• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerodynamics of flexible wing in bees’ hovering flight

    2013-02-18 19:35:15YinDongfuZhangZhisheng

    Yin Dongfu Zhang Zhisheng

    (School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Humans have long been fascinated with flight through the air, and observations of nature fliers’ effortless defiance of gravity first inspired our dreams of taking to the air. Nonetheless, the early attempts to use flapping wings for propulsion failed; consequently, researchers paid more attention to fixed and rotary wings study and achieved great success in the past 100 years. However, traditional fixed-wing and rotary-wing flight began to fail as the flow dynamics entered a regime of insect-sized flights. The small scale air vehicles require different design ideas compared with the conventional ones. Then researchers turned to micro air vehicle(MAV)design by imitating insect flight,and looked forward to producing the micro flapping vehicle. But we have less-detailed understanding of flight mechanics so far. Previous studies show that the steady-state mechanism is inadequate to predict the aerodynamic lift and power requirements of small insects[1]. Some new techniques, such as the computational fluid dynamics (CFD) method and the unsteady theory, are required to reveal the mechanism of insect flight.

    Previous studies on flapping flight have been undertaken from analytical, experimental and computational aspects. Sun et al.[2]investigated lift and power requirements for hovering flight in Drosophila virilis using the computational fluid dynamics method. Wang et al.[3]compared computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane. Liu[4]addressed an integrated and rigorous model for the simulation of insect flapping flight. However, the above models are based on idealized rigid wings and they do not consider the effect of the wings’ flexion during insect hovering flight. Insects use flapping wings to generate forces to balance their weight for hovering. Although insect wings are small and only account for 0.4% to 6.0% of body mass, they provide enough force for insect flight[5]. For the lift coefficient, the moderate wing flexibility leads to a 15% to 30% increase compared with the rigid wing[6]. To understand the mechanism of insect flight, Tanaka et al.[5,7]investigated wing flexibility on lift generation in hoverfly flight,and they pointed out that the flexible deformation should not be ignored.

    In order to hovering, the flapping wings need to generate enough lift to support body weight in the vertical direction while maintaining a balance of aerodynamic forces and moments to stabilize the body, and need to consume more power compared with forward flight[8]. To provide a detailed view of the aerodynamics, control and energetics of the flexible wing in insect normal hovering flight, the aerodynamics of 2-dimensional flexible wing in bees’ hovering flight is studied. Understanding the mechanism of insect flight will help us to design micro-flapping flight aircraft.

    1 Insect Flapping Flight Coordinate Systems

    1.1 Four coordinate systems of flapping flight

    To study the movement and deformation of the insect wings, four coordinate systems are defined as follows[4]:

    1) A global system (o0x0y0z0) It is equivalent to an inertial system.

    2) A body-fixed system (o1x1y1z1) Its origin is in the centroid of an insect, positivex1oriented the insect head, positivez1oriented the wing tip, positivey1oriented vertically upward. Fig.1(a) shows the angles of pitchθ, rollφ, and yawψwith respect to the body-fixed system.

    4) A flexible wing-fixed system (o3x3y3z3) Its origin is at the centroid of the insect wings, positivex3oriented the leading edge, positivez3oriented the wing tip, positivey3oriented vertically upward.

    The deformation of the insect wings generally includes chordwise and spanwise deflections[6], so the chordwise bending angleδand the spanwise bending angleγare defined. The wing near root and leading edge is simplified as rigid and the other part is flexible. Fig.1(c) shows the chordwise bending angleδand the spanwise bending angleγwith respect to the flexible body-fixed system.

    Fig.1 Definition of insect flapping angles. (a) Body-fixed coordinate System; (b) Rigid wing-fixed coordinate system; (c) Flexible wing-fixed coordinate system

    1.2 Transformation among four coordinate systems

    The global system, the body-fixed system, the rigid wing-fixed system and the flexible wing-fixed system are used to reveal the insects’ position, gesture, the wings movement, and the wings deformation, respectively. To solve the general problem of insect flight, the coordinate system transformation is investigated. As shown in Fig.2(a), the transformation between the global system and the body-fixed system can be written as

    (1)

    Fig.2 Transformation among four coordinate systems. (a) Transformation between global system and body-fixed system; (b) Transformation between body-fixed system and rigid wing-fixed system; (c) Transformation between rigid wing-fixed system and flexible wing-fixed system

    As shown in Fig.2(b), the transformation between the body-fixed system and the rigid wing-fixed system can be written as

    (2)

    As shown in Fig.2(c), the transformation between the rigid wing-fixed system and the flexible wing-fixed system can be written as

    (3)

    whereK=(-xt,-yt,-zt), andKis a vector pointing fromo2too3.

    1.3 Elliptic coordinate system

    Although the above coordinate systems have the versatility, the elliptic coordinate system may be more helpful in 2-dimensional wing research. The computation of 2-dimensional insect hovering showed that a hovering motion can generate enough lift to support a typical insect weight[9]. As the cross-section of 2-dimensional wings is similar to an ellipse, wing chord can be simplified as an ellipse to facilitate the theoretical analysis and computation. The movement of the ellipse can be expressed in the elliptical coordinate. Fig.3 shows the established elliptic coordinate system.

    Fig.3 Established elliptic coordinate system

    The conversion between the elliptic coordinate system and the Cartesian coordinate system is

    x=acoshmcosn,y=asinhmsinn

    (4)

    where (-a, 0) and (a, 0) are two focuses of the ellipse; curves of constantmform ellipses, and curves of constantnform hyperbolae. The dashed ellipse represents the torsional wing chord andφis the torsion angle. The center of the ellipse coordinate system coincides with the center of the wings’ cross-section. The Navier-Stokes equation and the continuity equation expressed in the elliptic coordinate system have the following forms[10]:

    (5)

    whereuis the velocity field;wis the vorticity field;vis the velocity andSis the scaling factor. The mesh points are naturally clustered around the tips in the elliptical coordinate system. The radius of the computational boundary can be chosen to be 5 to 10 times the half-chord length[3]. While in the Cartesian coordinate system, this value is 20 to 50 times the half-chord length, so it can improve the computational accuracy and reduce the calculation complexity.

    2 Computation Models and Methods

    Fig.4(a) shows the forces and position of a rigid wing in the downstroke phase. During the hovering flight, the tip angle of the stroke plane is particularly small and the stroke plane is approximately horizontal. Hovering with a horizontal stroke plane is termed normal hovering[11]. The wing deformation of normal hovering flight can be represented as Fig.4(b). The thick line represents the wing chord and the filled circle represents the leading edge. In Fig.4,αis the angle of attack;φis the torsion angle;FLis the lift andFDis the drag. In hovering flight,FDis equal to thrust in the horizontal direction andFLis equal to the insect weight in the vertical direction. Insect wings have two forms of movements in one flapping cycle; the wing chord will distort at the beginning and end stage and translate at the middle stage in the stroke plane. The translational movement of a wing is governed byA(t)=A0/2 [cos(2πt/T)+1], and the rotational movement is governed bya(t)=π/[4(1-sin(2πt/T))][12]. Other wing flexure deformation parameters are set the same values as those in Ref.[13].

    Fig.4 The generated forces and movement of wings. (a) Rigid wings in forward flight; (b) Flexible wings in hovering flight

    The computational fluid dynamics problem is defined under the initial and boundary conditions. The solutions to the N-S equations require specific boundary conditions at the solid walls of dynamic flapping wings and the body as well as at the far-field outside boundary. The computational domain has a size of 50c×50c, wherecis the length of the wing chord. Extensive tests have been done to make sure that the domain is large enough to achieve satisfactory accuracy of the results. The outermost boundary of the computational domain is defined as the pressure-outlet wall. The wing boundary condition satisfiesvt=0=0 at the initial movement. The fluid velocity at fluid-wing boundaries is equal to that of the wing boundary. The no-slip condition for viscous fluids states that at the wing boundary, it satisfies the conditionvfluid=vwing.

    The second-order up-wind numerical scheme and the SIMPLEC algorithm are used to solve 2-dimensional incompressible Navier-Stokes equations. At each time step, user-defined functions (UDFs) are used to control the wing’s motions and to obtain the aerodynamic performance. Dynamic mesh techniques are implemented by using the spring-based smoothing model and the local remeshing model.

    The process to calculate the force, moment and power is as follows:

    1) The pressure distribution of every face thread is obtained first, and then the pressure force is computed by looping over all face threads in the domain. The total force is the cumulative force of each face. In hovering flight, lift is the component of total force in the vertical direction,FL=Fcosα, and drag is the component of total force in the horizontal direction,FD=Fsinα(see Fig.4(b)).

    3 Results and Discussion

    The lift coefficient and the drag coefficient are defined as

    (6)

    whereCL,CDare the lift coefficient and the drag coefficient, respectively;ρis the air density;Umis the average velocity of the wing chord;cis the wing chord length. The aerodynamic force acting on the wing is contributed by the pressure and viscous stress on the wing surface, and the total force is the sum of pressure force and viscous force. The lift and drag refer to the total lift and total drag. Fig.5 describes the computation results of lift coefficientCLand drag coefficientCD. Note that the lift coefficient and the drag coefficient are normalized and represented in the same diagram in order to compare the variation trend better. The results show thatCLandCDhave a similar variation trend with Wang’s research[3]. The small difference may be due to the parameter settings and wings flexible deformation. The wing is considered to be rigid in Wang’s research, while the wing is considered to be flexible in this paper.

    Fig.5 Computation results of lift and drag coefficients

    The negative lift and drag means that the direction of lift and drag is opposite to definition. The large lift and drag peaks at the beginning and the end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation of the wing and the wing’s rotation. The rotational circulation is caused by the Magnus effect, which makes the wing generate an upward force. This effect is similar to a rotational circulation mechanism[14]. Unlike the rigid wing’s results[15], the small peaks before large peaks in the first quarter-cycle can be explained by the convex flow effect. The wings are rigid in the translation process, so the drag has a steady increase at this stage. Then the wing has a flexible deformation (see Fig.4(b)①) before the rotation phase, and the wings area against airflow is reduced, so the drag has a slight decrease in this stage. The small peaks after large peaks in the second quarter-cycle can be explained by the concave flow effect, and the wings flexible deformation has not changed after the rotation phase (see Fig.4(b)②), so the wings area against airflow is increased and the drag has a slight increase an this stage. A similar theory can be used to explain the small drag peaks in the next half flapping cycle.

    The average viscous force is probably 1/400 of the pressure force and the average viscous moment is only 1/775 of the pressure moment in our computation, as shown in Fig.6(a). The viscous force and moment can be ignored during the following insects’ normal hovering flight research. The total force and the total moment can be represented by the pressure force and the pressure moment, respectively. The average rotational power is probably 1/20 of the translational power, as shown in Fig.6(b), so insects will consume more energy for translational movement than for rotational movement. The positive power means that the flapping wings do work on fluid and the movement of wings needs to consume energy. The negative power means that the fluid produces work on flapping wings. This will help the wing form a convex flow shape and save the energy consumption of insect flight.

    Fig.6 Aerodynamic moment changes and consumed power during several flapping cycles. (a) Comparison between pressure moment and viscous moment; (b) Comparison between translational power and rotational power

    4 Conclusion

    Four insect flapping flight coordinate systems are established to represent the bees’ position, attitude and wings deformation. Then the computation models of the 2-dimensional flexible wing are established, and the force, moment, and power changes are investigated. According to the computational results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect. The small force and drag peaks can be explained by the convex flow effect and the concave flow effect. The viscous force, moment and rotational power are small and can be ignored. In the future research, a lot of work needs to be done to reveal the flight mechanism, such as numerical calculation of 3-dimensional flexible wing, quantitative analysis of force, moment and power. Understanding the mechanism of insect flight will be a great promotion of micro-flapping flight design and application.

    [1]Ellington C P. The aerodynamics of hovering insect flight. VI. lift and power requirements[J].PhilosophicalTransactionsoftheRoyalSocietyofLondonSeriesB—BiologicalSciences, 1984,305(1122):145-181.

    [2]Sun Mao, Tang Jian. Lift and power requirements of hovering flight in Drosophila virilis[J].TheJournalofExperimentalBiology, 2002,205(16): 2413-2427.

    [3]Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J].TheJournalofExperimentalBiology, 2004,207(3):449-460.

    [4]Liu Hao. Integrated modeling of insect flight: from morphology, kinematics to aerodynamics[J].JournalofComputationalPhysics, 2009,228(2): 439-459.

    [5]Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees[J].ProceedingsoftheRoyalSocietyofSeriesB—BiologicalSciences, 2013,280(22): 1-8.

    [6]Tian Fangbo, Luo Haoxiang, Song Jialei, et al. Force production and asymmetric deformation of a flexible flapping wing in forward flight[J].JournalofFluidsandStructures, 2013,36:149-161.

    [7]Tanaka H, Whitney J P, Wood R J. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight[J].IntegrativeandComparativeBiology, 2011,51(1): 142-150.

    [8]Fry S N, Sayaman R, Dickinson M H. The aerodynamics of hovering flight in Drosophila[J].TheJournalofExperimentalBiology, 2005,208(12):2303-2318.

    [9]Wang Z J. Two dimensional mechanism for insect hovering[J].PhysicalReviewLetters, 2000,85(10): 2216-2219.

    [10]Wang Z J. The role of drag in insect hovering[J].TheJournalofExperimentalBiology, 2004,207(23):4147-4155.

    [11]Sun Mao. High-lift generation and power requirements of insect flight[J].FluidDynamicsResearch, 2005,37(1/2):21-39.

    [12]Wang Z J. Computation of insect hovering[J].MathematicalMethodsintheAppliedSciences, 2001,24(17/18):1515-1521.

    [13]Lu Guang, Yan Jingping, Zhang Zhisheng, et al. Dissection of a flexible wing’s performance for insect-inspired flapping-wing micro air vehicles[J].AdvancedRobotics, 2012,26(5/6): 409-435.

    [14]Dickinson M H, Lehmann F O, Sane S. Wing rotation and the aerodynamic basis of insect flight[J].Science, 1999,284(5422):1954-1960.

    [15]Zhang Genbao, Liu Yijun, Shi Wu, et al. Numerical simulation of two-dimensional flapping-wing MAVs[J].JournalofDonghuaUniversity:NaturalScience, 2011,37(2): 256-260. (in Chinese)

    成人性生交大片免费视频hd| 成年女人看的毛片在线观看| 亚洲美女搞黄在线观看| 男女边吃奶边做爰视频| 亚洲欧美日韩无卡精品| 高清毛片免费看| 欧美一级a爱片免费观看看| 欧美最新免费一区二区三区| 精品国产三级普通话版| 97热精品久久久久久| 亚洲欧美中文字幕日韩二区| 中文乱码字字幕精品一区二区三区 | 精品酒店卫生间| 美女被艹到高潮喷水动态| 超碰97精品在线观看| 久久综合国产亚洲精品| 九色成人免费人妻av| 久久久久精品久久久久真实原创| 淫秽高清视频在线观看| 国产黄色视频一区二区在线观看 | 久久99精品国语久久久| 欧美日韩一区二区视频在线观看视频在线 | 综合色av麻豆| 蜜臀久久99精品久久宅男| 国产欧美日韩精品一区二区| 欧美高清成人免费视频www| 国产成年人精品一区二区| 91狼人影院| 免费人成在线观看视频色| 午夜精品国产一区二区电影 | 三级经典国产精品| 黄色欧美视频在线观看| 国产一区有黄有色的免费视频 | av福利片在线观看| 天堂网av新在线| 在线播放无遮挡| 久久久久国产网址| 亚洲精品影视一区二区三区av| 免费观看的影片在线观看| 乱系列少妇在线播放| 超碰97精品在线观看| 免费看av在线观看网站| 国产91av在线免费观看| 桃色一区二区三区在线观看| 能在线免费看毛片的网站| 日韩亚洲欧美综合| 精品久久国产蜜桃| 一级毛片电影观看 | 国产熟女欧美一区二区| 国产成人一区二区在线| 亚洲成人久久爱视频| 亚洲国产精品成人综合色| 国产成人免费观看mmmm| 嫩草影院精品99| 毛片一级片免费看久久久久| 国产精品久久久久久精品电影| 在线观看一区二区三区| 亚洲精品日韩av片在线观看| av免费观看日本| 欧美bdsm另类| 国产精品福利在线免费观看| 亚洲av中文av极速乱| 亚洲精品aⅴ在线观看| 亚洲国产欧洲综合997久久,| 欧美xxxx性猛交bbbb| 成人午夜精彩视频在线观看| 国产亚洲5aaaaa淫片| 中国国产av一级| 久久久色成人| 欧美3d第一页| 如何舔出高潮| 成人性生交大片免费视频hd| videossex国产| 卡戴珊不雅视频在线播放| 综合色丁香网| 搡女人真爽免费视频火全软件| 26uuu在线亚洲综合色| 听说在线观看完整版免费高清| 秋霞在线观看毛片| a级一级毛片免费在线观看| 亚洲精品自拍成人| 亚洲av成人av| 亚洲最大成人av| 人人妻人人澡欧美一区二区| 欧美三级亚洲精品| 免费无遮挡裸体视频| 欧美日本视频| 免费一级毛片在线播放高清视频| 亚洲av电影不卡..在线观看| 国产精品一二三区在线看| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影| 日本wwww免费看| 中文亚洲av片在线观看爽| av在线亚洲专区| 国产精品野战在线观看| 一级爰片在线观看| 九九爱精品视频在线观看| 晚上一个人看的免费电影| 最新中文字幕久久久久| 久久久久久伊人网av| 国产亚洲5aaaaa淫片| 久久欧美精品欧美久久欧美| 三级国产精品欧美在线观看| 亚洲自拍偷在线| 色网站视频免费| 成年版毛片免费区| 国产高清三级在线| 欧美成人精品欧美一级黄| 久久精品国产亚洲网站| 99久久九九国产精品国产免费| 色噜噜av男人的天堂激情| 看片在线看免费视频| 91午夜精品亚洲一区二区三区| 淫秽高清视频在线观看| 极品教师在线视频| 天堂中文最新版在线下载 | 国产又黄又爽又无遮挡在线| 国产综合懂色| 亚洲美女搞黄在线观看| 亚洲欧美清纯卡通| 一级毛片久久久久久久久女| av又黄又爽大尺度在线免费看 | 在线观看美女被高潮喷水网站| 99热网站在线观看| 边亲边吃奶的免费视频| eeuss影院久久| 国产一区二区亚洲精品在线观看| 亚洲人与动物交配视频| 久久久久国产网址| www日本黄色视频网| 91在线精品国自产拍蜜月| 狠狠狠狠99中文字幕| 人人妻人人澡欧美一区二区| 国产成人freesex在线| 日韩在线高清观看一区二区三区| 中文字幕久久专区| 成人一区二区视频在线观看| 久久这里有精品视频免费| 不卡视频在线观看欧美| 久久这里只有精品中国| 国产美女午夜福利| 欧美最新免费一区二区三区| 国产精品爽爽va在线观看网站| 亚洲精品456在线播放app| 亚洲图色成人| 免费无遮挡裸体视频| 午夜福利网站1000一区二区三区| 日韩国内少妇激情av| 国产久久久一区二区三区| 性色avwww在线观看| 51国产日韩欧美| 国产精品一区www在线观看| 免费黄网站久久成人精品| 热99re8久久精品国产| 99热这里只有是精品在线观看| 高清在线视频一区二区三区 | 青春草亚洲视频在线观看| 久热久热在线精品观看| 身体一侧抽搐| 日日干狠狠操夜夜爽| 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 国产伦精品一区二区三区视频9| 国产精品人妻久久久影院| 中文字幕熟女人妻在线| 亚洲最大成人av| 18禁在线播放成人免费| 国产高清有码在线观看视频| 免费观看的影片在线观看| 熟女人妻精品中文字幕| av国产久精品久网站免费入址| 国产老妇伦熟女老妇高清| 美女cb高潮喷水在线观看| 中文字幕亚洲精品专区| 中文字幕av在线有码专区| 国产欧美日韩精品一区二区| 十八禁国产超污无遮挡网站| 国产精品野战在线观看| .国产精品久久| 深夜a级毛片| 偷拍熟女少妇极品色| 亚洲成人久久爱视频| 国产v大片淫在线免费观看| 日韩 亚洲 欧美在线| 69av精品久久久久久| 国产精品久久久久久精品电影小说 | 欧美日韩综合久久久久久| 免费av观看视频| 精品国产三级普通话版| 国语对白做爰xxxⅹ性视频网站| 嘟嘟电影网在线观看| 欧美区成人在线视频| 亚洲av福利一区| 三级毛片av免费| 亚洲人成网站高清观看| 日韩国内少妇激情av| 国产精品.久久久| 高清视频免费观看一区二区 | 色5月婷婷丁香| 国产成人一区二区在线| 中文字幕久久专区| 99热精品在线国产| 日韩视频在线欧美| 高清视频免费观看一区二区 | 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看 | 禁无遮挡网站| 午夜精品一区二区三区免费看| 欧美精品一区二区大全| 国产午夜精品一二区理论片| 国产成人午夜福利电影在线观看| av福利片在线观看| 日本午夜av视频| 久久精品综合一区二区三区| 麻豆精品久久久久久蜜桃| 啦啦啦韩国在线观看视频| 天天一区二区日本电影三级| 日本-黄色视频高清免费观看| 久久婷婷人人爽人人干人人爱| 国国产精品蜜臀av免费| 一本久久精品| 国产伦理片在线播放av一区| 床上黄色一级片| 精品久久久久久成人av| 国产精品国产三级专区第一集| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 神马国产精品三级电影在线观看| 少妇丰满av| 久久亚洲精品不卡| 亚洲精品乱久久久久久| 听说在线观看完整版免费高清| 亚洲综合精品二区| 最近的中文字幕免费完整| 99热这里只有是精品50| 91aial.com中文字幕在线观看| 99国产精品一区二区蜜桃av| 久久这里有精品视频免费| 少妇人妻一区二区三区视频| av在线播放精品| 99热6这里只有精品| 少妇熟女欧美另类| 久久久国产成人精品二区| kizo精华| 精品不卡国产一区二区三区| 男的添女的下面高潮视频| 欧美日韩精品成人综合77777| 精品一区二区免费观看| 亚洲国产色片| 成年女人看的毛片在线观看| 九九热线精品视视频播放| 美女高潮的动态| 97超碰精品成人国产| 小蜜桃在线观看免费完整版高清| 看十八女毛片水多多多| 亚洲精品久久久久久婷婷小说 | 一边亲一边摸免费视频| 亚洲不卡免费看| 日本五十路高清| 老司机影院成人| 三级经典国产精品| 日日干狠狠操夜夜爽| 精品久久久久久久人妻蜜臀av| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 亚洲欧美日韩东京热| 亚洲中文字幕一区二区三区有码在线看| 国产欧美另类精品又又久久亚洲欧美| 亚洲av福利一区| 亚洲五月天丁香| 中文字幕免费在线视频6| 午夜视频国产福利| 国产伦在线观看视频一区| 久久久久久久久久久免费av| 国产av码专区亚洲av| 久久久久网色| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 热99在线观看视频| 青青草视频在线视频观看| 国产综合懂色| 亚洲欧美日韩无卡精品| 欧美激情在线99| 亚洲精品一区蜜桃| 精品酒店卫生间| 日韩人妻高清精品专区| 欧美精品国产亚洲| 国产黄色视频一区二区在线观看 | 熟女电影av网| 成人三级黄色视频| 国产精品三级大全| 欧美色视频一区免费| 国产午夜精品论理片| 中文欧美无线码| 噜噜噜噜噜久久久久久91| 热99re8久久精品国产| 特级一级黄色大片| 中文欧美无线码| 国产精品国产三级国产av玫瑰| 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 国产成人一区二区在线| 麻豆久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 日本三级黄在线观看| 欧美又色又爽又黄视频| 热99re8久久精品国产| 国产精品一区二区性色av| 丝袜美腿在线中文| 国产亚洲av片在线观看秒播厂 | 中文在线观看免费www的网站| 国产亚洲av片在线观看秒播厂 | 国产av一区在线观看免费| 麻豆一二三区av精品| 久久精品夜色国产| 欧美97在线视频| 我的老师免费观看完整版| 色综合亚洲欧美另类图片| 有码 亚洲区| 亚洲av免费高清在线观看| 尤物成人国产欧美一区二区三区| 欧美最新免费一区二区三区| 黄片wwwwww| 最近中文字幕高清免费大全6| 欧美另类亚洲清纯唯美| 国产亚洲5aaaaa淫片| 男人的好看免费观看在线视频| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| 久久久精品欧美日韩精品| 一级毛片我不卡| 成人鲁丝片一二三区免费| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久一区二区三区| 黑人高潮一二区| 亚洲av熟女| 国产精品久久久久久久久免| 欧美激情久久久久久爽电影| 亚洲欧洲日产国产| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 久久精品熟女亚洲av麻豆精品 | 亚洲成人av在线免费| 精品一区二区免费观看| 亚洲欧美清纯卡通| av专区在线播放| 男人舔奶头视频| 青青草视频在线视频观看| 简卡轻食公司| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 亚洲精品色激情综合| 三级毛片av免费| 99久久人妻综合| 久久久久久久久久成人| 色噜噜av男人的天堂激情| 国产一级毛片在线| 男女下面进入的视频免费午夜| 99久国产av精品| 午夜福利高清视频| 亚洲av一区综合| 国产一级毛片在线| 欧美一级a爱片免费观看看| 日韩,欧美,国产一区二区三区 | 毛片一级片免费看久久久久| 国产v大片淫在线免费观看| 国产精品国产高清国产av| 精品熟女少妇av免费看| 午夜福利在线观看免费完整高清在| 在线观看美女被高潮喷水网站| 国产成人a区在线观看| 日韩av不卡免费在线播放| 国产精品三级大全| 少妇熟女欧美另类| 中文字幕人妻熟人妻熟丝袜美| 岛国毛片在线播放| 国产私拍福利视频在线观看| 国产人妻一区二区三区在| 亚洲av中文字字幕乱码综合| 91aial.com中文字幕在线观看| 亚洲内射少妇av| 亚洲一区高清亚洲精品| 特级一级黄色大片| 久久精品久久精品一区二区三区| 女人久久www免费人成看片 | 国产色爽女视频免费观看| 26uuu在线亚洲综合色| 毛片女人毛片| 91精品一卡2卡3卡4卡| 亚洲欧美日韩东京热| 国产 一区精品| 丰满少妇做爰视频| 成人亚洲精品av一区二区| 国产免费男女视频| 国产不卡一卡二| 日日干狠狠操夜夜爽| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕日韩| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 日本与韩国留学比较| 亚洲国产最新在线播放| 久久久久久久国产电影| 欧美潮喷喷水| 国产女主播在线喷水免费视频网站 | kizo精华| 26uuu在线亚洲综合色| 日韩强制内射视频| 最后的刺客免费高清国语| videossex国产| 午夜免费激情av| 亚洲国产色片| 18禁动态无遮挡网站| 国产 一区 欧美 日韩| 日本熟妇午夜| 两个人的视频大全免费| 精品久久久久久电影网 | 亚洲人成网站高清观看| 草草在线视频免费看| 久久久国产成人精品二区| 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品久久精品一区二区三区| 性插视频无遮挡在线免费观看| 精品久久久久久久末码| 久久精品夜色国产| 一级爰片在线观看| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 国产一区亚洲一区在线观看| 成人午夜高清在线视频| 国产精品熟女久久久久浪| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 少妇熟女欧美另类| 日韩人妻高清精品专区| 中文乱码字字幕精品一区二区三区 | 国产中年淑女户外野战色| 一个人看的www免费观看视频| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片| 99久久人妻综合| 日本黄大片高清| 嫩草影院新地址| 色尼玛亚洲综合影院| 成年版毛片免费区| 麻豆国产97在线/欧美| 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 国产精品美女特级片免费视频播放器| 国产精品一区二区在线观看99 | 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕 | 日韩人妻高清精品专区| 久久韩国三级中文字幕| 少妇的逼水好多| 亚洲伊人久久精品综合 | 免费看光身美女| 国产黄a三级三级三级人| videos熟女内射| 色噜噜av男人的天堂激情| 简卡轻食公司| 99久久九九国产精品国产免费| 日韩欧美三级三区| 晚上一个人看的免费电影| 日韩欧美精品v在线| 久久久久性生活片| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 婷婷色av中文字幕| 国产精品一区二区三区四区免费观看| 激情 狠狠 欧美| 大又大粗又爽又黄少妇毛片口| 久久亚洲精品不卡| 女的被弄到高潮叫床怎么办| 黄片无遮挡物在线观看| 99久久成人亚洲精品观看| 有码 亚洲区| 欧美高清成人免费视频www| 99国产精品一区二区蜜桃av| 亚洲色图av天堂| 日韩成人av中文字幕在线观看| 特级一级黄色大片| 免费大片18禁| 成人欧美大片| 久久人人爽人人爽人人片va| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 我要搜黄色片| 国产精品电影一区二区三区| 亚洲怡红院男人天堂| 国产v大片淫在线免费观看| 国产一级毛片七仙女欲春2| 国产高清国产精品国产三级 | 亚洲国产色片| 熟女电影av网| 51国产日韩欧美| 少妇丰满av| 日韩视频在线欧美| 最近中文字幕高清免费大全6| 日本黄色视频三级网站网址| a级毛色黄片| 免费播放大片免费观看视频在线观看 | 中文字幕制服av| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看 | 波多野结衣巨乳人妻| 一边亲一边摸免费视频| 联通29元200g的流量卡| 国产高清视频在线观看网站| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 内地一区二区视频在线| 亚洲怡红院男人天堂| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜爱| 精品一区二区三区人妻视频| 欧美激情在线99| 在线观看66精品国产| 亚洲精品国产av成人精品| 三级男女做爰猛烈吃奶摸视频| 亚洲av熟女| 国产免费男女视频| 狂野欧美激情性xxxx在线观看| 一级爰片在线观看| 国产精品,欧美在线| 亚洲美女搞黄在线观看| 精品久久久久久电影网 | 日韩,欧美,国产一区二区三区 | 亚洲av中文字字幕乱码综合| 亚洲av成人av| 丝袜喷水一区| 日韩欧美三级三区| 国产精品电影一区二区三区| 综合色av麻豆| 国产伦在线观看视频一区| 综合色丁香网| 少妇熟女aⅴ在线视频| 日本免费a在线| 中国美白少妇内射xxxbb| 一级二级三级毛片免费看| 亚洲无线观看免费| 国产精品爽爽va在线观看网站| 午夜免费男女啪啪视频观看| 长腿黑丝高跟| 免费观看精品视频网站| 国国产精品蜜臀av免费| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看 | 亚洲无线观看免费| 久久久精品94久久精品| 免费av观看视频| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 建设人人有责人人尽责人人享有的 | 日日干狠狠操夜夜爽| 人妻制服诱惑在线中文字幕| av视频在线观看入口| 欧美成人午夜免费资源| 看非洲黑人一级黄片| 成人美女网站在线观看视频| 久久6这里有精品| 日韩一本色道免费dvd| 久久精品国产99精品国产亚洲性色| 色噜噜av男人的天堂激情| 最近最新中文字幕大全电影3| 国产成人福利小说| 日韩欧美在线乱码| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看| 深爱激情五月婷婷| 看免费成人av毛片| 91久久精品国产一区二区成人| 亚洲成人av在线免费| 久久午夜福利片| 在线观看66精品国产| 国产精品久久视频播放| 国产精品一区二区性色av| 精品一区二区三区视频在线| 国产爱豆传媒在线观看| 三级毛片av免费| av国产免费在线观看| 高清毛片免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女国产视频在线观看| 国产探花在线观看一区二区| 我要看日韩黄色一级片| 国产免费男女视频| 国产成人a∨麻豆精品| 欧美日韩一区二区视频在线观看视频在线 | 国产高潮美女av| 精品欧美国产一区二区三| 国产成人精品久久久久久| 久久精品夜色国产| 亚洲乱码一区二区免费版| 中文字幕制服av| 国产精品久久久久久精品电影| 大又大粗又爽又黄少妇毛片口| 九九热线精品视视频播放| 亚洲最大成人中文|