK 130 mg(4.07 mmol),于80℃反應(yīng)至終點(diǎn)(TLC監(jiān)測(cè))。用混合溶劑A萃取,合并有機(jī)相,用飽和食鹽水洗滌,無水Na2SO4干燥,濃縮后經(jīng)快速硅膠柱層析(梯度洗脫劑:C=10∶1~6∶1)純化得黃色漿狀物3a,3c~3f。
3c:2c→3c,收率 83%;2e→3c(3e),收率78%,[α]20D+22.8°(c0.14);1H NMR δ:7.38 ~7.25(m,10H),5.75(m,1H),5.11(dd,J=17.2 Hz,1.2 Hz,1H),5.06(d,J=10.1 Hz,1H),4.54(s,2H),4.49(s,2H),4.42(d,J=5.3 Hz,1H),4.34(s,1H),4.28(s,1H),4.12(d,J=10.0 Hz,1H),4.03(dd,J=10.0 Hz,2.9 Hz,1H),3.86(m,1H),3.56(dd,J=5.3 Hz,2.8 Hz,1H),2.36(m,1H),2.33 ~ 2.27(m,1H);13C NMR δ:138.0,134.67,128.5,128.4,127.9,127.8,127.7,117.2,78.4,78.2,77.5,72.8,71.8,71.1,69.4,34.5;ESI-HR-MSm/z:Calcd for C23H26O4Na{[M+Na]+}389.172 3,found 389.171 4。
以2c合成3c為模板,考察催化劑,溶劑,反應(yīng)溫度和反應(yīng)時(shí)間對(duì)其收率的影響,結(jié)果見表1。從表1可見,堿性條件下該反應(yīng)均能發(fā)生;在低極性非質(zhì)子溶劑(CH2Cl2,THF)中該反應(yīng)則未能發(fā)生(Entry 11,Entry 12),而在丙酮,MeCN 和MeOH中反應(yīng)時(shí)間較長(zhǎng)(Entry 13~Entry 15);同時(shí)反應(yīng)需要的溫度較高,在溫度達(dá)到80℃時(shí)才能發(fā)生反應(yīng)生成4,6-脫水糖,繼續(xù)升高溫度則對(duì)反應(yīng)產(chǎn)率影響不大。
根據(jù)反應(yīng)所得產(chǎn)物,我們推測(cè)其機(jī)理可能為4-O上的孤對(duì)電子進(jìn)攻6-C,同時(shí)磺酰氧基在堿性條件下離去,然后4-芐基離去環(huán)化形成4,6-脫水糖。另外,1-C苷類底物反應(yīng)產(chǎn)率較高;2a反應(yīng)生成3a,可能是由于1-位的羥基構(gòu)型轉(zhuǎn)化后進(jìn)攻6-C,新形成的五元環(huán)張力小于四元環(huán)[9];而1-位被乙?;Wo(hù)的2b在該條件下未能發(fā)生反應(yīng),則可能因?yàn)?-位羥基被吸電子基保護(hù)后導(dǎo)致分子內(nèi)親核性大大降低。
由此可見,合成3c的最佳反應(yīng)條件為:以DMSO(2.0 mL)為溶劑,AcOK(1.0 eq)為堿,于溫度80℃反應(yīng)24 h,收率83%。
Goren[4]和 Magnusson 課題組[5]曾報(bào)道過 4,6脫水半乳糖合成方法,但存在收率低或操作復(fù)雜等缺點(diǎn)。而本文在AcOK/DMSO體系下實(shí)現(xiàn)了高收率地合成 4,6-脫水-α-D-吡喃型半乳糖,簡(jiǎn)便易行。由于在4,6-脫水糖中含有較大張力的四元環(huán),在適當(dāng)條件下可以開環(huán),這也為半乳糖的4-位,6-位選擇性糖苷化反應(yīng)提供了一種新策略。
表1 反應(yīng)條件對(duì)合成3c的影響*Table 1 Effect of reaction conditions on synthesizing 3c
[1]Miyagawa S,Takeishi S,Yamamoto A,et al.Survey of glycoantigens in cells from 1-3 galactosyl transferase knock out pig using a lectin microarray[J].Xenotransplantation,2010,17(1):61 -70.
[2]de Belder A N.Cyclic acetals of the aldoses and aldosides[J].Advances in Carbohydrate Chemistry,1965,20:219-302.
[3]Tanaka N,Ogawa I,Yoshigase S,et al.Regioselective ring opening of benzylidene acetal protecting group(s)of hexopyranoside derivatives by DIBAL-H[J].Carbohydrate Research,2008,(343):2675 -2679.
[4]Liav A,Goren M B,Yang Y,et al.Synthesis of 4,6-anhydro-α-D-galactopyranosyl-6-O-mycoloyl-and-corynomycoloyl-α-D-galactopyranoside[J].Carbohydrate Research,1986,(155):223 -228.
[5]Kihlberg J,F(xiàn)rejd T,Jansso K,et al.Synthetic receptor analogues:Prepration and calculated conformations of the 2-deoxy,6-O-methyl,6-deoxy,and 6-deoxy-6-fluoro derivatives of methyl 4-O-α-D-galactopyranosylβ-D-galactopyranoside(methyl β-D-galabioside)[J].Carbohydrate Research,1988,(176):271 -286.
[6]Yang G B,Ding X L,Kong F Z.Selective 6-O-debenzylation of mono-and disaccharide derivatives using ZnCl2-Ac2O-HAc[J].Tetrahedron Lett,1997,38:6725-6278.
[7]Shao H,Ekthawatchai S,Chen C S,et al.1,2-Migration of 2'-oxoalkyl group and concomitant synthesis of 2-C-branchedO-,S-glycosides and glycosyl azides via 1,2-cyclopropanated sugars[J].The Journal of Organic Chemistry,2005,70(12):4726 -4734.
[8]Cipolla L,Lay L,Nicotra F.New and easy access toC-glycosides of glucosamine and mannosamine[J].The Journal of Organic Chemistry,1997,62(19):6678 -6681.
[9]Lafont D,Boullanger P,Cadas O,et al.Mild procedure for the preparation of 1,6-anhydro-D-hexopyranoses and derivatives[J].Synthesis,1989:191 - 194.