• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation of high-molecular-weight glutenin subunits and glutenin macropolymer particle distribution in wheat grains produced under different water regimes

    2013-03-13 05:50:52ZhongminDaiYanpingYinYongLiLiCaoZhenlinWang
    The Crop Journal 2013年1期

    Zhongmin Dai,Yanping Yin,Yong Li,Li Cao,Zhenlin Wang,*

    aBiology Department,Dezhou University,Dezhou,Shandong 253023,China

    bState Key Laboratory of Crop Biology,Agronomy College,Shandong Agricultural University,Tai'an,Shandong 271018,China

    1.Introduction

    Wheat(Triticum aestivum L.)is the most widely consumed food crop in the world,being processed to give a range of breads,other baked goods,pasta,and noodles.In wheat,glutenin macropolymers(GMP)are a major component of the grain and an important factor affecting the processing quality of wheat[1].Previous studies demonstrated that the amount of GMP in wheat flour correlates closely with baking quality[2,3].Besides GMP content,GMP particle size and distribution are important in wheat bread-making quality [4].Evidence indicates that GMP particle size strongly correlates with dough development time[5].

    GMP consist of high molecular weight glutenin subunits(HMW-GS)linked with low molecular weight glutenin subunits(LMW-GS) through disulfide bonds [6].HMW-GS play an important role in determining the glutenin protein network structure [5],and LMW-GS may also have a specific effect on glutenin aggregation [4].GMP consisting of a higher ratio of HMW-GS to LMW-GS is correlated with improved wheat flour quality[7].Therefore,subunit composition and GMP characteristics determine the rheological properties of wheat dough,and a close correlation between GMP characteristics and end-use quality has been shown.

    HMW-GS are encoded by polymorphic genes at the Glu-1 loci on the long arms of group 1 chromosomes.Hexaploid wheat usually contains 3–5 subunits,zero or one encoded by Glu-A1,one or two by Glu-B1 and two by Glu-D1[8].

    The content and size distribution of GMP in wheat grains are both genetically and environmentally controlled.Drought promotes HMW-GS accumulation in the early grain filling stage,whereas the opposite effect occurs at late grain filling [9].Increasing N fertilizer increases the proportion of GMP in wheat flour [10].Clay soil results in the accumulation of HMW-GS and GMP when compared to loam soil and sandy soil [11].When under high temperature stress during the kernel filling period,the contents of particular Glu-D1 HMW-GS in weak-gluten wheat are much more sensitive than that in strong-gluten wheat[12].

    In recent years,frequent soil water stress in northern China has influenced both dry matter production and quality of wheat[13].Increased N levels promoted the accumulation of HMW and LMW-GS,GMP content and proportion of larger GMP particles under irrigated conditions.Under rainfed conditions,increased N fertilizer also increased protein content [14].Both dough development time and dough stability time were longest with a single post-anthesis irrigation,whereas a second irrigation led to shortened dough development and dough stability times and weakened gluten strength,as well as a decreased glutenin polymerization index and average sized GMP [15].However,information about the impact of different irrigation patterns on accumulations of GMP in wheat grain is still limited.

    Although numerous studies have been conducted on size distribution and properties of GMP particles in wheat grains,there is limited information about the size distribution of different quality types of wheat under irrigated and rainfed conditions.The objective of the present study was to investigate differences that may occur in GMP accumulation in field-grown wheat cultivars under irrigated and rainfed regimes.HMW-GS and GMP contents and GMP particle distributions in four wheat cultivars were therefore investigated.

    2.Materials and methods

    The experiment was conducted on the experimental farm of the Research Institute of Agricultural Science(37°N,116°E),Dezhou,China.Four recently released winter wheat cultivars with different end-use qualities were used.They were Shiluan 02-1(HMW-GS 1Ax1,1Bx7 + 1By9,1Dx5 + 1Dy10)and Jinan 17(1Ax1,1Bx7 + 1By8,1Dx4 + 1Dy12) with strong gluten strength,Yannong 24 (1Ax1,1Bx7 + 1By8,1Dx5 + 1Dy10) with medium gluten strength,Lumai 21 (1Ax1,1Bx7 + 1By8,1Dx5 + 1Dy10)with weak gluten strength.Shiluan 02-1,Yannong 24,and Lumai 21,were used in the growing season of 2010–2011.The 0–20 cm soil layer contained 83.6 mg kg-1of available nitrogen,18.2 mg kg-1of available phosphate and 95.2 mg kg-1of available potassium.Wheat cultivars Jinan 17 and Lumai 21 were used in the 2009–2010 growing season when the soil contained available nitrogen-phosphate-potassium at 81.5,17.6 and 93.6 mg kg-1,respectively.Two contrasting water regimes(irrigated and rainfed) were used.The irrigated treatment was two irrigations with the total water amount of 1500 m3ha-1over the whole growth period(750 m3ha-1each at jointing and booting stages,respectively),whereas the rainfed treatment had no irrigation.The moisture content in soil after anthesis is shown in Fig.1.The experiment was a complete randomized block design with three replicates.Plot dimension was 3 m × 3 m.Plants were sown on 12 October 2010 and 15 October 2009,respectively,at a density of 180 seeds m-2.Normal crop farming practices were implemented to minimize pest,disease and weed incidence.After full heading,spikes flowering on the same date were labeled with thread.At maturity(14 June 2011 and 15 June 2010,respectively),the labeled heads were sampled and used to determine the GMP particle distributions.GMP and HMW-GS contents were also determined.

    The content of GMP was analyzed as follows:0.05 g of flour was dispersed into and mixed with 1 mL of SDS and then centrifuged at 15,500 ×g for 15 min using an Allegra X-64R centrifuge(Beckman,San Francisco,CA,USA)and the supernatant was retained.Glutenin macropolymer content was measured using TU-1901 dual-wavelength spectrophotometer(Persee Instruments,Beijing,China).Glutenin macropolymer content was calculated using a set of Kjeldahl protein values.

    Glutenin macropolymer-gel was isolated by dispersing 1.4 g of defatted flour in 0.05 mol L-1SDS (pasteurized,28 mL) and then centrifuged at 80,000 ×g for 30 min at 20 °C using a Beckman L-60 ultracentrifuge (Beckman,San Francisco,CA,USA)as described[16].The GMP gel-layer was collected from the top of the supernatant.

    For Coulter laser particle size analysis,1 g of GMP-gel was added to 8 mL of 0.05 mol L-1SDS solvent.The tube was sealed and placed on a roller-bank for 3 h at room temperature and analyzed with a Coulter Laser LS13320 (Beckman Coulter Instruments,San Francisco,CA,USA).The GMP surface area distribution and volume distribution were measured and calculated from the resulting pattern.

    Quantification of HMW-GS was performed according to the following method[17].In brief,HMW-GS were first separated by SDS-polyacrylate gel electrophoresis (SDS-PAGE) according to Khan et al.[18].A 40 mg grain sample was defatted with chloroform and then mixed with 1 mL of extraction buffer containing 62.5 mmol L-1Tris–HCl (pH 6.8),50% isopropyl alcohol,5% SDS and 1% DTT.The mixture was incubated at room temperature for 30 min with continuous shaking,and then at 60 °C for 1 h,followed by centrifugation at 10,000 ×g for 15 min.The supernatant was used for SDS-PAGE.

    The SDS-PAGE gel was 16 cm × 16 cm and 1 mm thick.The acrylamide concentration in the resolving gel was 10%and 4%in the stacking gel.Glutenin extract(20 μL)was loaded in each lane.After electrophoresis,the gel was stained with 0.05%Coomassie Brilliant Blue B250 for 24 h,and then destained in distilled water for 48 h.Thereafter,each band was separately cut from the gel,placed in an Eppendorf tube and depending on the intensity of each band,1 mL of 50% isopropyl alcohol containing 3% SDS was added to the tube which was incubated at 37 °C for 24 h until the gel cleared.The extraction was then monitored at 595 nm with a UV-2401 Shimadzu spectrophotometer(Shimadzu Corporation,Kyoto,Japan).

    Analysis of variance was performed with the SPSS statistical analysis package.The statistical model included sources of variation due to genotype,soil water,and genotype × soil water interaction.Data from each sampling date were analyzed separately.Duncan's New Multiple Range Test was employed to assess differences between the treatment means at P = 0.05.General correlation coefficients were calculated between GMP size distribution and contents of GMP and HMW-GS.

    Fig.1-Soil water content(%)after anthesis.▲Irrigated in 2009-2010,●Irrigated in 2010-2011,△Rainfed in 2009-2010,○Rainfed in 2010-2011.

    3.Results

    Analysis of variance for the percent volume of GMP particles,HMW-GS content and GMP content made it possible to identify the sources of variation(Table 1).Genotype and soil water main effects were significant for these traits except the influence of soil water on the GMP particles of 12–100 μm in 2010–2011.However,genotype × soil water interaction only affected the GMP particles of <12 μm and >100 μm in 2010–2011.This indicated that the interaction was a complicated network.

    The contents of total HMW-GS in the four wheat cultivars were ordered as follows: Shiluan 02-1 >Yannong 24 >Lumai 21 in 2010–2011 and Jinan 17 >Lumai 21 in 2009–2010 (Fig.2).Under the rainfed regime,the contents of total HMW-GS increased in all four wheat cultivars.Compared with the irrigated regime,the rainfed regime increased the content of HMW-GS in cultivar Shiluan 02-1 by 3.2%,Jinan 17 by 16.8%(P <0.05),Yannong 24 by 18.5% (P <0.05) and Lumai 21 by 17.0%(P <0.05)in 2009–2010 and 21.8%(P <0.05)in 2010–2011,respectively.This indicated that rainfed conditions increased the content of total HMW-GS in wheat grains,especially in the medium and weak gluten genotypes.

    At maturity,cultivars Shiluan 02-1 and Jinan 17 had higher contents of GMP than Yannong 24 and Lumai 21 under both water treatments (Fig.3),indicating that more glutenin was accumulated in the strong gluten genotype than in the medium and weak gluten cultivars.The contents of GMP in the four cultivars showed increasing trends under rainfed conditions with increases of 3.1%,9.3% (P <0.05),10.0% (P <0.05) and 13.8%–18.7%(P <0.05)in Shiluan 02-1,Jinan 17,Yannong 24 and Lumai 21,respectively.

    Table 1-Mean squares for treatments and interactions for percent volume of GMP particles and the contents of HMW-GS and GMP in the seasons 2010-2011(ANOVA 1)and 2009-2010(ANOVA 2).

    Fig.2-Effect of water treatments on HMW-GS content.

    In the four cultivars,the percent volumes of GMP particles with diameters <12,12–100 and >100 μm made up 15.3%–26.1%,47.5%–54.3% and 19.6%–36.2% of the total GMP particles,respectively (Table 2).Under rainfed conditions,the percent volume of particles >100 μm in the four cultivars increased when compared with irrigation,indicating that the rainfed water treatment increased volume percentages of larger particles.

    Irrigated and rainfed conditions have different influences on the percent surface area of GMP particles in the four wheat cultivars (Table 3).Compared with irrigation,the percent surface area of >100 μm particles in cultivars Shiluan 02-1,Jinan 17,Yannong 24 and Lumai 21 under rainfed conditions increased by 3.3,12.0,20.8 and 17.6%–50.0%,respectively,indicating that the lower soil moisture promoted increases in the surface areas of large particles in the four wheat cultivars.

    The relationships between GMP size distribution and the contents of GMP and HMW-GS are given in Table 4.The GMP and HMW-GS contents were negatively correlated with the percent volume of <12 μm GMP particles (r =-0.756,P <0.05;r =-0.718,P <0.05),but positively correlated to that of >100 μm(r = 0.825,P <0.05;r = 0.806,P <0.05).The result suggested that the large GMP particles have high GMP content.

    Fig.3-Effect of water treatments on GMP content.

    4.Discussion

    Analysis of variance showed that genotypes and water treatments significantly affected the size distribution of GMP particles and the contents of HMW-GS and GMP.This infers that water regime has a strong effect on those traits in wheat grains.In the present study,the percent volume and surface area of large particles (>100 μm) under rainfed conditions increased when compared with irrigated conditions,indicating that the different water treatments led to an evident change in the distribution of GMP particles.

    GMP consists of spherical glutenin particles and originates from protein bodies in developing grain [19].It was suggested that protein bodies are the building blocks for the formation of much larger glutenin particles formed during the desiccation phase of kernel development[20].A close correlation was found between the accumulation of GMP and the rapid loss of water during desiccation [21].Premature desiccation of the grain induces SDS-insoluble polymer formation,and the percentage of SDS-insoluble polymers as a proportion of total polymers can increase from less than 10%at the end of kernel ripening to 50%in as few as 10 days.In the present study,the percent volume and surface area of large GMP particles under rainfed conditions were markedly increased,suggesting that lower soil moisture is probably beneficial to the desiccation of the grains and thus promotes the formation of large GMP particles.This was also reported by Li et al.[14],who confirmed that rainfed conditions enhance the formation of large GMP particles relative to small ones,resulting in higher GMP volumes and surface area distributions in the wheat grains.

    Our data showed that rainfed conditions improved the HMW-GS content and was favorable to the accumulation of GMP large particles,and there was a significant positive correlation between HMW-GS content and percent volume of GMP particles >100 μm (Table 4).It may be concluded that rainfed conditions promote the formation of large GMP particles through enhanced accumulation of HMW-GS.It also confirmed the results of Zhu and Khan [22] showing that environment significantly affected the percentages of total HMW glutenin subunits and individual HMW glutenin subunits from both SDS-soluble and SDS-insoluble glutenin polymers,which in turn affected the size distribution of glutenin polymers.The results indicate that the water regime affected the formation of GMP aggregates by increasing the concentration of HMW-GS.

    Table 2-Volume distribution of GMP in wheat grains(%).

    The content of HMW-GS and GMP,and GMP particle size in cultivars Jinan 17,Yannong 24 and Lumai 21,were increased under rainfed conditions,but the increase in the strong gluten wheat Shiluan 02-1 was less than in the others.Previous studies showed that the subunit pair 1Bx7 + 1By8 was more sensitive to N application and water deficit [14,23].Butow et al.proposed that the 643 bp insertion in the DNA matrix attachment region of 1Bx7 alleles increased transcriptional efficiency [24].This indicates that the subunit components in genotypes may be responsible for the different responses to water treatments.Shiluan 02-1 contained HMW-GS 1Bx7 + 1By9,whereas other wheat cultivars contained 1Bx7 + 1By8.As a result,Shiluan 02-1 was probably less affected by environmental factors than other genotypes.

    Compared to irrigated treatment,the rainfed treatment promoted the accumulation of HMW-GS,and increased the proportion of large-size particles of GMP in wheat grains.However,the lower soil moisture also resulted in an apparent reduction in grain yield(data not shown).This is consistent with previous studies that reduced wheat yield under water stress conditions was mainly due to reduction in starch accumulation[25].To manage wheat yield and quality,water treatment should be one of the important factors to be considered.

    Table 3-Surface area distribution of GMP in wheat grains(%).

    Table 4-Correlation coefficients between GMP particle volume and contents of GMP and HMW-GS.

    5.Conclusions

    Wheat grain produced under rainfed conditions had higher accumulations of HMW-GS and GMP,and also increased percent volumes and surface areas of large GMP particles,especially in cultivars Yannong 24,Jinan 17 and Lumai 21.This indicates that grain quality was affected by different water regimes.

    This research was supported by the National Natural Science Foundation of China (Grant No.31271667),the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010CM044),the National Basic Research Program of China (973 Program,Grant No.2009CB118602),and State Key Laboratory of Crop Biology(Grant No.2012KF01)of Shandong Agricultural University,Tai'an,Shandong,China.

    [1] C.Don,G.Lookhart,H.Naeem,F.MacRitchie,R.J.Hamer,Heat stress and genotype affect the gluten in particles of the gluten in macropolymer-gel fraction,J.Cereal Sci.42(2005)69–80.

    [2] P.L.Weegels,A.M.van de Pijpekamp,A.Graveland,R.J.Hamer,J.D.Schofield,Depolymerisation and repolymerisation of wheat glutenin during dough processing:I.Relationships between glutenin macropolymer content and quality parameters,J.Agron.Crop Sci.23(1996) 103–111.

    [3] A.Tarekegne,M.T.Labuschagne,Relationship between high molecular weight glutenin subunit composition and gluten quality in Ethiopian-grown bread and durum wheat cultivars and lines,J.Agron.Crop Sci.191 (2005) 300–307.

    [4] F.M.Dupont,S.B.Altenbach,Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis,J.Cereal Sci.38(2003)133–146.

    [5] C.Don,G.Mann,F.Bekes,R.J.Hamer,HMW-GS affects the properties of glutenin particles in GMP and thus flour quality,J.Cereal Sci.44(2006) 127–130.

    [6] H.Goesaert,K.Brijs,W.S.Veraverbeke,C.M.Courtin,K.Gebruers,J.A.Delcour,Wheat flour constituents: how they impact bread quality and how to impact their functionality,Trends Food Sci.Tech.16(2005) 12–30.

    [7] U.Pechanek,A.Karger,S.Gr?ger,B.Charvat,G.Sch?ggl,T.Lelley,Effect of nitrogen fertilization on quantity of flour protein components,dough properties,and breadmaking quality of wheat,Cereal Chem.74(1997) 800–805.

    [8] G.J.Lawrence,P.I.Payne,Detection by gel electrophoresis of oligomers formed by the association of high-molecular-weight glutein protein subunits of wheat endosperm,J.Exp.Bot.34(1983) 254–267.

    [9] D.Jiang,H.Yue,B.Wollenweber,W.Tan,H.Mu,Y.Bo,T.Dai,Q.Jing,W.Cao,Effects of post-anthesis drought and waterlogging on accumulation of high-molecular-weight glutenin subunits and glutenin macropolymers content in wheat grain,J.Cereal Sci.195 (2009) 89–97.

    [10] E.Triboi,A.Abad,A.Michelena,J.Lloveras,J.L.Ollier,C.Daniel,Environmental effects on the quality of two wheat genotypes:1.Quantitative and qualitative variation of storage proteins,Eur.J.Agron.13 (2000) 47–64.

    [11] T.B.Liang,Y.P.Yin,R.G.Cai,S.H.Yan,W.Y.Li,Q.H.Geng,P.Wang,Y.H.Wu,Y.Li,Z.L.Wang,HMW-GS accumulation and GMP size distribution in grains of Shannong 12 grown in different soil conditions,Acta Agron.Sin.34(2008)2160–2167,(in Chinese with English abstract).

    [12] Z.Deng,J.Tian,L.Zhao,Y.Zhang,C.Sun,High temperature-induced changes in high molecular weight glutenin subunits of Chinese winter wheat and its influences on the texture of Chinese noodles,J.Agron.Crop Sci.194(2008) 262–269.

    [13] R.K.Ma,X.L.Jia,Q.G.Zhang,L.H.Zhang,Y.R.Yao,L.H.Yang,Physiological characteristics of water in wheat cultivar SX733: the effect of water saving irrigation,Acta Agron.Sin.33(2007) 1446–1451,(in Chinese with English abstract).

    [14] Y.Li,Y.P.Yin,Q.Zhao,Z.L.Wang,Changes of glutenin subunits due to water–nitrogen interaction influence size and distribution of glutenin macropolymer particles and flour quality,Crop Sci.51 (2011) 2809–2819.

    [15] F.J.Yao,M.R.He,D.Y.Jia,X.L.Dai,Q.Cao,Effects of post-anthesis irrigation on degree of polymerization of storage protein and rheological properties in wheat,Cnin.J Plant Ecol.34(2010)271–278,(in Chinese with English abstract).

    [16] A.Graveland,P.Bosveld,W.J.Lichtendonk,J.P.Marseilles,J.H.E.Moonen,A.Scheepstra,A model for the molecular structure of the glutenin from wheat flour,J.Cereal Sci.3(1985)1–16.

    [17] R.Q.Liang,Y.R.Zhang,M.S.You,S.F.Mao,J.M.Song,G.T.Liu,Multi-stacking SDS-PAGE for wheat glutenin polymer and its relation to bread-making quality,Acta Agron.Sin.28 (2002)609–614,(in Chinese with English abstract).

    [18] K.Khan,R.Frohberg,T.Olson,L.Huckle,Inheritance of gluten protein components of high-protein hard red spring wheat lines derived from Triticum turgidum var.dicoccoides,Cereal Chem.66(1989) 397–401.

    [19] C.Don,W.J.Lichtendonk,J.J.Plijter,R.J.Hamer,Glutenin macropolymer: a gel formed by particles,J.Cereal Sci.37(2003) 1–7.

    [20] T.W.J.M.Van Herpen,J.H.G.Cordewener,H.J.Klok,J.Freeman,A.H.P.America,D.Bosch,M.J.M.Smulders,L.J.W.J.Gilissen,P.R.Shewry,R.J.Hamer,The origin and early development of wheat glutenin particles,J.Cereal Sci.48(2008) 870–877.

    [21] J.L.Carceller,T.Aussenac,Size characterisation of glutenin polymers by HPSEC-MALLS,J.Cereal Sci.33(2001) 131–142.

    [22] J.Zhu,K.Khan,Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments,Cereal Chem.79 (2002) 783–786.

    [23] H.Wieser,G.Zimmermann,Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality,Eur.Food Res.Technol.210 (2000) 324–330.

    [24] B.J.Butow,B.W.Ma,K.R.Gale,G.B.Cornish,L.Rampling,O.Larroque,M.K.Morrell,F.Bekes,Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular weight glutenin allele has a major impact on wheat flour dough strength,Theor.Appl.Genet.107 (2003)1524–1532.

    [25] A.Ahmadi,D.A.Baker,The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat,Plant Growth Regul.35 (2001)81–91.

    国产又爽黄色视频| 欧美少妇被猛烈插入视频| 亚洲情色 制服丝袜| 婷婷色综合www| 婷婷色av中文字幕| 亚洲人成网站在线观看播放| 肉色欧美久久久久久久蜜桃| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 最近手机中文字幕大全| 内地一区二区视频在线| 免费看光身美女| 一级,二级,三级黄色视频| 色吧在线观看| 美女内射精品一级片tv| 黄色 视频免费看| 久久精品aⅴ一区二区三区四区 | 亚洲久久久国产精品| 亚洲第一区二区三区不卡| 少妇被粗大猛烈的视频| 看免费av毛片| 国产无遮挡羞羞视频在线观看| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线观看99| 久久99蜜桃精品久久| 2018国产大陆天天弄谢| 又黄又粗又硬又大视频| 狠狠精品人妻久久久久久综合| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| av不卡在线播放| 国产精品久久久久久精品电影小说| 亚洲精品成人av观看孕妇| 久久精品国产鲁丝片午夜精品| 久久毛片免费看一区二区三区| 老熟女久久久| 国产爽快片一区二区三区| 51国产日韩欧美| 晚上一个人看的免费电影| 在线观看免费视频网站a站| 成人免费观看视频高清| 久久99一区二区三区| 国产一区二区三区av在线| 99热网站在线观看| 亚洲精品国产色婷婷电影| av国产精品久久久久影院| 亚洲欧美清纯卡通| 青春草国产在线视频| 国产精品久久久av美女十八| 欧美激情 高清一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品国产色婷婷电影| 免费观看无遮挡的男女| 久久国内精品自在自线图片| 在现免费观看毛片| 51国产日韩欧美| 妹子高潮喷水视频| 国产精品人妻久久久久久| 天堂中文最新版在线下载| 视频区图区小说| 久久人人爽av亚洲精品天堂| 久久99热6这里只有精品| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 久久青草综合色| 久久精品久久久久久久性| 少妇被粗大的猛进出69影院 | 99久久综合免费| 国产精品久久久久久精品古装| 18禁国产床啪视频网站| 国产精品国产三级专区第一集| 亚洲欧洲日产国产| 久久精品夜色国产| a级片在线免费高清观看视频| 亚洲精品日韩在线中文字幕| 久久热在线av| 香蕉精品网在线| 亚洲在久久综合| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 欧美成人午夜精品| 欧美人与善性xxx| 两性夫妻黄色片 | 一区二区日韩欧美中文字幕 | 18禁在线无遮挡免费观看视频| 99久久人妻综合| 亚洲av电影在线进入| 日韩制服骚丝袜av| 18禁在线无遮挡免费观看视频| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人 | 亚洲精品日本国产第一区| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人添人人爽欧美一区卜| 美女视频免费永久观看网站| 久久久久久久久久成人| 国产 一区精品| 大片电影免费在线观看免费| 亚洲欧美中文字幕日韩二区| 久久婷婷青草| 亚洲精品,欧美精品| 国产精品一区二区在线不卡| 热re99久久精品国产66热6| 欧美人与善性xxx| 国产一区二区在线观看日韩| 最后的刺客免费高清国语| 新久久久久国产一级毛片| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 人人妻人人澡人人爽人人夜夜| 草草在线视频免费看| 嫩草影院入口| tube8黄色片| 波野结衣二区三区在线| 国产欧美另类精品又又久久亚洲欧美| 曰老女人黄片| 国产精品人妻久久久久久| 国产精品偷伦视频观看了| 欧美性感艳星| 久久久久久久国产电影| 国产免费福利视频在线观看| 日本-黄色视频高清免费观看| 91aial.com中文字幕在线观看| 久久影院123| 欧美成人午夜精品| 日韩,欧美,国产一区二区三区| 波多野结衣一区麻豆| 高清不卡的av网站| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 97超碰精品成人国产| 亚洲国产精品一区三区| 国产成人av激情在线播放| 高清不卡的av网站| 亚洲综合精品二区| 国产精品一区www在线观看| 免费看av在线观看网站| 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放| 国产精品 国内视频| 亚洲一级一片aⅴ在线观看| 日日爽夜夜爽网站| 热re99久久精品国产66热6| 久久这里有精品视频免费| 午夜福利在线观看免费完整高清在| 国产成人91sexporn| av在线播放精品| 日韩一区二区三区影片| 91成人精品电影| 久久久久国产网址| 各种免费的搞黄视频| 熟女人妻精品中文字幕| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 久久久久国产精品人妻一区二区| 日韩,欧美,国产一区二区三区| 我的女老师完整版在线观看| 国产精品一二三区在线看| av有码第一页| 日韩中文字幕视频在线看片| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 国产爽快片一区二区三区| 亚洲av日韩在线播放| 久久影院123| 老熟女久久久| 亚洲人成77777在线视频| 欧美日韩精品成人综合77777| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区四区五区乱码 | 啦啦啦中文免费视频观看日本| 热re99久久国产66热| 欧美 亚洲 国产 日韩一| 亚洲五月色婷婷综合| 久久精品国产a三级三级三级| 久久精品熟女亚洲av麻豆精品| 欧美人与善性xxx| 大陆偷拍与自拍| av播播在线观看一区| 色视频在线一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲第一区二区三区不卡| 少妇的逼好多水| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 精品久久久久久电影网| 国产精品熟女久久久久浪| 伦精品一区二区三区| 欧美人与性动交α欧美精品济南到 | 国产av一区二区精品久久| 久久免费观看电影| av国产精品久久久久影院| 亚洲av免费高清在线观看| 狂野欧美激情性xxxx在线观看| 在线观看免费日韩欧美大片| 制服诱惑二区| 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲 | 熟女av电影| 国产成人午夜福利电影在线观看| 美女大奶头黄色视频| 亚洲美女视频黄频| 国产亚洲最大av| av电影中文网址| 欧美日韩亚洲高清精品| 日韩一区二区视频免费看| 边亲边吃奶的免费视频| 一边亲一边摸免费视频| 久久国产亚洲av麻豆专区| 欧美成人精品欧美一级黄| 午夜福利乱码中文字幕| 99国产综合亚洲精品| av在线观看视频网站免费| 人成视频在线观看免费观看| 最新的欧美精品一区二区| 我的女老师完整版在线观看| 精品国产国语对白av| 美女视频免费永久观看网站| 国产毛片在线视频| 久久久国产精品麻豆| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 国产精品麻豆人妻色哟哟久久| 亚洲性久久影院| 久久免费观看电影| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影在线观看一区二区三区| 日本av手机在线免费观看| a 毛片基地| 国产色爽女视频免费观看| 精品国产露脸久久av麻豆| 国产 一区精品| av天堂久久9| 丰满少妇做爰视频| 亚洲精品456在线播放app| 在线观看免费视频网站a站| 亚洲成人av在线免费| 制服诱惑二区| 欧美国产精品一级二级三级| 国产片特级美女逼逼视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲内射少妇av| 精品一区二区三区视频在线| 精品少妇黑人巨大在线播放| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 欧美日韩综合久久久久久| 国产男女内射视频| 内地一区二区视频在线| 久久毛片免费看一区二区三区| 国产男女超爽视频在线观看| 五月玫瑰六月丁香| 久久久久久人人人人人| 亚洲av电影在线进入| 免费大片18禁| 亚洲图色成人| 全区人妻精品视频| 久久久久精品久久久久真实原创| 久久ye,这里只有精品| 曰老女人黄片| 久久精品国产a三级三级三级| 国产毛片在线视频| 国产 一区精品| 有码 亚洲区| 美国免费a级毛片| 亚洲少妇的诱惑av| 九草在线视频观看| 国产麻豆69| 美女福利国产在线| 久热久热在线精品观看| 欧美激情 高清一区二区三区| 午夜福利在线观看免费完整高清在| 高清av免费在线| 99九九在线精品视频| 建设人人有责人人尽责人人享有的| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 欧美老熟妇乱子伦牲交| 久久久久久久久久久久大奶| 亚洲av.av天堂| 毛片一级片免费看久久久久| 亚洲国产欧美日韩在线播放| 尾随美女入室| 精品福利永久在线观看| 日韩中文字幕视频在线看片| 王馨瑶露胸无遮挡在线观看| 妹子高潮喷水视频| 人妻一区二区av| av播播在线观看一区| 久久精品久久精品一区二区三区| 国产精品久久久av美女十八| 观看av在线不卡| 97精品久久久久久久久久精品| 久久鲁丝午夜福利片| 国产一区亚洲一区在线观看| 丝袜在线中文字幕| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 亚洲欧洲精品一区二区精品久久久 | 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站| 人人澡人人妻人| 免费黄网站久久成人精品| 波多野结衣一区麻豆| 一本大道久久a久久精品| 国产毛片在线视频| 亚洲av福利一区| 乱码一卡2卡4卡精品| 91午夜精品亚洲一区二区三区| 国产综合精华液| 免费黄频网站在线观看国产| 国产熟女午夜一区二区三区| 99热这里只有是精品在线观看| 国产成人精品无人区| 亚洲综合精品二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人人妻人人爽人人添夜夜欢视频| kizo精华| 制服丝袜香蕉在线| 高清av免费在线| 下体分泌物呈黄色| 欧美成人午夜免费资源| 最近中文字幕2019免费版| 亚洲国产av新网站| 久久午夜福利片| 欧美成人精品欧美一级黄| 亚洲精品美女久久av网站| 寂寞人妻少妇视频99o| 国产免费一级a男人的天堂| xxx大片免费视频| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| av.在线天堂| 国产精品国产三级国产av玫瑰| 热99国产精品久久久久久7| 亚洲第一av免费看| 肉色欧美久久久久久久蜜桃| 街头女战士在线观看网站| 久久午夜综合久久蜜桃| 国产精品久久久久久精品电影小说| 日日啪夜夜爽| www.av在线官网国产| 欧美bdsm另类| 观看美女的网站| 九九爱精品视频在线观看| 母亲3免费完整高清在线观看 | 国产免费一级a男人的天堂| 99久国产av精品国产电影| 国产探花极品一区二区| 国产精品欧美亚洲77777| 晚上一个人看的免费电影| 欧美人与性动交α欧美精品济南到 | 精品国产一区二区三区久久久樱花| 国产精品女同一区二区软件| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| 久热这里只有精品99| 亚洲精品美女久久久久99蜜臀 | 亚洲婷婷狠狠爱综合网| 久久久久久久久久久免费av| 久久ye,这里只有精品| 精品亚洲成国产av| 欧美bdsm另类| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 国产成人午夜福利电影在线观看| 日韩大片免费观看网站| 国产淫语在线视频| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| 久久鲁丝午夜福利片| 国产成人欧美| 成人国语在线视频| 大香蕉97超碰在线| 久久久a久久爽久久v久久| 亚洲精品视频女| 国产视频首页在线观看| 欧美精品国产亚洲| 久久久久人妻精品一区果冻| 久久久精品区二区三区| 精品少妇黑人巨大在线播放| 亚洲国产精品一区三区| 在线精品无人区一区二区三| 狂野欧美激情性xxxx在线观看| 亚洲精品一二三| 国产高清国产精品国产三级| 国产成人一区二区在线| 青春草亚洲视频在线观看| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 亚洲av在线观看美女高潮| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 国产女主播在线喷水免费视频网站| 国产精品一区www在线观看| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 在线天堂中文资源库| 亚洲内射少妇av| 日韩一区二区三区影片| 午夜福利在线观看免费完整高清在| 国精品久久久久久国模美| 国产成人午夜福利电影在线观看| 亚洲精华国产精华液的使用体验| 亚洲成国产人片在线观看| 亚洲精品国产av蜜桃| 亚洲av电影在线进入| 综合色丁香网| 男女午夜视频在线观看 | 国产免费一区二区三区四区乱码| 欧美日本中文国产一区发布| 黑人高潮一二区| 晚上一个人看的免费电影| 亚洲av国产av综合av卡| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 久久精品aⅴ一区二区三区四区 | 国产精品 国内视频| 精品久久久精品久久久| 人人妻人人爽人人添夜夜欢视频| 日韩中字成人| 午夜福利影视在线免费观看| 成年人免费黄色播放视频| 中文字幕人妻丝袜制服| 人妻 亚洲 视频| 人人妻人人澡人人爽人人夜夜| 欧美精品国产亚洲| 少妇 在线观看| 捣出白浆h1v1| 国产欧美日韩综合在线一区二区| 91精品伊人久久大香线蕉| av在线app专区| 欧美精品人与动牲交sv欧美| 成人漫画全彩无遮挡| 国产爽快片一区二区三区| 国产有黄有色有爽视频| 久久久久久久久久久久大奶| 丝袜美足系列| 岛国毛片在线播放| 亚洲成国产人片在线观看| 三上悠亚av全集在线观看| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| videossex国产| 欧美精品人与动牲交sv欧美| 七月丁香在线播放| 国产片特级美女逼逼视频| 亚洲精品一二三| 成人手机av| 嫩草影院入口| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 国产亚洲最大av| 亚洲国产欧美日韩在线播放| 国产福利在线免费观看视频| 最近中文字幕高清免费大全6| 国产色爽女视频免费观看| 国产极品天堂在线| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 久久久久精品性色| 成人二区视频| 国产白丝娇喘喷水9色精品| 国产精品免费大片| 亚洲精品中文字幕在线视频| 国产av码专区亚洲av| 精品久久国产蜜桃| 国产激情久久老熟女| 国产在视频线精品| 中国美白少妇内射xxxbb| 一本—道久久a久久精品蜜桃钙片| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 国产欧美另类精品又又久久亚洲欧美| 美女国产高潮福利片在线看| 青春草视频在线免费观看| 国产精品.久久久| 亚洲欧美日韩卡通动漫| 久久狼人影院| 久久久亚洲精品成人影院| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 女人久久www免费人成看片| 久久 成人 亚洲| av黄色大香蕉| 亚洲激情五月婷婷啪啪| 国产1区2区3区精品| 国产成人一区二区在线| 免费观看a级毛片全部| 丰满少妇做爰视频| h视频一区二区三区| 日本免费在线观看一区| 成人漫画全彩无遮挡| 如何舔出高潮| 欧美精品人与动牲交sv欧美| av在线播放精品| 欧美日本中文国产一区发布| 99久久中文字幕三级久久日本| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 26uuu在线亚洲综合色| videossex国产| 黄色一级大片看看| 亚洲av男天堂| 一级毛片电影观看| 精品亚洲乱码少妇综合久久| 久久国产精品大桥未久av| 欧美少妇被猛烈插入视频| 国产精品一二三区在线看| 欧美+日韩+精品| 久久久欧美国产精品| 日韩一本色道免费dvd| 大片免费播放器 马上看| 欧美精品高潮呻吟av久久| 日韩人妻精品一区2区三区| 精品国产国语对白av| 最近中文字幕2019免费版| 在线观看国产h片| 国产又色又爽无遮挡免| 一级,二级,三级黄色视频| 成人影院久久| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 免费av中文字幕在线| 国产深夜福利视频在线观看| 99视频精品全部免费 在线| av免费观看日本| 99热网站在线观看| 亚洲伊人色综图| 日本-黄色视频高清免费观看| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| 国产精品人妻久久久影院| av线在线观看网站| 男的添女的下面高潮视频| 美女国产高潮福利片在线看| 午夜福利网站1000一区二区三区| www日本在线高清视频| 亚洲av欧美aⅴ国产| 校园人妻丝袜中文字幕| 久久久久国产网址| 成人国语在线视频| 99久久精品国产国产毛片| 久久国产精品大桥未久av| 欧美精品国产亚洲| 亚洲精品日本国产第一区| 插逼视频在线观看| 精品第一国产精品| 国产精品久久久av美女十八| 国产黄色免费在线视频| 亚洲国产精品一区三区| 老女人水多毛片| 成人黄色视频免费在线看| 国产精品熟女久久久久浪| 97超碰精品成人国产| 久久午夜综合久久蜜桃| av在线老鸭窝| 成人国产麻豆网| 少妇熟女欧美另类| 亚洲一区二区三区欧美精品| 午夜91福利影院| 亚洲精品一二三| 精品久久蜜臀av无| 国产精品久久久久久精品古装| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 国产成人一区二区在线| 成人国产麻豆网| 51国产日韩欧美| 色网站视频免费| 国产成人av激情在线播放| 亚洲人成网站在线观看播放| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 日韩成人伦理影院| 一边亲一边摸免费视频| 91成人精品电影| 久久这里只有精品19| 国产乱来视频区| 男人操女人黄网站| 国产精品国产三级国产专区5o| 亚洲一码二码三码区别大吗| 狂野欧美激情性xxxx在线观看| 伦精品一区二区三区| √禁漫天堂资源中文www| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 人妻少妇偷人精品九色| 九九在线视频观看精品| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| 人人澡人人妻人| 日韩欧美一区视频在线观看|