• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of pump-probe optical measurement technique using double moving stages

    2013-12-29 02:05:40ZhangChunweiZhaoWeiweiBiKedongYongGuoqingGaoXuesongWangJianliChenYunfei

    Zhang Chunwei Zhao Weiwei Bi Kedong Yong GuoqingGao Xuesong Wang Jianli Chen Yunfei

    (Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China)

    Several techniques have been developed to measure the thermal properties of nanomaterials, such as the 3ω method[1-3], the microbridge technique[4]and the modulated thermoreflectance microscopy[5]. The pump-probe optical technique is widely applied to characterize the thermal diffusivity[6], electron-phonon coupling factor[7-8], thermal conductivity[9-11]and interfacial thermal conductance[12-13]of various nanomaterials due to its high sensitivity to thermal properties.

    Variations of this technique have been developed based on a similar principle[14-16]. The beam pulse from a femtosecond laser oscillator can be split into two beams. The intense beam (pump beam) passes through an acousto-optic modulation (AOM), which creates a pulse train at a modulation frequency, and is focused on the metal surface. After thermal excitation in the metal, the optical properties of the metal are changed, and the change is probed by another weaker beam (probe beam) which is time-delayed relative to the pump beam by a moving stage. Once the change of surface temperature of metal has been tracked, the thermal properties can be obtained accurately. Typically, the time-delayed difference between pump and probe path is controlled by a mechanical moving stage; thus, the misalignment of the mechanical stage and the divergence of the beam can significantly influence the measurement results. For a single moving stage, without misalignment and divergence of the probe beam, the maximum delay time between the pump and probe paths is typically 4 ns, which is too short to obtain the accurate thermal properties for some samples with multilayer structures, low thermal diffusivity, and poor interface contacts.

    A single-mode optical fiber is introduced into the setup by some research groups[16]to avoid the misalignment in long-range scanning, before the probe beam is focused on the surface of metal. However, care must be taken to ensure that the incident light is parallel to the axis of the fiber. Otherwise, part of the probe beam is exhausted into the fiber. Taketoshi et al.[17]used two laser oscillators to implement the transient thermoreflectance measurement, in which the beam from the front laser is used to excite the surface of metal, and the beam from the back laser is employed to probe the changes of temperature profile. In the setup, the time-delayed difference between the pump and probe beams is controlled by an electrical delay technique rather than a mechanical moving stage, which avoids the problems from misalignment and divergence. However, this method requires two laser oscillators, which makes the measurement more complicated and costly. Currently, time domain pump-probe transient thermoreflectance (TDTR) has been widely applied to investigate thermal transport in thin film and bulk materials, due to its high sensitivity to the thermal properties of nanomaterials. In the technique, it is crucial to overcome the difficulties from alignment and divergence.

    In order to extend the observation time of temperature decay, and keep the adjustment of beam paths more convenient, based on the previous measurement system[18], we develop a femtosecond laser transient thermoreflectance system with double moving stages through inserting one mechanical stage in the pump beam path. Compared with the setup with one single moving stage, the maximum delay time between the pump and probe beams is prolonged from 4 to 8 ns, which greatly extends the scanning time.

    1 Experimental Setup

    The schematic of the optical layouts used in a femtosecond laser transient thermoreflectance system with double moving stages is illustrated in Fig.1. The experimental setup is almost identical to the previous system[18], except for inserting a mechanical moving stage in the pump path. The pulse train, which originates from a mode-locked laser oscillator (Mira Model 900-F) with about 1 W power output at a frequency of 76 MHz, and a pulse width of 200 fs at the wavelength of 810 nm, is divided into two beams by a beam splitter. The polarization of the intense pump beam is rotated 90° by a polarizer, which facilitates removing any scattered pump light from the rough surface of metal before the beam is detected by the detector. After the pump beam passes through the AOM, which creates a train of pulse at a specific frequency, the pump beam becomes divergent. The pump expander is applied to collimate the beam to reduce relative shift and divergence at long-range scans. The pump pulse generates a transient thermal response at the metal surface and the weaker probe beam is used to monitor the temperature changes of the surface. The probe beam passes through the same optics as the pump beam does and is focused on the active area illuminated by the pump beam. After being reflected off from the surface of the sample, the probe beam carrying the thermal response information

    Fig.1 Schematics of the TDTR with double moving stages

    is forwarded into a photodiode which turns the optical signals into electrical signals. The electrical signals include nontransient and transient signals[19]. For the purpose of extracting the transient signals, the lock-in amplifier distinguishes the signals using the frequency from a function generator as a reference and transfers them into the computer.

    The principle of the double moving stages is shown in Fig.2. For this technique, the scanning process is divided into two steps. First, the pump beam is kept located at zero position, where the data from 0 to 4 ns are obtained by moving the mechanical stage in the probe path. Secondly, after the probe beam comes back to the zero position again, the pump beam is automatically driven to the 4ns position of the stage by the computer, where we can get the scanning data from 4 to 8 ns by moving the mechanical stage in the probe path again. If the two sets of scanning data can be connected with each other smoothly at the 4 ns junction, it indicates that the first 4 ns scanning data are perfect. Otherwise, the two beam paths need to be readjusted. Therefore, the last additional 4 ns scanning data obtained by introducing a mechanical moving stage in the pump path can be used to verify the first 4 ns scanning data.

    Fig.2 Principle of the double moving stages

    For the long-range scanning process, the measurement signals are significantly sensitive to the overlap level of the pump and probe beams. Therefore, both beams are required to be aligned as possible as we can. At first, the probe beam needs to be parallel to the moving direction of probe moving stage, by carefully adjusting mirror M5 in Fig.1, which avoids the misalignment of the returned probe beam. To ensure the reflected probe beam from R2 is parallel to the incoming beam, the face of retroreflectance R2 must be vertical to the incoming beam reflected from mirror M5. If the conditions mentioned above are met, the retroreflectance R2 will move together with the moving stage and change the incoming probe beam direction by 180°.

    It is more difficult to achieve an ideal returned beam from retroreflectance R1, because two correlation conditions must be met simultaneously. To overcome the difficulties, we first direct the probe beam from retroreflectance R3 to a distance of about 10 m or more. At the distance, the tiny shift of the probe beam can be amplified almost 20 times (The delay stage moves 0.3 m, while the beam travels 0.6 m with two cycles), which facilitates adjusting the direction of retroreflectance R3. The probe beam stage is moved back and forth, and meanwhile, retroreflectance R3 is adjusted carefully until the spot shift cannot be seen, which indicates that the drift of probe beam is negligible. Finally, the probe beam is perpendicular to the face of retroreflectance R3. We vary the position of retroreflectance R1, until the spot of the probe beam at a distance of 10 m or more keeps stable. Once the spot of the probe beam stays at the right position, the probe beam is aligned well. For the purpose of obtaining 8 ns delay time, the pump beam should also be aligned, as we have done with the probe beam.

    The signals are not only sensitive to the alignment of both beams, but also prone to be affected by the beam divergence. Therefore, it is necessary to collimate both of the beams. A perfect beam with 1/e2radiusr0diverges with respect to[16]

    whereλis the wavelength of beam;lis the distance the light travels. Obviously, if the beam is not collimated correctly, the beam radius will increase significantly as the stage moves, which results in unreasonable temperature profiles. Some techniques are developed to reduce the divergence of the beam. Schmidt et al.[9]presented an expander in the upstream of the moving stage to minimize the beam divergence at long delay times. Here, the method is applied in our system, but we adjust the expander intentionally to compress the beam which makes the beam almost parallel when impinged onto the sample.

    We measure the diameters of both beams with a beam profiler at different delay time points, as shown in Fig.3.

    Fig.3 Measured spot sizes and variation of center position of probe and pump beam at different delay time points. (a) Probe beam sizes and center locations; (b) Pump beam sizes and center locations

    Obviously, the divergence of both beams is less than 0.5 μm and the drift of both beams is less than 1 μm during the delay time (4 ns). Both Figs.3(a) and (b) exhibit a sharp variation at different delay time, which is due to the mechanical error of the moving stage. It is reasonable to assume that the effects of misalignment and divergence of both beams on the experimental results during the whole scanning process can be ignored, compared with the beams spot sizes (typically 16 to 50 μm). In addition, in order to further minimize the effects, some techniques can be used, such as enlarging the pump beam spot size and reducing that of the probe beam. However, the signal to noise ratio is depressed while enlarging the pump beam diameter. Therefore, in our system, the probe beam spot size is adjusted to be 16 μm and that of the pump beam is set to be 50 μm.

    2 Experimental Results

    Combined with the mechanical moving stage in the pump path, the measurement setup not only presents a long-range scanning (0 to 8 ns), but also possesses the ability to verify the data from the short-range scanning (0 to 4 ns). To test the improved technique, we prepared two samples, Al/Si and Cr/Si, by means of the magnetron sputtering method. The two samples are chosen due to their large interfacial thermal conductance[20-23], which results in a rapid cooling of metal films. Consequently, the voltage magnitude of signals is more sensitive to the divergence and shift of both beams.

    The measured results together with fitting curves are shown in Fig.4. In fact, the data from the lock-in amplifier denote the intensities of the probe beam at different delay time points. When the pump pulse is impinged on the surface of metal, electrons in the metal absorb the energy of the photons, which results in the change of the surface reflectance of metal. The variation of reflectance is characterized by the sharp rise of signal, when both beams are spatially and temporally overlapped. The electron-electron collision lasts no longer than one picosecond for most metals[24]. Afterward, the electrons transfer the excess energy to the phonons by interaction between electron and phonon[7-8], which results in the temperature rise of the metal lattices. Subsequently, the temperature decay profile can be described by the Fourier thermal transport equation.

    In order to determine the thermal properties, the experimental data are required to be compared with an appropriate model of the thermal transport[14, 25-26]. The thermal properties of interest are treated as free parameters, which are adjusted to minimize the difference between the model and the experimental data by means of the least square fitting. Therefore, the temperature profile from the measurement can significantly influence the fitting values of thermal properties of interest. In the improved system, the criterion of evaluation is whether the measurement data from the two periods are perfectly combined at the 4 ns

    point or not. If the scanning data from 0 to 4 ns can be connected smoothly with those from 4 to 8 ns, it is reasonable to believe that the system is perfect.

    For the voltage signals of Al/Si and Cr/Si, after being normalized to the value at the 0.1 ns point, the thermal model is fitted to the experimental values by changing the thermal conductance of interface as shown in Figs.4(a) and (b). In the case, the interfacial thermal conductance of both samples are 220 and 185 MW/(m2·K), respectively, in good agreement with the literature values[23, 25, 27]. To demonstrate both values, we also fit the phase data. In the method, the information of the phase includes the real and image components from the lock-in amplifier, which avoids the difficulty of normalization and cancels out the effects from the noise. We obtain the thermal conductance of interface 220 and 175 MW/(m2·K), respectively, which well agrees with the values from magnitude fit. The data around 4 ns are also presented in Figs.4(c) and (d). Irrespective of Al/Si or Cr/Si, data from the two periods can be connected smoothly, which implies that the misalignment and divergence of both beams can be ignored.

    3 Conclusion

    Based on our previous measurement system with one single mechanical moving stage, we develop a femtosecond laser transient thermoreflectance system with double moving stages. The system can not only extend the measurement range, but also verify the short-range scanning data, which ensures the experimental data more believable. To verify the reliability of the system, we measured both samples and fitted the magnitude data to obtain the thermal conductance of the interface, which are in good agreement with literature values. In addition, phase data are also fitted to further demonstrate thermal conductance of the interface from magnitude fit. The system is expected to be used to further investigate the thermal transport in nanometer scale, particularly, to facilitate measuring the materials with multilayered structures, low thermal diffusivity, and low interfacial thermal conductance.

    [1]Cahill D G. Thermal conductivity measurement from 30 to 750 K: the 3ω method[J].RevSciInstrum, 2002,73(10): 802-808.

    [2]Raudzis C E, Schatz F, Wharam D. Extending the 3ω method for thin-film analysis to high frequencies [J].JApplPhys, 2003,93(10): 6050-6055.

    [3]Cahill D G, Bullen A, Lee S M. Interface thermal conductance and the thermal conductivity of multilayer thin films [J].HighTempHighPress, 2000,32(2): 135-142.

    [4]Swartz E T, Pohl R O. Thermal-boundary resistance [J].RevModPhys, 1989,61(3): 605-668.

    [5]Rosencwaig A, Opsal J, Smith W L,et al. Detection of thermal waves through optical reflectance [J].ApplPhysLett, 1985,46(11): 1013-1015.

    [6]Paddock C A, Eesley G L. Transient thermoreflectance from thin metal-films [J].JApplPhys, 1986,60(1): 285-290.

    [7]Hostetler J L, Smith A N, Czajkowsky D M, et al. Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al [J].AppliedOpt, 1999,38(16): 3614-3620.

    [8]Wang H D, Ma W G, Guo Z Y, et al. Measurements of electron-phonon coupling factor and interfacial thermal resistance of metallic nano-films using a transient thermoreflectance technique [J].ChinesePhysB, 2011,20(4):040701-1-040701-8.

    [9]Schmidt A, Chiesa M, Chen X Y, et al. An optical pump-probe technique for measuring the thermal conductivity of liquids [J].RevSciInstrum, 2008,79(6):064902-1-064902-5.

    [10]Chiritescu C, Cahill D G, Nguyen N, et al. Ultralow thermal conductivity in disordered, layered WSe2crystals [J].Science, 2007,315(5810): 351-353.

    [11]Zhu L D, Sun F Y, Zhu J, et al. Nano-metal film thermal conductivity measurement by using the femtosecond laser pump and probe method [J].ChinesePhysLett, 2012,29(6):066301-1-066301-4.

    [12]Norris P M, Smoyer J L, Duda J C, et al. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials[J].JournalofHeatTransfer, 2012,134(2):020910-1-020910-7.

    [13]Stoner R J, Maris H J. Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 K [J].PhysRevB, 1993,48(22): 16373-16387.

    [14]Smith A N, Hostetler J L, Norris P M. Thermal boundary resistance measurements using a transient thermoreflectance technique [J].MicroscaleThermophysEng, 2000,4(1): 51-60.

    [15]Gengler J J, Roy S, Jones J G, et al. Two-color time-domain thermoreflectance of various metal transducers with an optical parametric oscillator [J].MeasSciTechnol, 2012,23(5):055205-1-055205-8.

    [16]Capinski W S, Maris H J. Improved apparatus for picosecond pump-and-probe optical measurements [J].RevSciInstrum, 1996,67(8): 2720-2726.

    [17]Taketoshi N, Baba T, Ono A. Electrical delay technique in the picosecond thermoreflectance method for thermophysical property measurements of thin films [J].RevSciInstrum, 2005,76(9):094903-1-094903-8.

    [18]Zhang C W, Bi K D, Wang J L, et al. Measurement of thermal boundary conductance between metal and dielectric materials using femtosecond laser transient thermoreflectance technique[J].SciChinaSerE, 2012,55(4): 1044-1049.

    [19]Stevens R J, Smith A N, Norris P M. Signal analysis and characterization of experimental setup for the transient thermoreflectance technique [J].RevSciInstrum, 2006,77(8):084901-1-084901-8.

    [20]Hopkins P E, Serrano J R, Phinney L M A F, et al. Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating [J].JournalofHeatTransfer, 2010,132(8):081302-1-081302-10.

    [21]Hopkins P E, Hattar K, Beechem, T, et al. Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire [J].ApplPhysLett, 2011,98(23):231901-1-231901-3.

    [22]Hopkins P E, Phinney L M, Serrano J R, et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces [J].PhysRevB, 2010,82(8):085307-1-085307-5.

    [23]Hopkins P E, Norris P M, Thermal boundary conductance response to a change in Cr/Si interfacial properties [J].ApplPhysLett, 2006,89(13):131909-1-131909-3.

    [24]Qiu T Q, Tien C L. Heat-transfer mechanisms during short-pulse laser-heating of metals [J].JournalofHeatTransfer, 1993,115(4): 835-841.

    [25]Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance [J].RevSciInstrum, 2004,75(12): 5119-5122.

    [26]Schmidt A J, Chen X Y, Chen G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance [J].RevSciInstrum, 2008,79(11):114902-1-114902-9.

    [27]Stevens R J, Smith A N, Norris P M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique[J].JournalofHeatTransfer, 2005,127(3): 315-322.

    亚洲精品日韩在线中文字幕| 午夜爱爱视频在线播放| 综合色av麻豆| 久久久久久久久大av| freevideosex欧美| 91精品一卡2卡3卡4卡| 狂野欧美白嫩少妇大欣赏| 男女下面进入的视频免费午夜| 国产亚洲精品av在线| 又爽又黄无遮挡网站| 国产成人a∨麻豆精品| 舔av片在线| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 欧美激情在线99| 天美传媒精品一区二区| 久久99热这里只频精品6学生| 啦啦啦中文免费视频观看日本| 听说在线观看完整版免费高清| 美女黄网站色视频| 国产不卡一卡二| 国产成人91sexporn| 美女大奶头视频| 国产精品无大码| 人妻夜夜爽99麻豆av| 91狼人影院| 成年女人在线观看亚洲视频 | 2022亚洲国产成人精品| 亚洲av中文av极速乱| av网站免费在线观看视频 | 国产黄色免费在线视频| 美女脱内裤让男人舔精品视频| 国产激情偷乱视频一区二区| 男人狂女人下面高潮的视频| 美女cb高潮喷水在线观看| 成人特级av手机在线观看| 国内揄拍国产精品人妻在线| 国产爱豆传媒在线观看| 国产黄片美女视频| 真实男女啪啪啪动态图| 国产亚洲av嫩草精品影院| 赤兔流量卡办理| 国产亚洲91精品色在线| 黄片无遮挡物在线观看| 夫妻性生交免费视频一级片| 精品国内亚洲2022精品成人| 亚洲精品国产av蜜桃| 国产淫片久久久久久久久| 色哟哟·www| 日韩伦理黄色片| 欧美精品一区二区大全| 国内精品一区二区在线观看| 国产淫语在线视频| 亚洲av不卡在线观看| 高清欧美精品videossex| 噜噜噜噜噜久久久久久91| 国产成人精品婷婷| 在线观看一区二区三区| 亚洲精品乱码久久久久久按摩| 纵有疾风起免费观看全集完整版 | av天堂中文字幕网| 国产精品不卡视频一区二区| 久久精品国产亚洲av天美| 99热这里只有是精品50| 国产色婷婷99| 蜜桃久久精品国产亚洲av| 久久人人爽人人片av| 大片免费播放器 马上看| 久久午夜福利片| 丝袜美腿在线中文| 久久久久久久午夜电影| 国内揄拍国产精品人妻在线| 只有这里有精品99| 午夜日本视频在线| 你懂的网址亚洲精品在线观看| av黄色大香蕉| 午夜爱爱视频在线播放| 国产片特级美女逼逼视频| 久久久精品欧美日韩精品| 五月玫瑰六月丁香| 3wmmmm亚洲av在线观看| 精品不卡国产一区二区三区| 插逼视频在线观看| 国内精品一区二区在线观看| 波多野结衣巨乳人妻| 别揉我奶头 嗯啊视频| 亚洲一区高清亚洲精品| 插阴视频在线观看视频| 2018国产大陆天天弄谢| 亚洲成人精品中文字幕电影| 2021天堂中文幕一二区在线观| 九九在线视频观看精品| 99视频精品全部免费 在线| 亚洲,欧美,日韩| 国产一区二区三区综合在线观看 | 欧美日韩在线观看h| 欧美日韩亚洲高清精品| 久久韩国三级中文字幕| 久久久久久久午夜电影| 一区二区三区高清视频在线| 欧美不卡视频在线免费观看| 又黄又爽又刺激的免费视频.| 特大巨黑吊av在线直播| 春色校园在线视频观看| a级毛片免费高清观看在线播放| 亚洲精品乱码久久久久久按摩| av在线蜜桃| 日韩欧美 国产精品| 亚洲欧美精品专区久久| 五月伊人婷婷丁香| 欧美bdsm另类| 九九久久精品国产亚洲av麻豆| 亚洲国产欧美在线一区| 久久久久久久久久黄片| 亚洲熟妇中文字幕五十中出| 久久久精品94久久精品| 亚洲av福利一区| 久久人人爽人人爽人人片va| 久久久久久九九精品二区国产| 最近中文字幕2019免费版| 久久久久久久久中文| 啦啦啦韩国在线观看视频| 国产精品久久久久久久久免| 国产成人aa在线观看| 中国国产av一级| 一级二级三级毛片免费看| 视频中文字幕在线观看| 亚洲人成网站在线播| 中文资源天堂在线| 久久久精品免费免费高清| 美女被艹到高潮喷水动态| 天堂网av新在线| 高清毛片免费看| 精品人妻熟女av久视频| 国产成人a∨麻豆精品| 嫩草影院精品99| 亚洲国产精品专区欧美| 男女边摸边吃奶| 午夜福利高清视频| 人体艺术视频欧美日本| 日韩欧美一区视频在线观看 | 亚洲综合精品二区| 日日干狠狠操夜夜爽| 久久国内精品自在自线图片| 欧美成人午夜免费资源| 国产伦一二天堂av在线观看| 黄色一级大片看看| ponron亚洲| 国产乱人视频| 免费看a级黄色片| 蜜臀久久99精品久久宅男| 寂寞人妻少妇视频99o| 精品国产露脸久久av麻豆 | 久久久久久久久中文| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| 国产免费又黄又爽又色| 啦啦啦韩国在线观看视频| av福利片在线观看| 亚洲av国产av综合av卡| 婷婷色综合大香蕉| 成人国产麻豆网| 精品久久久久久久久av| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 51国产日韩欧美| 丝瓜视频免费看黄片| 青春草视频在线免费观看| 精品酒店卫生间| 国产高潮美女av| 精品人妻视频免费看| 亚洲精品日韩av片在线观看| 亚洲国产欧美在线一区| av在线天堂中文字幕| 精品一区二区三区视频在线| 亚洲久久久久久中文字幕| 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版 | 日韩大片免费观看网站| 亚洲精品国产成人久久av| 在线观看免费高清a一片| 久久久久网色| 女人被狂操c到高潮| av在线老鸭窝| 色5月婷婷丁香| 欧美区成人在线视频| 国产白丝娇喘喷水9色精品| 赤兔流量卡办理| av在线亚洲专区| 九草在线视频观看| 国产色婷婷99| 国产欧美日韩精品一区二区| 久久久a久久爽久久v久久| 成年女人在线观看亚洲视频 | 又黄又爽又刺激的免费视频.| 亚洲av中文字字幕乱码综合| 欧美人与善性xxx| 免费av不卡在线播放| 国产极品天堂在线| 免费播放大片免费观看视频在线观看| 精品人妻视频免费看| 亚洲欧洲日产国产| 舔av片在线| 高清欧美精品videossex| 国产麻豆成人av免费视频| 日本三级黄在线观看| 成年av动漫网址| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜添av毛片| h日本视频在线播放| 两个人的视频大全免费| 亚洲欧美日韩无卡精品| 九九久久精品国产亚洲av麻豆| 中国国产av一级| 精品欧美国产一区二区三| 丝瓜视频免费看黄片| 在线播放无遮挡| 99视频精品全部免费 在线| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 欧美3d第一页| 久久久久久久久中文| 男女啪啪激烈高潮av片| 777米奇影视久久| 婷婷色综合www| 99热这里只有精品一区| 日本免费a在线| 丰满少妇做爰视频| 国产精品蜜桃在线观看| 国产成人精品福利久久| 亚洲国产av新网站| 久久综合国产亚洲精品| 国产亚洲一区二区精品| 高清视频免费观看一区二区 | 91久久精品国产一区二区三区| videossex国产| 欧美丝袜亚洲另类| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 看非洲黑人一级黄片| 一级a做视频免费观看| 视频中文字幕在线观看| 成年人午夜在线观看视频 | 国产单亲对白刺激| 国产成人精品一,二区| av在线亚洲专区| 免费观看av网站的网址| 亚洲欧美精品专区久久| 亚洲国产欧美在线一区| 国产精品爽爽va在线观看网站| 啦啦啦中文免费视频观看日本| 中文乱码字字幕精品一区二区三区 | 草草在线视频免费看| 精品一区二区免费观看| 国国产精品蜜臀av免费| 性插视频无遮挡在线免费观看| 国产人妻一区二区三区在| 久久久久久久国产电影| 亚洲国产日韩欧美精品在线观看| 网址你懂的国产日韩在线| 亚洲第一区二区三区不卡| av播播在线观看一区| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片| 韩国高清视频一区二区三区| 国产日韩欧美在线精品| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 国产成人免费观看mmmm| 观看美女的网站| 亚洲欧美一区二区三区国产| 高清毛片免费看| 精品少妇黑人巨大在线播放| ponron亚洲| 亚洲美女视频黄频| 激情 狠狠 欧美| 亚洲精品国产av成人精品| 欧美日韩亚洲高清精品| 波多野结衣巨乳人妻| 大陆偷拍与自拍| 精品人妻视频免费看| 久久精品综合一区二区三区| 啦啦啦中文免费视频观看日本| videossex国产| 国产黄色视频一区二区在线观看| 丝瓜视频免费看黄片| 国产成人午夜福利电影在线观看| 久久久久久久久久久免费av| 亚洲欧美日韩无卡精品| 国产成人福利小说| 亚洲高清免费不卡视频| 青春草国产在线视频| 又爽又黄a免费视频| 国产毛片a区久久久久| 亚洲精品亚洲一区二区| 国产成人精品婷婷| 国产精品女同一区二区软件| 国产人妻一区二区三区在| 在线观看人妻少妇| 久久久久久久久久人人人人人人| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 免费黄色在线免费观看| 中国美白少妇内射xxxbb| 女人久久www免费人成看片| 日韩av不卡免费在线播放| 高清日韩中文字幕在线| 国产视频首页在线观看| 日韩欧美精品免费久久| 尤物成人国产欧美一区二区三区| 18+在线观看网站| 黄色日韩在线| 日韩欧美精品v在线| 2018国产大陆天天弄谢| 午夜福利视频精品| 少妇熟女欧美另类| 国产一区有黄有色的免费视频 | 国产淫语在线视频| 国内精品一区二区在线观看| 亚洲欧洲国产日韩| 亚洲国产最新在线播放| 99热这里只有精品一区| 80岁老熟妇乱子伦牲交| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 国语对白做爰xxxⅹ性视频网站| 亚洲天堂国产精品一区在线| 大陆偷拍与自拍| 日韩制服骚丝袜av| 两个人视频免费观看高清| 国产精品伦人一区二区| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 日韩强制内射视频| 一级黄片播放器| 成人午夜精彩视频在线观看| 午夜福利网站1000一区二区三区| 看非洲黑人一级黄片| 乱人视频在线观看| 久久国内精品自在自线图片| 国产亚洲精品久久久com| 婷婷色av中文字幕| 欧美人与善性xxx| av在线观看视频网站免费| 欧美精品国产亚洲| 国产成人a∨麻豆精品| 亚洲精品第二区| 成年女人在线观看亚洲视频 | 亚洲国产精品国产精品| 日韩,欧美,国产一区二区三区| 男人舔奶头视频| 精品午夜福利在线看| 日韩av在线大香蕉| 久久精品久久久久久久性| 国产成人午夜福利电影在线观看| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 男女视频在线观看网站免费| 日韩电影二区| 亚洲欧美精品自产自拍| 九九久久精品国产亚洲av麻豆| 中国国产av一级| 成人鲁丝片一二三区免费| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 国产高清有码在线观看视频| 美女高潮的动态| 日韩国内少妇激情av| 精品一区二区免费观看| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 国产免费福利视频在线观看| 一级片'在线观看视频| 成年免费大片在线观看| 色综合色国产| 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站 | 国产免费福利视频在线观看| 精品久久国产蜜桃| 99热6这里只有精品| 亚洲在久久综合| 精品国产三级普通话版| 免费观看的影片在线观看| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 免费观看的影片在线观看| 高清视频免费观看一区二区 | 99久久人妻综合| 婷婷色麻豆天堂久久| 性插视频无遮挡在线免费观看| 天堂av国产一区二区熟女人妻| 精品久久久久久久久亚洲| 大香蕉97超碰在线| 尾随美女入室| 国产精品人妻久久久影院| 国产v大片淫在线免费观看| 亚洲av日韩在线播放| 日本免费a在线| 国产在线一区二区三区精| 成人毛片a级毛片在线播放| 一级毛片电影观看| 嘟嘟电影网在线观看| 亚洲欧美精品自产自拍| 国产一区二区亚洲精品在线观看| 亚洲一区高清亚洲精品| 国产男女超爽视频在线观看| 狂野欧美激情性xxxx在线观看| 又爽又黄无遮挡网站| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 精品国内亚洲2022精品成人| 久久国产乱子免费精品| videossex国产| 免费人成在线观看视频色| 少妇丰满av| 2021少妇久久久久久久久久久| 中国美白少妇内射xxxbb| 亚洲美女视频黄频| 男人爽女人下面视频在线观看| 亚洲国产日韩欧美精品在线观看| 日本午夜av视频| 亚洲国产色片| 夜夜爽夜夜爽视频| 深夜a级毛片| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 精华霜和精华液先用哪个| 久久久色成人| 欧美人与善性xxx| 黑人高潮一二区| 99热这里只有是精品在线观看| 天堂中文最新版在线下载 | 国产精品国产三级国产av玫瑰| 成年av动漫网址| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产| 午夜福利高清视频| 日本欧美国产在线视频| 免费av不卡在线播放| 一区二区三区四区激情视频| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av不卡在线观看| 国内少妇人妻偷人精品xxx网站| 欧美日韩国产mv在线观看视频 | 51国产日韩欧美| 全区人妻精品视频| 六月丁香七月| 国产精品1区2区在线观看.| 91在线精品国自产拍蜜月| av在线亚洲专区| 国产成人福利小说| 可以在线观看毛片的网站| 免费电影在线观看免费观看| 精品99又大又爽又粗少妇毛片| 国产av在哪里看| 青春草国产在线视频| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 九草在线视频观看| 日日摸夜夜添夜夜爱| 色吧在线观看| 51国产日韩欧美| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| 成人午夜精彩视频在线观看| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 亚洲成人精品中文字幕电影| 中文乱码字字幕精品一区二区三区 | 街头女战士在线观看网站| 精品人妻熟女av久视频| av网站免费在线观看视频 | 啦啦啦韩国在线观看视频| 一级毛片 在线播放| 亚洲av不卡在线观看| av免费观看日本| 干丝袜人妻中文字幕| 国产午夜精品久久久久久一区二区三区| 少妇熟女欧美另类| 国产永久视频网站| 能在线免费看毛片的网站| 日韩,欧美,国产一区二区三区| 日韩成人av中文字幕在线观看| 十八禁网站网址无遮挡 | 亚洲精品国产av成人精品| 亚洲成色77777| 天天躁日日操中文字幕| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 成人欧美大片| 国产成人精品婷婷| 免费少妇av软件| 国产精品人妻久久久影院| 免费少妇av软件| 我的女老师完整版在线观看| 高清毛片免费看| 七月丁香在线播放| 日本三级黄在线观看| 亚洲欧洲国产日韩| 久久精品久久久久久久性| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| h日本视频在线播放| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 日韩中字成人| 国产精品伦人一区二区| 汤姆久久久久久久影院中文字幕 | 黄色欧美视频在线观看| av免费在线看不卡| 特大巨黑吊av在线直播| 91久久精品电影网| 99久国产av精品国产电影| 三级男女做爰猛烈吃奶摸视频| 嫩草影院新地址| 午夜免费观看性视频| 久久99热这里只有精品18| 亚洲精品456在线播放app| 国产精品久久久久久久电影| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区| 国产精品精品国产色婷婷| 国产激情偷乱视频一区二区| 黑人高潮一二区| 91精品国产九色| 黄片无遮挡物在线观看| a级毛色黄片| 91午夜精品亚洲一区二区三区| 午夜老司机福利剧场| 99久久人妻综合| 午夜免费观看性视频| 精华霜和精华液先用哪个| 少妇裸体淫交视频免费看高清| 春色校园在线视频观看| 国产精品一区二区在线观看99 | 日日摸夜夜添夜夜爱| 亚洲国产日韩欧美精品在线观看| 亚洲欧洲日产国产| 成人综合一区亚洲| 亚洲怡红院男人天堂| 99热这里只有是精品在线观看| 永久网站在线| 一本久久精品| 免费av不卡在线播放| 最近中文字幕高清免费大全6| 成人美女网站在线观看视频| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 国产午夜福利久久久久久| 久久97久久精品| 看黄色毛片网站| 欧美精品国产亚洲| 国产 一区 欧美 日韩| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲网站| 三级国产精品欧美在线观看| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 两个人视频免费观看高清| 内射极品少妇av片p| 狂野欧美激情性xxxx在线观看| 精品国内亚洲2022精品成人| 国产 亚洲一区二区三区 | 一本一本综合久久| 亚洲精华国产精华液的使用体验| 日本猛色少妇xxxxx猛交久久| 免费黄频网站在线观看国产| 久久久久久伊人网av| 国产精品久久久久久久久免| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 一个人看的www免费观看视频| 嫩草影院精品99| 成人午夜精彩视频在线观看| 五月玫瑰六月丁香| videos熟女内射| 国产精品一及| 中文字幕免费在线视频6| 国产三级在线视频| 日本欧美国产在线视频| 日韩成人伦理影院| 日韩强制内射视频| 国产亚洲精品av在线| 麻豆国产97在线/欧美| 欧美一级a爱片免费观看看| 亚洲精品乱久久久久久| 尤物成人国产欧美一区二区三区| 婷婷六月久久综合丁香| 亚洲精品国产av蜜桃| av国产免费在线观看| 亚洲av不卡在线观看| 哪个播放器可以免费观看大片| 成人二区视频| 精品久久久久久久久亚洲| 极品教师在线视频| 日本午夜av视频| 欧美成人精品欧美一级黄| 免费观看a级毛片全部| 欧美丝袜亚洲另类| 免费看a级黄色片| 三级国产精品片| 午夜福利在线在线|