• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice(Oryza sativa L.)

    2013-03-13 05:51:44LiangGuoKaiWangJunyuChenDerunHuangYeyangFanJieyunZhuang
    The Crop Journal 2013年1期

    Liang Guo,Kai Wang,Junyu Chen,Derun Huang,Yeyang Fan,Jieyun Zhuang*

    State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement,China National Rice Research Institute,Hangzhou,Zhejiang 310006,China

    1.Introduction

    In the past two decades,mapping and cloning of quantitative trait loci (QTL) for complex traits in rice have attracted much attention with considerable progress achieved [1].Generally,QTL detected in different studies are considered preferential targets for fine-mapping and cloning [2–4] and primary QTL mapping is biased towards the detection of QTL conferring large effects[5,6].Thus most of the QTL that have been cloned are those having very large phenotypic effects [7].On the other hand,the annual increase in grain yield due to variety improvement is only 1%–2%or even lower for some ecological types [8,9],indicating that ideal allelic compositions of major QTL for yield traits have already been established in modern rice varieties.Identification of minor QTL will provide practical assistance for rice breeding.

    Pleiotropism is a critical factor in the utilization of QTL in rice breeding.Pleiotropic effects of a QTL on heading date and yield traits have been commonly observed [4,6,10–13].An association of grain yield with prolonged heading could significantly influence the regional and seasonal adaption of a rice variety [10,14].Genetic manipulation is required to take an advantage of enhanced yield without delaying heading[10].In this regard,identification of yield-enhancing QTL that do not have significantly adverse effects on heading date would be preferable.

    Grain yield per plant in rice is determined by three components,panicles per plant,number of grains per panicle,and grain weight.It has been shown that increased grain weight has played a major role in enhancement of yield potential in modern Chinese rice varieties [15,16].Therefore,identification of minor QTL for grain weight,especially those showing no significant adverse effects on heading date,would facilitate the development of high-yielding rice varieties.

    In a previous study using recombinant inbred lines (RILs)derived from an indica rice cross between maintainer line Zhenshan 97 (ZS97) and restorer line Milyang 46 (MY46) of Shanyou 10,a popular three-line rice hybrid,multiple QTL for grain weight on the long arm of chromosome 1 showed significant QTL × QTL effects,but no significant main effect[17].In addition,this chromosome region had no significant effect on heading date in the same population [18].Using populations segregating in an isogenetic background,the objectives of the present study were (i) to separate different QTL for grain weight in the interval RM11448–RM11974 on the long arm of chromosome 1 and(ii) to test the effects of these QTL on heading date and other yield traits.

    2.Materials and methods

    2.1.Plant materials

    Rice populations having sequential segregating regions between RM11448 and RM11974 on the long arm of chromosome 1 were established in the generations BC2F5,BC2F6and BC2F7.They were derived from the indica rice cross ZS97/MY46 as described below and illustrated in Fig.1.

    An F9plant of ZS97/MY46 was selected and backcrossed to ZS97 for two generations.One BC2F2carrying a heterozygous segment extending from RM11448 to RM11974 was identified.In the resultant BC2F3population,three plants were selected,which carried heterozygous segments covering the intervals RM11448–RM11615,RM11448–RM11787 and RM11615–RM11974,respectively.Three BC2F4populations were produced,from which populations having the same sequential segregating regions (Fig.2) were advanced for three generations.

    Firstly,non-recombinant homozygotes were identified from each of the three BC2F4populations and selfed to produce homozygous lines.Three sets of near isogenic lines(NILs)were established and named B2F5-I,B2F5-II and B2F5-III,respectively(Table 1).

    Meanwhile,one heterozygote was selected from a segregating line in each of the three BC2F4populations,in which the entire segregating region in the given population identified was heterozygous.From the selfed seeds three populations segregating in an F2pattern were produced and named B2F6-I,B2F6-II and B2F6-III,respectively (Table 1).Then,non-recombinant homozygotes were identified from each of the three BC2F6populations and selfed to produce homozygous lines.Three sets of NILs were developed and named B2F7-I,B2F7-II and B2F7-III,respectively(Table 1).

    2.2.Field experiments

    The rice populations were tested at experiment stations of the China National Rice Research Institute located either in Hangzhou,Zhejiang,or Lingshui,Hainan (Table 1).In all the trials,the planting density was 16.7 cm between plants and 26.7 cm between rows.

    For the F2-type populations in BC2F6,heading date(HD)and 1000-grain weight (TGW) were scored on a single-plant basis.For the NILs in either BC2F5or BC2F7,a randomized complete block design with two replications was used.Each line was grown in a single row of 12 plants.HD was scored for each plant and averaged for each replication.At maturity,the middle five plants in each row were bulk-harvested and measured for grain yield per plant (GY),number of panicles per plant(NP),number of grains per panicle(NGP)and TGW.

    2.3.DNA marker analysis

    Total DNA was extracted following the method of Zheng et al.[19].PCR amplification was performed according to Chen et al.[20] except that the products were visualized on 6% nondenaturing polyacrylamide gels using silver staining.Polymorphic markers located in the target region included 17 SSR markers(Fig.2),all of which were selected from the Gramene database(http://www.gramene.org/).

    2.4.Data analysis and QTL mapping

    For the F2-type populations in BC2F6,linkage maps were constructed with MAPMAKER/EXP 3.0 [21],and genetic distances in centiMorgans (cM) were derived using the Kosambi function.QTL analysis was performed with composite interval mapping implemented in Windows QTL Cartographer 2.5[22].Using 1000 permutation test,the critical LOD values at P = 0.05 were determined,ranging from 1.75 to 2.03.Putative QTL were claimed at a LOD threshold of 2.1.

    For the NIL populations in BC2F5and BC2F7,two-way analyses of variance (ANOVA) were performed to test phenotypic differences between the two homozygous genotypic groups in each NIL set,with a mixed model using SAS procedure GLM [23] as previously described [24].When significant differences(P <0.05)were detected,the same model was applied to estimate the genetic effects of the QTL,including additive effect and the proportions of phenotypic variance explained.

    Fig.1-Procedure for developing of near isogenic rice lines.

    3.Results

    3.1.Effects detected in the three NIL sets at BC2F5 grown in two locations

    Since QTL for TGW on the long arm of chromosome 1 showed significant QTL × QTL interaction but no significant main effect in the ZS97/MY46 RIL population [17],it remained unknown whether the QTL effect could be detected in the genetic background of ZS97.To avoid the risk of wasted effort in population development,marker analysis and field trials,it was necessary to test the effect using NILs at an early generation stage.Therefore,when NILs with sequential segregating regions in the target region became available in BC2F5,they were grown at two locations for primary validation of the QTL effect.

    Two-way ANOVA for testing phenotypic differences between two homozygous genotypic groups in each of the three NIL sets are shown in Table 2.In populations I and II,no significant effect was detected for any traits.In population III,highly significant effects (P <0.01) were detected for TGW at both locations and for GY in Hangzhou,whereas a marginal effect (P = 0.0622) was observed for GY in Lingshui.The directions of allelic effect were consistent across the two locations,with alleles from MY46 increasing TGW and enhancing GY.In the same population,no significant effect was detected for HD or NP,but significant effects (P <0.05)were detected for NGP in Lingshui.These results indicated that QTL for grain weight and yield were located in the target interval and the allelic difference between ZS97 and MY46 was detected in the background of ZS97.In addition,the QTL had little effect on HD.

    Fig.2-Sequential segregating regions through BC2F4 to BC2F7 and dissection of two QTL for TGW in rice.

    3.2.Effects detected in the three BC2F6 populations grown in Lingshui

    Linkage maps covering the three segregating regions were constructed,spanning 25.0,49.4 and 43.7 cM in populations I,II and III,respectively.QTL for TGW and HD were determined with Windows QTL Cartographer 2.5.None of the regions showed significant effects on HD,but QTL were detected for TGW in all the three populations(Table 3).

    In population III,the MY46 allele increased TGW by 0.62 g,explaining 39.1%of the phenotypic variance.These effects were consistent with estimates in the previous generation,verifying the segregation of a QTL for TGW in this population.In populations I and II,the MY46 alleles decreased and increased TGW by 0.26 g and 0.27 g,explaining 9.2% and 9.8% of the phenotypic variance,respectively.These effects were much lower than those detected in population III.Together with the small sample size in BC2F5,it is not surprising that the effects in populations I and II were not detected in the previous experiment.

    Comparison among the allelic effects and their directions detected in the three populations,two QTL for TGW could be resolved (Fig.2).While qTGW1.1 was located in the interval RM11437–RM11615 and had a smaller effect with the enhancing allele from ZS97,qTGW1.2 was located in RM11615–RM11800 and had a larger effect with the enhancing allele from MY46.Population I segregated for qTGW1.1 only,with a smaller effect and the enhancing allele coming from ZS97.Population III segregated for qTGW1.2 only,with a larger effect and the enhancing allele coming from MY46.Populations II segregated for both qTGW1.1 and qTGW1.2,thus a residual effect with the enhancing allele from MY46 was detected.The detection of over-dominance in population II and partial dominance in the two other populations(Table 3)provided evidence for segregation of two QTL in population II.

    Table 1-Rice populations and field experiments.

    3.3.Effects detected in the three NIL sets in BC2F7 grown in Hangzhou

    The NIL sets in BC2F7were identical to those in BC2F5in the segregating regions,but they included more lines with a more homogenous background.

    Two-way ANOVA for phenotypic difference between two homozygous genotypic groups in each of the three NIL sets are shown in Table 4.As expected,major effects were detected for TGW in all the three populations,with the largest effect observed in population III and the enhancing alleles from ZS97 in population I but from MY46 in the two other populations.Thus the dissection of qTGW1.1 and qTGW1.2 was verified.

    Major effects were also detected for GY and NGP in population III,with the enhancing alleles from MY46.This is not unexpected since the same direction of allelic effects had been found in the BC2F5population.Moreover,no significant effects were detected for HD and NP,in accordance with the previous results.It was concluded that qTGW1.2 had multiple effects on NGP,TGW and GY,but little effect on NP and HD.

    In addition,a significant effect was detected for NGP in population I,with the enhancing allele from ZS97.This suggests that qTGW1.1 also influences other yield traits.

    Table 2-QTL analysis for heading date and yield traits in three BC2F5 populations.

    Table 3-QTL for TGW detected in three BC2F6 populations.

    Table 4-QTL analysis for heading date and yield traits in three BC2F7 populations.

    4.Discussion

    Genetic dissection of QTL regions into different QTL has been frequently reported [3,25–28].In most of the studies,the QTL was chosen for fine-mapping because the original QTL effect estimated from primary mapping populations was considerably large.In validation studies using populations segregating for the target region in an isogenic background,the QTL regions contained two or more QTL linked in coupling [3,25,26].In rare circumstances,phenotypic effects were tested without previous QTL information when NILs with mapped recombination breakpoints became available,resulting in the dissection of different QTL linked in repulsion phase in a random genomic region [27].The present study provides a new example of QTL dissection;a QTL that showed no significant main effect,but a significant epistatic effect in a primary mapping population,was targeted and tested using a series of populations with sequential segregating regions.By this means,two rice QTL for grain weight were separated.They were linked in repulsion on the long arm of chromosome 1,where qTGW1.1 was located between RM11437 and RM11615 with the ZS97 allele increasing grain weight,and qTGW1.2 was located between RM11615 and RM11800 with the ZS97 allele decreasing grain weight.

    The importance of epistasis for the genetic control of yield traits in rice has long been recognized [6,29].However,the individual epistatic loci which showed no significant main effect remain to be tested.For these loci,genetic effects at one locus may differ in magnitude and change in direction depending on the genotype at other loci.Thus validation of the QTL may be jeopardized because the effects may be undetected in a new genetic background.In the present study,a small number of NILs were examined at an early generation stage and verified in samples of larger size in higher generations.This approach could be considered practical for the validation of individual epistatic loci and QTL showing marginal main effects for complex traits in primary mapping populations.

    QTL analysis has been extensively conducted to investigate the genetic basis of heterosis in rice and maize,with considerable attention paid to the role of dominance and overdominance[28–32].Using populations derived from a cross between two elite inbreds of maize,Stuber et al.[30]found that a major QTL for yield and yield-related traits located on chromosome 5 had the gene action of over-dominance.Fine-mapping of this QTL indicated that it consisted of two dominant loci linked in repulsion[28].A similar pattern of gene action was found in our study.The two QTL for TGW were linked in repulsion on the long arm of rice chromosome 1,of which qTGW1.1 had an additive effect of 0.26 g and a partial dominance effect of 0.16 g,whereas qTGW1.2 had an additive effect of 0.62 g and a partial dominance effect of 0.43 g.When the two QTL were segregating simultaneously in the BC2F6-II population,a residual additive effect of 0.27 g and an over-dominance effect of 0.72 g were detected(Table 3).Since the population used in this study was derived from a cross between the maintainer and restorer lines of a three-line hybrid rice,this result suggests that dominant QTL linked in repulsion might play important roles in the genetic control of heterosis in rice.

    This work was funded in part by the National High-Tech Research and Development Program (2012AA101102),the Chinese Highyielding Transgenic Program (2011ZX08001-004),and the Research Funding of the China National Rice Research Institute(2012RG002-3).

    [1] W.Hao,H.X.Lin,Toward understanding genetic mechanisms of complex traits in rice,J.Genet.Genomics 37(2010)653–666.

    [2] J.Li,M.Thomson,S.R.McCouch,Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3,Genetics 168 (2004) 2187–2195.

    [3] H.Ashikari,H.Sakakibara,S.Lin,T.Yamanoto,T.Takashi,A.Nishimura,E.R.Angeles,Q.Qian,H.Kitano,M.Matsuoka,Cytokinin oxidase regulates rice grain production,Science 309 (2005) 741–749.

    [4] X.Wei,J.Xu,H.Guo,L.Jiang,S.Chen,C.Yu,Z.Zhou,P.Hu,H.Zhai,J.Wan,DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously,Plant Physiol.153 (2010) 1747–1758.

    [5] S.D.Tanksley,Mapping polygenes,Annu.Rev.Genet.27(1993) 205–233.

    [6] Y.Xing,Q.Zhang,Genetic and molecular bases of rice yield,Annu.Rev.Plant Biol.61(2010) 421–442.

    [7] S.K.Jiang,Z.J.Xu,W.F.Chen,Analysis of features of 15 successful positional cloning of QTL in rice,Hereditas(Beijing)20(2008)1121–1126,(in Chinese with English abstract).

    [8] Y.Yu,Y.Huang,W.Zhang,Changes in rice yields in China since 1980 associated with cultivar improvement,climate and crop management,Field Crops Res.136 (2012) 65–75.

    [9] S.H.Yang,Q.Liao,T.C.Gu,X.J.Hu,B.Y.Cheng,Review and analysis on rice cultivars registered in China,Chin.Rice 16(2)(2010) 1–4,(in Chinese).

    [10] X.Xie,F.Jin,M.H.Song,J.P.Suh,H.G.Hwang,Y.G.Kim,S.R.McCouch,S.N.Ahn,Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O.rufipogon cross,Theor.Appl.Genet.116 (2008)613–622.

    [11] Y.Zhang,L.Luo,T.Liu,C.Xu,Y.Xing,Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds,Theor.Appl.Genet.118 (2009) 1035–1044.

    [12] W.H.Yan,P.Wang,H.X.Chen,H.J.Zhou,Q.P.Li,C.R.Wang,Z.H.Ding,Y.S.Zhang,S.B.Yu,Y.Z.Xing,Q.F.Zhang,A major QTL,Ghd8,plays pleiotropic roles in regulating grain productivity,plant height,and heading date in rice,Mol.Plant 4(2011) 319–330.

    [13] Z.H.Zhang,K.Wang,L.Guo,Y.J.Zhu,Y.Y.Fan,S.H.Cheng,J.Y.Zhuang,Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date,plant height and yield traits in rice,PLoS One 7 (12)(2012) e52538.

    [14] X.Wei,L.Liu,J.Xu,L.Jiang,W.Zhang,J.Wang,H.Zhai,J.Wan,Breeding strategies for optimum heading date using genotypic information in rice,Mol.Breed.25(2010) 287–298.

    [15] S.H.Yang,B.Y.Cheng,W.F.Shen,X.Y.Liao,Progress and strategy of the improvement of indica rice varieties in the Yangtze Valley of China,Chin.J.Rice Sci.18(2) (2004) 89–93,(in Chinese with English abstract).

    [16] C.G.Liu,H.Q.Zhou,D.J.Feng,X.Q.Zhou,D.G.Chen,L.J.Li,J.C.Li,G.Q.Zhang,Y.D.Chen,Analysis of main agronomic traits affecting yield level in inbred indica rice cultivars in South China,Chin.J.Rice Sci.26(2012) 182–188,(in Chinese with English abstract).

    [17] J.Y.Zhuang,Y.Y.Fan,Z.M.Rao,J.L.Wu,Y.W.Xia,K.L.Zheng,Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice,Theor.Appl.Genet.105(2002)1137–1145.

    [18] Z.H.Zhang,L.Guo,Y.J.Zhu,Y.Y.Fan,J.Y.Zhuang,Mapping of quantitative trait loci for heading date and plant height in two populations of indica rice,Sci.Agric.Sin.44 (2011)3069–3077,(in Chinese with English abstract).

    [19] K.L.Zheng,N.Huang,J.Bennett,G.S.Khush,PCR-based Marker-assisted Selection in Rice Breeding:IRRI Discussion Paper Series No.12,International Rice Research Institute,Los Ba?os,the Philippines,1995.

    [20] X.Chen,S.Temnykh,Y.Xu,Y.G.Cho,S.R.McCouch,Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.),Theor.Appl.Genet.95(1997) 553–567.

    [21] E.S.Lander,P.Green,J.Abrahamson,A.Barlow,M.J.Daly,S.E.Lincoln,L.Newberg,MAPMAKER: an interactive computer program for constructing primary genetic maps of experimental and natural populations,Genomics 1(1987)174–181.

    [22] S.Wang,C.J.Basten,Z.-B.Zeng,Windows QTL Cartographer 2.5,Department of Statistics,North Carolina State University,Raleigh,NC,2012.

    [23] SAS Institute Inc.,SAS/STAT User's Guide,SAS Institute,Cary,NC,USA,1999.

    [24] W.M.Dai,K.Q.Zhang,J.R.Wu,L.Wang,B.W.Duan,K.L.Zheng,R.Cai,J.Y.Zhuang,Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice,Euphytica 160(2008) 317–324.

    [25] L.Monna,H.X.Lin,S.Kojima,T.Sasaki,M.Yano,Genetic dissection of a genomic region for a quantitative trait locus,Hd3,into two loci,Hd3a and Hd3b,controlling heading date in rice,Theor.Appl.Genet.104 (2002) 772–778.

    [26] M.J.Thomson,J.D.Edwards,E.M.Septiningsih,S.E.Harrington,S.R.McCouch,Substitution mapping of dth1.1,a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice,reveals multiple sub-QTL,Genetics 172 (2006) 2501–2514.

    [27] J.Kroymann,T.Mitchell-Olds,Epistasis and balanced polymorphism influencing complex trait variation,Nature 435 (2005) 95–98.

    [28] G.I.Graham,D.W.Wolff,C.W.Stuber,Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping,Crop.Sci.37(1997) 1601–1610.

    [29] J.Hua,Y.Xing,W.Wu,C.Xu,X.Sun,S.Yu,Q.Zhang,Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid,Proc.Natl.Acad.Sci.U.S.A.100 (2003) 2574–2579.

    [30] C.W.Stuber,S.E.Lincoln,D.W.Wolff,T.Helentjaris,E.S.Lander,Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers,Genetics 132 (1992) 823–839.

    [31] J.Xiao,J.Li,L.Yuan,S.D.Tanksley,Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers,Genetics 140 (1995) 745–754.

    [32] J.P.Hua,Y.Z.Xing,C.G.Xu,X.L.Sun,S.B.Yu,Q.Zhang,Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance,Genetics 162 (2002) 1885–1895.

    成人毛片a级毛片在线播放| 观看美女的网站| 俺也久久电影网| 男人狂女人下面高潮的视频| 欧美人与善性xxx| 成人毛片a级毛片在线播放| 日本 av在线| 亚洲av一区综合| 熟女人妻精品中文字幕| 美女被艹到高潮喷水动态| 成人特级黄色片久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 秋霞在线观看毛片| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 亚洲一级一片aⅴ在线观看| 99国产精品一区二区蜜桃av| 又爽又黄无遮挡网站| 午夜日韩欧美国产| 国产精品福利在线免费观看| 激情 狠狠 欧美| 乱系列少妇在线播放| 成人美女网站在线观看视频| 日本黄大片高清| 久久中文看片网| 久久午夜福利片| 99热这里只有精品一区| av天堂中文字幕网| 在线免费观看的www视频| 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 日韩亚洲欧美综合| a级一级毛片免费在线观看| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 性插视频无遮挡在线免费观看| 欧美另类亚洲清纯唯美| 插逼视频在线观看| 日本精品一区二区三区蜜桃| 国产片特级美女逼逼视频| 国产乱人偷精品视频| 天美传媒精品一区二区| 国产美女午夜福利| av专区在线播放| 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女| 又爽又黄无遮挡网站| 久久久久久久久久成人| 国产高清激情床上av| 在线观看美女被高潮喷水网站| 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 日本五十路高清| 噜噜噜噜噜久久久久久91| 中文字幕精品亚洲无线码一区| 成人精品一区二区免费| 欧美日韩在线观看h| 俄罗斯特黄特色一大片| 如何舔出高潮| 久久久久国产精品人妻aⅴ院| 亚洲真实伦在线观看| 欧美性猛交黑人性爽| 国产黄色视频一区二区在线观看 | 内地一区二区视频在线| 亚洲中文字幕日韩| 国产精品三级大全| 啦啦啦啦在线视频资源| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品中国| 日韩欧美精品免费久久| 精品一区二区三区av网在线观看| 亚洲精品亚洲一区二区| 狠狠狠狠99中文字幕| 老司机午夜福利在线观看视频| 久久精品国产亚洲av涩爱 | 欧美zozozo另类| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 五月玫瑰六月丁香| 在现免费观看毛片| 久久久久免费精品人妻一区二区| 日本色播在线视频| 国模一区二区三区四区视频| 中文字幕久久专区| 国产三级在线视频| 少妇猛男粗大的猛烈进出视频 | av.在线天堂| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 亚洲人成网站高清观看| 在线观看av片永久免费下载| 午夜亚洲福利在线播放| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 天堂动漫精品| 夜夜夜夜夜久久久久| 国产免费男女视频| 日韩制服骚丝袜av| 亚洲精品国产av成人精品 | 我要搜黄色片| 欧美另类亚洲清纯唯美| 国产老妇女一区| 国产精品免费一区二区三区在线| 国产成人aa在线观看| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 热99在线观看视频| 成人av在线播放网站| 真人做人爱边吃奶动态| 美女大奶头视频| 亚洲国产精品成人综合色| av黄色大香蕉| 又粗又爽又猛毛片免费看| 国产精品精品国产色婷婷| 成人二区视频| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 99在线视频只有这里精品首页| 免费一级毛片在线播放高清视频| 18禁黄网站禁片免费观看直播| 亚洲av熟女| 国内久久婷婷六月综合欲色啪| 在线a可以看的网站| 国产精品一区二区三区四区久久| 三级毛片av免费| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 午夜精品在线福利| 成人永久免费在线观看视频| 亚洲欧美成人综合另类久久久 | 夜夜爽天天搞| 国产精品电影一区二区三区| 2021天堂中文幕一二区在线观| 日日干狠狠操夜夜爽| 欧洲精品卡2卡3卡4卡5卡区| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 一本精品99久久精品77| 亚洲精品在线观看二区| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩高清在线视频| 国产精品无大码| 欧美成人a在线观看| 久久久久久久亚洲中文字幕| 久久欧美精品欧美久久欧美| 久久午夜福利片| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 国产精华一区二区三区| 国产伦在线观看视频一区| 色噜噜av男人的天堂激情| 99久久精品国产国产毛片| 麻豆一二三区av精品| 国产一区二区三区av在线 | 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 免费搜索国产男女视频| 真人做人爱边吃奶动态| 免费av毛片视频| 国产真实乱freesex| 91狼人影院| 日韩中字成人| 久99久视频精品免费| 欧美人与善性xxx| 国产私拍福利视频在线观看| 麻豆乱淫一区二区| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区三区| 极品教师在线视频| 一进一出抽搐gif免费好疼| 免费观看人在逋| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 人人妻人人看人人澡| 国产不卡一卡二| 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区 | 99久久久亚洲精品蜜臀av| 欧美性感艳星| 99热这里只有是精品50| www日本黄色视频网| 毛片女人毛片| 欧美+日韩+精品| 日韩精品有码人妻一区| 麻豆国产av国片精品| 99久久精品一区二区三区| 九九在线视频观看精品| 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产| 国产综合懂色| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| 深爱激情五月婷婷| 色播亚洲综合网| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 亚洲av五月六月丁香网| 悠悠久久av| 亚洲一级一片aⅴ在线观看| 欧美成人a在线观看| 又爽又黄无遮挡网站| 在线国产一区二区在线| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| 久久久久久大精品| 久久国内精品自在自线图片| 久久草成人影院| 亚洲精华国产精华液的使用体验 | 久久久久久久亚洲中文字幕| h日本视频在线播放| 国产男靠女视频免费网站| 亚洲综合色惰| 亚洲精品国产成人久久av| 久久久色成人| 中文在线观看免费www的网站| 久久久久久久久中文| av在线蜜桃| 99热网站在线观看| 欧美激情在线99| 人妻少妇偷人精品九色| 日本三级黄在线观看| 91狼人影院| 国产一级毛片七仙女欲春2| 神马国产精品三级电影在线观看| 国产精品一及| 听说在线观看完整版免费高清| 美女内射精品一级片tv| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 久久久久国产精品人妻aⅴ院| av中文乱码字幕在线| 成人特级av手机在线观看| 亚洲精品国产av成人精品 | 久久久午夜欧美精品| 我的女老师完整版在线观看| 一夜夜www| 国产成人aa在线观看| 99热精品在线国产| 一级黄色大片毛片| 精品久久久久久久久亚洲| 日韩强制内射视频| 亚洲四区av| 国产aⅴ精品一区二区三区波| 亚洲av二区三区四区| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频| 亚洲在线自拍视频| 日本黄大片高清| 九色成人免费人妻av| 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 国产精品美女特级片免费视频播放器| 99久久精品一区二区三区| 97碰自拍视频| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 欧美日本视频| 国产真实伦视频高清在线观看| 日本免费a在线| 成人二区视频| h日本视频在线播放| 一进一出好大好爽视频| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 精品不卡国产一区二区三区| 国产精品av视频在线免费观看| 搡老妇女老女人老熟妇| 99久国产av精品| 精品福利观看| 国产成人91sexporn| videossex国产| 久久久精品大字幕| 91久久精品电影网| 日韩欧美免费精品| 久久久久性生活片| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产乱子免费精品| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 白带黄色成豆腐渣| 日本 av在线| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 大型黄色视频在线免费观看| 精品久久久久久久久av| 最近2019中文字幕mv第一页| 日韩欧美在线乱码| 日韩欧美精品v在线| 性插视频无遮挡在线免费观看| 久久久a久久爽久久v久久| 亚洲一区二区三区色噜噜| 久久久精品欧美日韩精品| 老司机午夜福利在线观看视频| 国语自产精品视频在线第100页| 在线免费观看的www视频| 热99re8久久精品国产| 国产伦在线观看视频一区| 色哟哟哟哟哟哟| 人人妻,人人澡人人爽秒播| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| av视频在线观看入口| 午夜精品国产一区二区电影 | 搞女人的毛片| 少妇高潮的动态图| 国产男靠女视频免费网站| 九色成人免费人妻av| 亚洲av免费高清在线观看| 尾随美女入室| 久久国产乱子免费精品| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 麻豆久久精品国产亚洲av| 观看美女的网站| 天堂网av新在线| 国产精品无大码| 国产成人影院久久av| 国产亚洲精品综合一区在线观看| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| 亚洲精华国产精华液的使用体验 | 国产伦精品一区二区三区视频9| 国产片特级美女逼逼视频| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 日韩国内少妇激情av| 日韩三级伦理在线观看| 免费在线观看成人毛片| av福利片在线观看| 国产精品三级大全| 欧美高清性xxxxhd video| 国产精品综合久久久久久久免费| 99九九线精品视频在线观看视频| 一级毛片久久久久久久久女| 欧美高清性xxxxhd video| 欧美一区二区精品小视频在线| 午夜视频国产福利| 两个人的视频大全免费| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 色哟哟哟哟哟哟| 人妻制服诱惑在线中文字幕| 人人妻人人澡欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 久久久久久伊人网av| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 免费搜索国产男女视频| 噜噜噜噜噜久久久久久91| 亚洲高清免费不卡视频| 我的女老师完整版在线观看| 午夜激情欧美在线| 欧美激情国产日韩精品一区| 色吧在线观看| 成年女人毛片免费观看观看9| 最近2019中文字幕mv第一页| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 亚洲av美国av| 又爽又黄无遮挡网站| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 看片在线看免费视频| 久久久成人免费电影| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 成人午夜高清在线视频| 啦啦啦韩国在线观看视频| 男女下面进入的视频免费午夜| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 一夜夜www| 亚洲中文日韩欧美视频| 国产精品免费一区二区三区在线| 成年女人毛片免费观看观看9| 久久热精品热| 男插女下体视频免费在线播放| 国内精品一区二区在线观看| 色哟哟·www| 国产综合懂色| 美女大奶头视频| 热99re8久久精品国产| 亚洲国产高清在线一区二区三| av视频在线观看入口| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 校园春色视频在线观看| 国产av在哪里看| 性色avwww在线观看| 人妻制服诱惑在线中文字幕| 九九热线精品视视频播放| av在线老鸭窝| 久久精品久久久久久噜噜老黄 | 人人妻人人澡欧美一区二区| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 日日干狠狠操夜夜爽| 日日摸夜夜添夜夜添av毛片| 国产精品,欧美在线| 国产精品永久免费网站| 国产 一区精品| 国产精品久久久久久av不卡| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩| 在线观看午夜福利视频| 成人精品一区二区免费| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 美女免费视频网站| 色视频www国产| 久久精品人妻少妇| 日本欧美国产在线视频| 国产毛片a区久久久久| 激情 狠狠 欧美| 成人欧美大片| 黑人高潮一二区| 久久久久久久久久久丰满| 欧美又色又爽又黄视频| 亚洲av免费高清在线观看| 变态另类成人亚洲欧美熟女| 两个人视频免费观看高清| 尾随美女入室| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 欧美一区二区精品小视频在线| 俺也久久电影网| h日本视频在线播放| 日本a在线网址| 久久久欧美国产精品| 亚洲精品国产av成人精品 | 露出奶头的视频| 大又大粗又爽又黄少妇毛片口| 国内揄拍国产精品人妻在线| 欧美3d第一页| 欧美+亚洲+日韩+国产| 99久久精品国产国产毛片| 国产黄片美女视频| 一个人免费在线观看电影| 精品久久久久久久人妻蜜臀av| 亚州av有码| 色尼玛亚洲综合影院| 国产不卡一卡二| 晚上一个人看的免费电影| av中文乱码字幕在线| 成人性生交大片免费视频hd| 99视频精品全部免费 在线| 国产精品99久久久久久久久| 国产av在哪里看| 熟女人妻精品中文字幕| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 日韩精品中文字幕看吧| 欧美日韩乱码在线| 中国美白少妇内射xxxbb| 亚洲无线在线观看| 国产探花在线观看一区二区| 99久久中文字幕三级久久日本| 蜜桃亚洲精品一区二区三区| 亚洲成人久久性| 一本一本综合久久| 女同久久另类99精品国产91| 亚洲欧美日韩卡通动漫| 91狼人影院| 偷拍熟女少妇极品色| 欧美高清成人免费视频www| 色哟哟·www| 成人一区二区视频在线观看| 日韩三级伦理在线观看| av在线老鸭窝| 丰满的人妻完整版| 欧美另类亚洲清纯唯美| 深夜a级毛片| 成人鲁丝片一二三区免费| 免费看a级黄色片| 国产精品一二三区在线看| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 国产爱豆传媒在线观看| 精品一区二区三区视频在线| 国产午夜福利久久久久久| 在现免费观看毛片| 精品一区二区三区视频在线观看免费| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 成人永久免费在线观看视频| 欧美性猛交╳xxx乱大交人| 久久久久久久久中文| 亚洲最大成人av| 大又大粗又爽又黄少妇毛片口| 免费高清视频大片| 黄色欧美视频在线观看| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 天堂动漫精品| 可以在线观看毛片的网站| 国产成人福利小说| 99精品在免费线老司机午夜| 五月玫瑰六月丁香| 啦啦啦观看免费观看视频高清| 天堂动漫精品| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 精品国内亚洲2022精品成人| 十八禁网站免费在线| 国内精品久久久久精免费| 国产精品人妻久久久影院| 天堂网av新在线| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 长腿黑丝高跟| 国产探花在线观看一区二区| 国产国拍精品亚洲av在线观看| av专区在线播放| 久久久久久国产a免费观看| a级一级毛片免费在线观看| 亚洲熟妇中文字幕五十中出| 老女人水多毛片| 亚洲av成人av| 美女被艹到高潮喷水动态| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 亚洲无线在线观看| 欧美高清成人免费视频www| 中文字幕熟女人妻在线| 欧美+日韩+精品| av在线播放精品| 亚洲av二区三区四区| 亚洲精品久久国产高清桃花| 一级黄色大片毛片| 亚洲精品国产av成人精品 | 乱人视频在线观看| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频 | 色av中文字幕| 亚洲美女视频黄频| 日本在线视频免费播放| 菩萨蛮人人尽说江南好唐韦庄 | 免费在线观看影片大全网站| 国产黄色视频一区二区在线观看 | 中文字幕人妻熟人妻熟丝袜美| 在线免费观看的www视频| 国产探花在线观看一区二区| 欧美性猛交黑人性爽| 欧美日韩国产亚洲二区| 女人十人毛片免费观看3o分钟| 国产白丝娇喘喷水9色精品| 国产成人影院久久av| av.在线天堂| 成人性生交大片免费视频hd| 久久久午夜欧美精品| 亚洲精品456在线播放app| 久久精品国产自在天天线| 午夜久久久久精精品| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 成人特级av手机在线观看| 国产精品人妻久久久久久| 日韩成人av中文字幕在线观看 | 最近视频中文字幕2019在线8| 熟妇人妻久久中文字幕3abv| av在线播放精品| 国语自产精品视频在线第100页| 最近手机中文字幕大全| 1000部很黄的大片| 少妇熟女欧美另类| 中文字幕av成人在线电影| a级毛色黄片| 久久精品国产自在天天线| 天堂影院成人在线观看| 国产高清视频在线观看网站| 赤兔流量卡办理| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 久久6这里有精品| 国产精品亚洲一级av第二区| 亚洲国产精品成人久久小说 | 国产真实伦视频高清在线观看| 精品久久久久久成人av| www.色视频.com| 精品国内亚洲2022精品成人| 成人漫画全彩无遮挡| 亚洲色图av天堂| 毛片女人毛片| 久久久久久九九精品二区国产| 欧美丝袜亚洲另类| 亚洲精品成人久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产精品人妻久久久影院| 免费一级毛片在线播放高清视频| 欧美性感艳星| 不卡视频在线观看欧美| 99久久无色码亚洲精品果冻|