• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    簡諧勢阱中含時散射調(diào)制造成有(無)阻尼玻色愛因斯坦凝聚體的共振現(xiàn)象

    2013-02-25 06:21:53劉超飛萬文娟張贛源
    江西理工大學(xué)學(xué)報 2013年3期
    關(guān)鍵詞:玻色勢阱理工大學(xué)

    劉超飛,萬文娟,張贛源

    (江西理工大學(xué),a.理學(xué)院;b.應(yīng)用科學(xué)學(xué)院,江西贛州341000)

    簡諧勢阱中含時散射調(diào)制造成有(無)阻尼玻色愛因斯坦凝聚體的共振現(xiàn)象

    劉超飛a,萬文娟b,張贛源b

    (江西理工大學(xué),a.理學(xué)院;b.應(yīng)用科學(xué)學(xué)院,江西贛州341000)

    通過周期性調(diào)節(jié)原子間的散射長度,數(shù)值模擬了有阻尼與無阻尼兩種情況下玻色愛因斯坦凝聚體中的共振效應(yīng).研究發(fā)現(xiàn)阻尼效應(yīng)導(dǎo)致共振驅(qū)動頻率下降和共振區(qū)間變窄.能量的相互轉(zhuǎn)化在數(shù)值上形成的交差現(xiàn)象可以顯示凝聚體是否處于共振狀態(tài),以及阻尼效應(yīng)帶來的區(qū)別.阻尼效應(yīng)致使凝聚體出現(xiàn)共振時的動能受到抑制,從而導(dǎo)致兩種情況下共振現(xiàn)象的差異.

    玻色愛因斯坦凝聚;共振;阻尼

    1 Introduction

    The experimental observation of dilute atomic Bose-Einstein condensate(BEC)has stimulated extensive studies of the nonlinear matter waves.One of the great interests is how the interatomic interaction affects the properties of BECs.It is well known that the interatomic interactions can be changed by modulating the s-wave scattering length using the Feshbach resonance[1-8].This offers a good opportunity for manipulation of atomic matter waves and nonlinear excitationsinBECs.Especiallyforaperiodic modulation,it has been applied to control the soliton interaction in BECs[9],the collapse[10]and stabilization[11]of the solitons.Furthermore,the periodic modulationwould induce the resonance of the condensate itself[12-15].

    Resonance is an interesting feature of any oscillation under the action of an external periodic field.In physics,resonance is the tendency of a system to oscillate at larger amplitude at some frequencies than at others.When damping is very small,the resonant frequency is approximately equal to the natural frequency of the system,which is the frequency of free vibrations.Recently,the generation of resonances via a periodic variation of the atomic scattering length has been demonstrated in some investigations about BEC[12-15].Scientist often considers the nonlinear problems without damping,starting from the pure Gross-Pitaevskii(GP)equation,and examines the BEC width[12-15]to illustrate the properties of resonance phenomenon.The growth of the BEC width under resonance has been indicated.However, in the realistic system,the BEC is prone to damping due to a small thermal cloud[16-22].This would disturb the resonance.Until now,few investigations have aimed at the resonance of BEC under damping.

    In this study,a systematical comparison of the resonance of BEC without damping and that with dampingrevealstheirproperties.Following customary manipulation,we induce the resonance by varying the scattering length periodically.Our results show that the damping mechanism can cause a remarkable change in the resonance.The following is the main difference between the undamped resonant BEC and the damped one:①the damping leads to the narrowing of resonance and the decreasing of the driving frequency,②the BEC width does not increase dramatically under damping when resonance arises,③when the modulation frequency is not far off the most important resonance frequency,the BEC withoutdampingcanabsorbandemitenergy repeatedly,whiletheBECunderdampingis dynamically equilibrated at a lower energy state,④the most remarkable difference comes from the interconversion of energy.In the absence of damping, the energy interconversion under resonance mainly contains the contribution of kinetic energy and potential energy.While in the presence of damping, the resonance arises with the energy interconversion mainly between potential energy and interaction energy.

    2 Model and equations

    At zero temperature,the dynamics of the BECs is governed by the GP equation:

    ψ(x,t)denotes the macroscopic order parameter of the system,VExt(x)the confining potential,m the atomic mass,and g(t)=4πh2a(t)/m the scattering amplitude,where a(t)is the s-wave scattering length. Here,we consider the BEC in a harmonic potential VExt(x)=mω2x2/2,where ω is the frequency of the trap.

    As indicated above,we assume the scattering lengthtobetemporallymodulatedsothatthe nonlinear coefficient takes the form:

    where h is the amplitude of ac parts,and Ω(Ω=cω)is the ac-modulation frequency.The modulation can be obtained by temporally varying magnetic field near the Feshbach resonance[9-11,23,24].So the atomic scattering length can be expressed as:

    where a∞is the far-off-resonant scattering length,t is the time,B0and Δ are the resonance positionandwidth,respectively.Regarding experimental values of the parameters B0and Δ, Feshbach resonances have been observed in23Na at 853 G and 907 G[4],in7Li at 725 G[25]and in85Rb at 164 G with Δ=11 G[26].

    The aim of this study is to demonstrate the influence of damping in BEC when the dynamical resonance arises by varying the scattering length periodically.Generally speaking,the GP model relies on the mean-field description of a boson gas at extremely low temperatures and becomes exact at T= 0.When the temperature is finite,but still much below the critical temperature Tcfor BEC formation, there exists a fraction of atoms that is not condensed, the so-called thermal cloud.This thermal cloud is in fact coupled to the condensed gas and its presence produces effects that are not accounted for by the GPequation.Phenomenologically,oneofthemost noticeableeffectsofthepresenceofasizable thermal cloud is the introduction of damping to the condensed gas.

    Theapproachofaddingphenomenological damping to emulate thermal effects was originally proposed by Pitaevskii.Following the custom,we add a damping term h γ ψ/t to the left-hand side of equation(1)[16-22].Then,we get:

    Undoubtedly,thedampingwillcausea dissipation of energy from the system.But,the periodical modulation of the scattering length will induce excitations.So,the two mechanisms will compete with each other until a new equilibrium state formed.

    3 Initial conditions for the model

    In numerical simulation,we take the density profile approximated by the Thomas-Fermi(TF) solution as initial condition, μ is the chemical potential of the atom.For the sake of simplicity,we set h =1,the chemical potential μ=1, the atomic mass m=1,and the scattering amplitude g0=1.Thus the spatial extent of the system is characterized by the healing lengthand the time unit is ξ/c.Meanwhile,we havec/ξ for the external potential.The ac-modulation amplitude h is 0.1g0.

    We now estimate the parameters for a realistic experiment.For a23Na condensate with m=38.18× 10-27kg and a∞=2.8 nm[27],we assume the tight transverse confining frequency ω┴=500×2π Hz and the onedimensional peak condensate density n1D=5×107m-1. Thus the longitudinal confining frequency is 66.2× 2π Hz.Our space and time units correspond to 0.56 μm 1.1×10-4s and respectively.The system has the number of atoms N0≈11000.

    4 Results

    Usually,even small periodic driving forces can produce large amplitude vibrations at the resonant frequencies,because the system stores vibrational energy.Hence,thetemporalmodulationofthe scatteringlengthcanbeviewedasadriving manipulation,which leads to the energy transfer into BEC.The initial condition of the system uses the TF solution which approaches the ground state,so our experiments start from a low energy condensate. Here,the initial energy of the BEC is 24.12μ.The energy of the system is calculated by the function,

    Fig.1 The maximum energy of condensate versus the coefficient c.Note the drive frequency Ω=cω.(a)γ=0(squares);(b)γ=0(circles)and γ=0(squares).The amplitude of the driving is h=0.1g0.The energy is in units of μ,and the corresponding unit in the following pictures are the same as in this picture.

    We firstly test various drive frequencies to find themostimportantresonancefrequencies.Our investigation is based on the numerical simulation. Fig.1 plots the values of the maximum energy obtained by the periodical modulation.Without damping,we find the maximum energy of the BEC reaches the peak value when the frequency approaches 1.83 ω [see Fig.1(a)].In Ref.[15],Abdullaev and Garnierhaveexploredthefrequencybymeasuringthe oscillation amplitude of the BEC.In Fig.1(b),we obtain the greatest value at the frequency of 1.75ω when the damping rate is 0.01.Note the damping rate in real system is related to some factors such as the temperature.In lots of investigations,this rate ranges from 0 to 0.03.Here,we choose the value γ=0.01. Comparing the two cases,the damping leads to a narrowing and a decreasing shift of the resonance in the drive frequency.

    What does the damping affect the resonance?In above,we have only shown the change of the drive frequency and the maximum energy.It seems to be a quantitativedifferencebetweenthetwocases. Furthermore,we find the most important resonance frequencies:1.75ω and 1.83ω corresponding to the two cases respectively.In the following,we will mainly take the two frequencies to explore the properties of resonance.

    In order to further study the resonance of BEC, we calculate the root mean square distance,=which is defined as:

    Fig.2 plots the BEC width obtained from the root mean square distance as a function of time. Without damping,Fig.2(a)shows the BEC width is prone to steadily increase at the most resonant response.When the drive frequency is 1.75ω,the oscillation amplitude of the BEC width periodically increases to a maximum and then decay to the original value[see Fig.2(c)].Such a growth and decay cycle of the amplitude keeps on repeating.In the presence of damping,the oscillation amplitude of the BEC width completely degenerates.In Figs.2(b)and 2(d),the BEC width eventually evolves to a periodic cycle,which differs from that in Figs.2(a)and 2(b).In fact,the evolution of the BEC width follows the modulation of the scattering length. Furthermore,in Figs.2(b)and 2(d),we can not determine whether the resonance takes place due to the unremarkable BEC width.This is why we do not specially stress the BEC width in this paper.In the next text,we will essentially confirm that the four instances are in resonance.

    Fig.2BECwidthversustimeforthenonlinear management.(a)Ω=1.83ω,γ=0;(b)Ω=1.83ω,γ=0.01;(c)Ω= 1.75ω,γ=0;(d)Ω=1.75ω,γ=0.01;The length unit is ξ=h/,and the time unit is ξ/c.The corresponding units in the following pictures are the same as in this picture.

    Fig.3 detailedly show the energy evolution.At themostimportantresonancefrequencywithout damping,energy can be steadily pumped into BEC until the system is equilibrated by the external potential[see Fig.3(a)].In Fig.3(c),the energy evolution is also periodic,and it just likes the evolution of the oscillation amplitude in Fig.2(c). Theenergypumpsinandoutofthesystem. Consequently,the resonance of the system has a peculiar nature:the oscillation amplitude gradually passes through pronounced maxima and minima[seeFig.2(c)].In Ref.[14],Adhikari shows a possible explanation.After the amplitude attains a certain value,the external force and the oscillation become out of phase,and the system loses energy in each cycle.Thus,the amplitude of oscillation passes through a maximum and minimum.And the growth and decay cycle of the amplitude keeps on repeating. With damping rate r=0.01,energy evolves fast to a periodic modulation and does not change as that in Fig.3(c).This indicates the system evolves into a dynamic equilibrium state,which results from the damping and the ac driving and oscillates as the modulation of the scattering length.

    Fig.3 Energy evolution of condensate under the nonlinear management.(a)Ω=1.83ω,γ=0;(b)Ω=1.83ω,γ= 0.01;(c)Ω=1.75ω,γ=0;(d)Ω=1.75ω,γ=0.01.

    For the usual resonance,such as an oscillator, when it is at maximum displacement,its potential energy is at a maximum as well.From there,it beginsmovingtowardthepositionofstable equilibrium,and as it does so,it loses potential energy and gains kinetic energy.Once it reaches the stable equilibrium position,kinetic energy is at a maximumandpotentialenergyataminimum. WhetherdoesthenonlinearresonanceofBEC display this feature?In above text,even we can obtain some evidence of resonance according to the BEC width and the maximum energy,it is not easy to obtain this feature because the BEC does not behave like the oscillator.

    Fig.4(color online)The temporal evolution of kinetic energy(black line),potential energy(red line)and interaction energy(green line).(a)Ω=1.83ω,γ=0;(b)Ω= 1.83ω,γ=0.01;(c)Ω=1.75ω,γ=0;(d)Ω=1.75ω,γ=0.01.

    Now we aim at the energy interconversion of the resonant BEC.In Fig.4(a),we can see the oscillation amplitude of kinetic energy and potentialenergyisapproximatelyequal.Meanwhile,the oscillation frequency of kinetic energy and potential energy is almost equal.Consequently,kinetic energy and potential energy convert each other in the resonance process.On value,they form crossovers. Fig.4(c)shows a coupling among kinetic,potential andinteractionenergy.Thisinterconversion corresponds to the energy evolution in Fig.3(c).In Fig.4(b)and 4(d),we can see the interconversion mainlyconcentratesonpotentialenergyand interaction energy.On value,they cross each other obviously.In a word,the energy interconversion of BEC in nonlinear resonance is different from that of the oscillator.But the essential interconversion of energy to construct resonance is similar.It is easy to understandthesephenomena.TheBECisa nonlinear system,and its energy comes from not only kineticenergyandpotentialenergy,butalso interaction energy.Hence,energy interconversion in nonlinear resonance of BEC displays various modes.

    We now compare Fig.4(a)with(b)and Fig. 4(c)with 4(d).Although the modulation frequency is the same,the damping compels the interconversion to focus on interaction energy and potential energy. Under damping,the oscillation amplitude of kinetic energy is much smaller than that of potential energy(interaction energy).And the oscillation frequency of kinetic energy mismatches with that of potential energ(interaction energy)too.Specially,interaction energy and potential energy can form the crossover on value in Fig.4(b)and 4(d).This indicates that the damping weakens the excitation of kinetic energy in resonance.It has the resonance with different energy interconversion degenerate to a fixed mode.

    Finally,wementionthefar-off-resonant frequencies.Fig.1 has shown that these frequencies donotinduceahigh-energycondensate. Importantly,the value of potential energy,kinetic energyandinteractionenergydoesnotform crossovers at all when the driving frequencies are far from the most important frequencies(see Fig.5). Furthermore,the oscillation frequencies of potential energy,kinetic energy and interaction energy tend to be disordered.These properties indicate that the BEC indeed does not undergo resonance.In reverse, Fig.4 completely indicates that the BEC is in resonance.

    Fig.5(color online)The temporal evolution of kinetic energy(black line),potential energy(red line)and interaction energy(green line)as the drive frequency is faroff-resonant frequency.(a)Ω=1.2ω,γ=0;(b)Ω=1.2ω,γ=0.01.

    The resonance of BEC under damping is firstly considered.Due to the interatomic interaction,the resonance of BEC can arise with various modes of the energy interconversion.Our investigation mainly showsthedifferencebetweenresonancewithout damping and that with damping.In fact,resonance is also dependent on other factors such as the trapping potential,thestrengthofinteractionandthe amplitudeoftheacmodulation.Differingfrom previous works[12-15],we concentrate on the energy of thesystem.Althoughthisworkpreliminarily illustrates the formation of the resonance of BEC,it has clearly demonstrated the properties.Furthermore, the damping rate can also control resonance.If the damp rate is very small(approaches zero),resonance with damping will act as that without damping. Certainly,if the damping rate is very big,the BEC would not form resonance at all.

    5Conclusion

    By numerically solving the corresponding GP equation,wehavesystematicallystudiedtheresonance of BEC both with and without damping. Our results have shown some difference between the twocases,includingthemostimportantdrive frequencies,the BEC width,the transfer of energy and the energy interconversion.The crossover of kinetic energy,potential energy or interaction energy on value can indicate the BEC is in resonance.In the absence of damping,kinetic energy can be intensively excited as resonance occurs,whereas in the present of damping,a driven system with lower energy state appears,and the energy interconversion mainly focuses on potential energy and interaction energy.Therefore,dampingnotonlycausesa quantitative difference in the resonant frequency and amplitude,but also completely changes the energy interconversion in resonance.

    [1]Moerdijk A J,Verhaar B J,Axelsson A.Resonances in ultracold collisions of6Li,7Li,and23Na[J].Phys.Rev.A,1995,51(6):4852-4861.

    [2]Roberts J L,Claussen N R,James P Burke,et al.Resonant magnetic field control of elastic scattering in cold85Rb[J].Phys.Rev. Lett.,1998,81(23):5109-5112.

    [3]Stenger J,Inouye S,Andrews M R,et al.Strongly enhanced inelastic collisions in a Bose-Einstein condensate near feshbach resonances[J].Phys.Rev.Lett.,1999,82(12):2422-2425.

    [4]Inouye S,Andrews M R,Stenger J,et al.Observation of Feshbach resonances in a Bose–Einstein condensate[J].Nature,1998,392 (6672):151-154.

    [5]Cornish S L,Claussen N R,Roberts J L,et al.Stable85Rb Bose-Einstein condensates with widely tunable interactions[J].Phys.Rev. Lett.,2000,85(9):1795-1798.

    [6]Donley E A,Claussen N R,Cornish S L,et al.Dynamics of collapsing and exploding Bose-Einstein condensates[J].Nature,2001, 412(6844):295-299.

    [7]Regal C A,Jin D S.Measurement of positive and negative scattering lengths in a Fermi gas of atoms[J].Phys.Rev.Lett., 2003,90(23):230404.

    [8]Volz T,Dürr S,Ernst S,et al.Characterization of elastic scattering near a Feshbach resonance in87Rb[J].Phys.Rev.A,2003,68(1): 010702.

    [9]Zhang X F,Yang Q,Zhang J F,et al.Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap[J].Phys.Rev.A,2008,77 (2):023613.

    [10]Abdullaev F K,Caputo J G,Kraenkel R A,et al.Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length[J].Phys.Rev.A,2003,67(1):013605.

    [11]Adhikari S K.Stabilization of bright solitons and vortex solitons in a trapless t hree-dimensional Bose-Einstein condensate by temporal modulation of the scattering length[J].Phys.Rev.A,2004, 69(6):063613.

    [12]Rajendran S,Muruganandam P,Lakshmanan M.Nonstationary excitations in Bose–Einstein condensates under the action of periodicallyvaryingscatteringlengthwithtimedependent frequencies[J].Physica D,2007,227(1):1-7.

    [13]Abdullaev F Kh,Galimzyanov R M,Brtka M,et al.Resonances in a trapped 3D Bose–Einstein condensate under periodically varying atomic scattering length[J].J.Phys.B:At.Mol.Opt. Phys.,2004,37(17):3535-3350.

    [14]Adhikari S K.Resonance in Bose–Einstein condensate oscillation from a periodic variation in scattering length[J].J. Phys.B:At.Mol.Opt.Phys.2003,36(6):1109-1120.

    [15]Abdullaev F K,Garnier J.Collective oscillations of onedimensional Bose-Einstein gas in a time-varying trap potential and atomic scattering length[J].Phys.Rev.A,2004,70(5):053604.

    [16]Choi S,Morgan S A,Burnett K.Phenomenological damping in trapped atomic Bose-Einstein condensates[J].Phys.Rev.A, 1998,57(5):4057-4060.

    [17]Jin D S,Matthews M R,Ensher J R,et al.Temperaturedependent damping and frequency shifts in collective excitations of a dilute Bose-Einstein condensate[J].Phys.Rev.Lett.,1997, 78(5):764-767.

    [18]MertesKM,MerrillJW,Carretero-GonzálezR,etal.Nonequilibrium dynamics and superfluid ring excitations in binary Bose-Einstein condensates[J].Phys.Rev.Lett.,2007,99(19):190402.

    [19]Liu C F,Tang Y.Metastable state and macroscopic quantum tunneling of binary mixtures[J].Eur.Phys.J.B,2009,70(2):193-199.

    [20]Liu C F,Fan H,Zhang Y C,et al.Circular-hyperbolic skyrmion in rotating pseudo-spin-1/2 Bose-Einstein condensates with spin-orbit coupling[J].Phys.Rev.A,2012,86(5):053616.

    [21]Liu C F,Liu W M.Spin-orbit-coupling-induced half-Skyrmion excitations in rotating and rapidly quenched spin-1 Bose-Einstein condensates[J].Phys.Rev.A,2012,86(3):033602.

    [22]Liu C F,Hu K,Hu T,et al.Tunneling of a Bose-Einstein condensate under damping[J].Journal of Low Temperature Physics, 2010,160(1-2):32-40.

    [23]Staliunas K,Longhi S,Valcácel G J de.Faraday patterns in Bose-Einstein condensates[J].Phys.Rev.Lett.,2002,89(21):210406.

    [24]Saito H,Ueda M.Dynamically stabilized bright solitons in a twodimensional Bose-Einstein condensate[J].Phys.Rev.Lett.,2003, 90(4):040403.

    [25]Strecker K E,Partridge G B,Truscott A G,et al.Formation and propagation of matter-wave soliton trains[J].Nature,2002,417 (6885):150-153.

    [26]Courteille P,Freeland R S,Heinzen D J,et al.Observation of a Feshbach Resonance in cold atom scattering[J].Phys.Rev.Lett., 1998,81(1):69-72.

    [27]Samuelis C,Tiesinga E,Laue T,et al.Cold atomic collisions studied by molecular spectroscopy[J].Phys.Rev.A,2000,63(1): 012710.

    2012-12-17

    國家自然科學(xué)基金項目(11247206);江西省教育廳基金項目(GJJ13382)

    劉超飛(1981-),男,博士,講師,主要從事玻色愛因斯坦凝聚等方面的研究,E-mail:liuchaofei0809@163.com.

    猜你喜歡
    玻色勢阱理工大學(xué)
    含有陡峭勢阱和凹凸非線性項的Kirchhoff型問題的多重正解
    昆明理工大學(xué)
    分數(shù)階量子力學(xué)下的二維無限深方勢阱
    時空分數(shù)階量子力學(xué)下的δ勢阱
    對稱三勢阱玻色—愛因斯坦凝聚體的非線性效應(yīng)
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    玻色-愛因斯坦凝聚的研究
    科技視界(2015年13期)2015-08-15 00:54:11
    諧振子勢阱囚禁玻色氣體的玻色-愛因斯坦凝聚
    午夜免费观看性视频| 成年人免费黄色播放视频| 寂寞人妻少妇视频99o| 日韩精品有码人妻一区| 黄色毛片三级朝国网站| 一级毛片我不卡| 最近最新中文字幕免费大全7| 伦理电影大哥的女人| 伦理电影大哥的女人| 在线天堂最新版资源| 中文字幕人妻丝袜制服| 五月开心婷婷网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产男女超爽视频在线观看| 国产熟女欧美一区二区| 熟女电影av网| 国产免费一级a男人的天堂| 免费人妻精品一区二区三区视频| 国产 一区精品| 久久99蜜桃精品久久| 免费播放大片免费观看视频在线观看| 最黄视频免费看| 亚洲欧洲国产日韩| 人妻夜夜爽99麻豆av| 国产有黄有色有爽视频| 制服丝袜香蕉在线| 永久免费av网站大全| 亚洲天堂av无毛| 99九九线精品视频在线观看视频| 插阴视频在线观看视频| av女优亚洲男人天堂| 少妇被粗大的猛进出69影院 | 日日啪夜夜爽| .国产精品久久| 免费播放大片免费观看视频在线观看| 男女国产视频网站| 天堂俺去俺来也www色官网| 成人午夜精彩视频在线观看| 美女大奶头黄色视频| 亚洲av福利一区| videossex国产| 国产成人aa在线观看| 啦啦啦啦在线视频资源| 亚洲不卡免费看| 男女无遮挡免费网站观看| 久热这里只有精品99| 大话2 男鬼变身卡| 久久久久人妻精品一区果冻| 美女视频免费永久观看网站| 成年人免费黄色播放视频| 日本午夜av视频| 天堂8中文在线网| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 永久免费av网站大全| 欧美精品国产亚洲| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 国产精品无大码| 丰满迷人的少妇在线观看| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 久久97久久精品| 999精品在线视频| 午夜福利,免费看| 亚洲精品乱码久久久久久按摩| 亚洲综合色网址| 亚洲四区av| 国产成人精品一,二区| 免费高清在线观看日韩| 久久热精品热| 亚洲怡红院男人天堂| 一本色道久久久久久精品综合| 男女高潮啪啪啪动态图| 日本av手机在线免费观看| 插阴视频在线观看视频| 一级黄片播放器| 考比视频在线观看| 日本av免费视频播放| 午夜免费鲁丝| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 亚洲av成人精品一二三区| 午夜91福利影院| 在线观看人妻少妇| 久久免费观看电影| 午夜免费鲁丝| 久久久国产欧美日韩av| a级毛片在线看网站| 多毛熟女@视频| 久久人人爽人人片av| 麻豆成人av视频| 国产熟女午夜一区二区三区 | 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 国模一区二区三区四区视频| h视频一区二区三区| 久久久亚洲精品成人影院| 国产片内射在线| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| a 毛片基地| 考比视频在线观看| 日韩中字成人| 日韩欧美精品免费久久| 国产av一区二区精品久久| 最新的欧美精品一区二区| 黑人欧美特级aaaaaa片| 亚洲精品乱码久久久v下载方式| 精品酒店卫生间| 久久99精品国语久久久| 女人精品久久久久毛片| 日韩成人av中文字幕在线观看| 老司机影院成人| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 永久网站在线| 交换朋友夫妻互换小说| 九九爱精品视频在线观看| 亚洲人成网站在线播| 亚洲丝袜综合中文字幕| 夫妻性生交免费视频一级片| 美女大奶头黄色视频| 99热网站在线观看| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 久久狼人影院| 欧美丝袜亚洲另类| 国产亚洲av片在线观看秒播厂| 亚洲人成网站在线观看播放| 99精国产麻豆久久婷婷| 久久热精品热| 日韩伦理黄色片| 久久久久视频综合| 啦啦啦中文免费视频观看日本| 秋霞在线观看毛片| 青春草视频在线免费观看| 美女大奶头黄色视频| 天堂8中文在线网| 99久久人妻综合| 午夜福利在线观看免费完整高清在| 国产男女内射视频| 国产一级毛片在线| 国产免费一级a男人的天堂| av天堂久久9| 国产爽快片一区二区三区| 久久人妻熟女aⅴ| 丰满乱子伦码专区| 乱人伦中国视频| 寂寞人妻少妇视频99o| 91久久精品国产一区二区三区| 超碰97精品在线观看| 久久精品人人爽人人爽视色| 精品久久蜜臀av无| 国产精品蜜桃在线观看| 国产av码专区亚洲av| 2018国产大陆天天弄谢| 久久久久久久大尺度免费视频| 久久久久久久久久人人人人人人| 一级片'在线观看视频| 人妻系列 视频| videosex国产| 久久影院123| 亚洲av在线观看美女高潮| 高清黄色对白视频在线免费看| 一级二级三级毛片免费看| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 一个人免费看片子| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 不卡视频在线观看欧美| 97在线视频观看| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡 | 看十八女毛片水多多多| 国产精品免费大片| 性色av一级| 尾随美女入室| 亚洲一区二区三区欧美精品| av又黄又爽大尺度在线免费看| 综合色丁香网| 99热6这里只有精品| 男人添女人高潮全过程视频| 黑丝袜美女国产一区| 国产黄频视频在线观看| 久久午夜综合久久蜜桃| 一级黄片播放器| 色94色欧美一区二区| 一边亲一边摸免费视频| 久久久久久久久久久丰满| 男女啪啪激烈高潮av片| 丝袜美足系列| 伦精品一区二区三区| 日韩大片免费观看网站| 飞空精品影院首页| 久久99一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 国产av一区二区精品久久| 91久久精品电影网| 五月玫瑰六月丁香| 插阴视频在线观看视频| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 五月伊人婷婷丁香| 在线观看美女被高潮喷水网站| 人妻系列 视频| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 成人二区视频| 18+在线观看网站| 永久免费av网站大全| 大码成人一级视频| 夜夜骑夜夜射夜夜干| av黄色大香蕉| av.在线天堂| av免费在线看不卡| 婷婷色综合www| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看| 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 热re99久久精品国产66热6| 亚洲精品一二三| 天天躁夜夜躁狠狠久久av| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 一级毛片aaaaaa免费看小| 午夜福利在线观看免费完整高清在| 国产一区亚洲一区在线观看| 日韩亚洲欧美综合| 国产淫语在线视频| 人成视频在线观看免费观看| 99热网站在线观看| 亚洲综合精品二区| 免费黄网站久久成人精品| 伊人久久精品亚洲午夜| 日本wwww免费看| 一级毛片我不卡| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 少妇丰满av| 卡戴珊不雅视频在线播放| 蜜桃久久精品国产亚洲av| 女人久久www免费人成看片| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 国产色婷婷99| 这个男人来自地球电影免费观看 | 天堂8中文在线网| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 三级国产精品欧美在线观看| 日韩大片免费观看网站| 夜夜骑夜夜射夜夜干| 国产色婷婷99| 十分钟在线观看高清视频www| 免费看av在线观看网站| 国产极品天堂在线| 51国产日韩欧美| 日本免费在线观看一区| 亚洲成人手机| 欧美激情 高清一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| a级毛片在线看网站| 日韩免费高清中文字幕av| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 老女人水多毛片| 26uuu在线亚洲综合色| 麻豆精品久久久久久蜜桃| 亚洲第一区二区三区不卡| 国产成人免费无遮挡视频| 中国美白少妇内射xxxbb| 亚洲内射少妇av| videos熟女内射| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| 69精品国产乱码久久久| 天天操日日干夜夜撸| 一级毛片 在线播放| 免费观看的影片在线观看| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 色哟哟·www| 欧美日韩av久久| 久久这里有精品视频免费| 亚洲精品,欧美精品| 视频中文字幕在线观看| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 一级片'在线观看视频| 国产视频内射| 欧美精品一区二区大全| 最后的刺客免费高清国语| 热99久久久久精品小说推荐| 婷婷成人精品国产| 另类亚洲欧美激情| 日韩不卡一区二区三区视频在线| 亚洲精品国产av成人精品| 久久毛片免费看一区二区三区| 五月伊人婷婷丁香| 高清欧美精品videossex| 久久久欧美国产精品| 精品国产乱码久久久久久小说| 在现免费观看毛片| 国产一区有黄有色的免费视频| 高清在线视频一区二区三区| 天天操日日干夜夜撸| 色哟哟·www| 中文字幕亚洲精品专区| 亚洲av二区三区四区| 黑人高潮一二区| 亚洲精品成人av观看孕妇| 国产在线免费精品| 成人国语在线视频| 欧美精品亚洲一区二区| 国产在线免费精品| 久久久久精品久久久久真实原创| 久久99精品国语久久久| 18禁在线播放成人免费| 自线自在国产av| 边亲边吃奶的免费视频| 91久久精品国产一区二区三区| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 少妇丰满av| 特大巨黑吊av在线直播| 国产欧美日韩综合在线一区二区| 亚洲美女搞黄在线观看| 成人国产麻豆网| 18禁观看日本| 如日韩欧美国产精品一区二区三区 | 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站| 亚洲精品国产色婷婷电影| 亚洲美女搞黄在线观看| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 高清在线视频一区二区三区| 成人国语在线视频| 黄色欧美视频在线观看| 日韩av免费高清视频| 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品高潮呻吟av久久| 97超视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 国产欧美另类精品又又久久亚洲欧美| 青春草视频在线免费观看| xxx大片免费视频| 国产成人精品一,二区| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 午夜久久久在线观看| av专区在线播放| 夫妻午夜视频| 午夜免费观看性视频| 国产精品欧美亚洲77777| 亚洲精品久久成人aⅴ小说 | 在线观看人妻少妇| 自拍欧美九色日韩亚洲蝌蚪91| 夜夜爽夜夜爽视频| 国产亚洲午夜精品一区二区久久| 日韩在线高清观看一区二区三区| 视频中文字幕在线观看| 女性生殖器流出的白浆| 好男人视频免费观看在线| 亚洲成色77777| 嫩草影院入口| 免费观看在线日韩| 亚洲欧美中文字幕日韩二区| 国产极品天堂在线| 久热久热在线精品观看| 日韩制服骚丝袜av| 午夜影院在线不卡| 男女高潮啪啪啪动态图| 高清视频免费观看一区二区| 久久 成人 亚洲| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频 | 一边亲一边摸免费视频| 国产成人午夜福利电影在线观看| 人人妻人人添人人爽欧美一区卜| 看十八女毛片水多多多| 亚洲欧美清纯卡通| 中文天堂在线官网| 天堂俺去俺来也www色官网| 欧美日韩在线观看h| 美女视频免费永久观看网站| 国产精品秋霞免费鲁丝片| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 日本欧美视频一区| 免费av中文字幕在线| 亚洲人成网站在线观看播放| 观看美女的网站| 大香蕉久久网| 午夜老司机福利剧场| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 国产黄频视频在线观看| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 精品一区二区三卡| 亚洲av电影在线观看一区二区三区| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 黄色配什么色好看| av电影中文网址| 满18在线观看网站| 日韩一区二区三区影片| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 精品久久蜜臀av无| kizo精华| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 美女国产高潮福利片在线看| 久久99蜜桃精品久久| 纯流量卡能插随身wifi吗| 一区二区av电影网| 亚洲人成网站在线播| 国产一区二区三区av在线| 曰老女人黄片| 色94色欧美一区二区| 精品一区在线观看国产| 少妇精品久久久久久久| 日韩中字成人| 秋霞在线观看毛片| 两个人的视频大全免费| 欧美日韩国产mv在线观看视频| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 久久国产精品男人的天堂亚洲 | 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 女性被躁到高潮视频| 91午夜精品亚洲一区二区三区| a级毛色黄片| 亚洲精品自拍成人| 久久久久精品性色| 国产精品.久久久| 在线观看国产h片| av在线老鸭窝| 亚洲国产av影院在线观看| 亚洲国产欧美日韩在线播放| 99视频精品全部免费 在线| 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区 | 天堂中文最新版在线下载| 国产免费一区二区三区四区乱码| 国产探花极品一区二区| 成人影院久久| 99久久精品一区二区三区| 国产成人精品婷婷| 午夜影院在线不卡| 国产伦精品一区二区三区视频9| 亚洲国产欧美日韩在线播放| 99热网站在线观看| 少妇的逼水好多| 国精品久久久久久国模美| 国产熟女欧美一区二区| 国产熟女午夜一区二区三区 | 亚洲无线观看免费| 久久久久人妻精品一区果冻| 国产av一区二区精品久久| 精品午夜福利在线看| 国产免费又黄又爽又色| 我的女老师完整版在线观看| 亚洲人成网站在线播| 街头女战士在线观看网站| 亚洲五月色婷婷综合| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 大话2 男鬼变身卡| 亚洲四区av| 日本-黄色视频高清免费观看| 国产免费一区二区三区四区乱码| 成人免费观看视频高清| 在现免费观看毛片| 制服诱惑二区| 久久久国产欧美日韩av| 国产日韩一区二区三区精品不卡 | 免费大片18禁| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区国产| 日韩精品有码人妻一区| 日韩一区二区视频免费看| 国产高清有码在线观看视频| 在线看a的网站| 超碰97精品在线观看| 成人国产av品久久久| 男女国产视频网站| 人人妻人人澡人人爽人人夜夜| 曰老女人黄片| 少妇丰满av| 免费人成在线观看视频色| 久久精品久久精品一区二区三区| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 成人国产av品久久久| 黄色怎么调成土黄色| 精品国产露脸久久av麻豆| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 日韩欧美一区视频在线观看| 国精品久久久久久国模美| 人妻夜夜爽99麻豆av| 美女视频免费永久观看网站| 在线观看三级黄色| 国产成人freesex在线| 亚洲av免费高清在线观看| 大香蕉久久成人网| 久久久a久久爽久久v久久| 久久ye,这里只有精品| 亚洲成色77777| 亚洲人与动物交配视频| 精品久久久久久电影网| 18+在线观看网站| 午夜91福利影院| 2022亚洲国产成人精品| 日本91视频免费播放| 黑人欧美特级aaaaaa片| 午夜福利在线观看免费完整高清在| 热re99久久精品国产66热6| 亚州av有码| 精品人妻熟女毛片av久久网站| 老司机亚洲免费影院| 欧美人与性动交α欧美精品济南到 | 激情五月婷婷亚洲| 国产白丝娇喘喷水9色精品| 狂野欧美激情性bbbbbb| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 一区二区三区精品91| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 人妻夜夜爽99麻豆av| 三上悠亚av全集在线观看| 国产精品欧美亚洲77777| .国产精品久久| 国产乱来视频区| 亚洲精品乱久久久久久| 国产在线视频一区二区| a 毛片基地| 日韩精品有码人妻一区| 热99久久久久精品小说推荐| 午夜福利影视在线免费观看| 亚洲色图 男人天堂 中文字幕 | 免费看光身美女| 国产精品嫩草影院av在线观看| 男人操女人黄网站| 久久国产精品男人的天堂亚洲 | 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 免费观看av网站的网址| 久久久久久久大尺度免费视频| 精品久久国产蜜桃| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 美女国产视频在线观看| 欧美+日韩+精品| 国产老妇伦熟女老妇高清| 少妇人妻 视频| 97超碰精品成人国产| 亚洲综合精品二区| 国产熟女午夜一区二区三区 | 久久 成人 亚洲| 亚洲av国产av综合av卡| 欧美精品高潮呻吟av久久| 亚洲精品av麻豆狂野| 亚洲精品自拍成人| 亚洲国产毛片av蜜桃av| 日日摸夜夜添夜夜爱| freevideosex欧美| 天天影视国产精品| 中文字幕av电影在线播放| 亚洲一区二区三区欧美精品| 又黄又爽又刺激的免费视频.| 国精品久久久久久国模美| 亚洲av中文av极速乱| tube8黄色片| 一二三四中文在线观看免费高清| 最新的欧美精品一区二区| 国产日韩欧美在线精品| 男男h啪啪无遮挡| 久久99蜜桃精品久久| 亚洲丝袜综合中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产熟女午夜一区二区三区 | av卡一久久| 免费高清在线观看视频在线观看| 国产色婷婷99| 久久午夜福利片| 成人手机av| 精品视频人人做人人爽| videossex国产| 观看av在线不卡| 18+在线观看网站| 亚洲精品日本国产第一区|