• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of aggregation intervalon vehicular traffic flow heteroscedasticity

    2013-12-29 02:05:42ShiGuogangXiangQiaojunGuoJianhuaZhangHongxin

    Shi Guogang Xiang Qiaojun Guo Jianhua Zhang Hongxin

    (1 School of Transportation, Southeast University, Nanjing 210096, China)(2Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China)

    With the rapid economic and social development, the number of vehicles is increasing dramatically in China, causing serious congestion and safety issues for the transportation systems, in particular, for big cities. For alleviating the negative impacts associated with traffic congestion and safety issues, the conventional approach of building more roads is limited due to land use constraints. The applications of advanced technologies, such as computer technology, communication technology, database technology, statistical data mining technology, etc., into the conventional transportation systems have been receiving increasing attention from both research and industry sectors, stimulating the rapid development of the intelligent transportation systems (ITS).

    Many applications have been developed under the broad umbrella of ITS and reliability-related applications can provide more robust solutions for battling the congestion and safety issues, where the uncertainty information concerning transportation systems is modeled and utilized to impart the reliable treatment into traffic management and control. In this direction, two major approaches are used to model the second-order moment of transportation information, i.e., the generalized autoregressive conditional heteroscedasticity (GARCH) model[1-4]and the stochastic volatility model[5]. In addition, Guo et al.[6]established the heteroscedastic nature of traffic information, providing a foundation for performing the abovementioned uncertainty modeling analysis.

    Note that all these studies are conducted for a single time interval; however, as shown in Refs.[7-9], the aggregation interval is an essential component for transportation system applications. Therefore, in this paper, we investigate the effect of aggregation intervals on the traffic condition heteroscedasticity.

    1 Theoretical Background

    1.1 Aggregation interval

    The aggregation interval is a critical factor for characterizing or defining traffic condition data. For example, inHighwayCapacityManual2000, a 15 min aggregation interval is usually used to compute the volume of traffic, i.e., the number of vehicles passing a road section within a single 15 min aggregation interval[10]. Similarly, other traffic characteristics such as occupancy, speed, etc. can also be defined over a certain aggregation interval. Intuitively, aggregation intervals will affect the characteristics of traffic variables series. As shown in Ref.[8], longer aggregation intervals will help to cancel out the noise and hence create a smoother traffic flow series. The effects of aggregation intervals have been investigated in other fields such as short term traffic flow forecasting and single loop speed estimation. In this paper, the effect of aggregation intervals on the traffic flow heteroscedasticity is investigated.

    1.2 ARIMA modeling

    For a selected aggregation interval, the collection of traffic flow data formulates a traffic flow time series, and for this data, the conventional autoregressive integrated moving average (ARIMA) model has been proven to be an effective modeling tool[11]. Given a traffic flow time series process denoted by {Xt}, the ARIMA(p,d,q) model is defined as

    φ(B)(1-B)dXt=θ(B)εt

    wheretis the time index;pis the order of the short-term autoregressive polynomial;qis the order of the short-term moving average (MA) polynomial;dis the order of short-term differencing;Bis the backshift operator such thatBXt=Xt-1;εtis the random error at timet;φ(B) is the short-term AR polynomial defined asφ(B)=1-φ1B-φ2B2-…-φpBp;θ(B) is the short-term MA polynomial defined asθ(B)=1-θ1B-θ2B2-…-θqBq.

    In the above definition, the roots ofφ(B) andθ(B) are assumed to be outside of the unit circle and have no common factors.εtis the residual series, and for traffic flow series, it has been proven to be heteroscedastic; i.e., it has zero mean and time-varying conditional variance[6].

    The ARIMA model can be processed using the conventional Box-Cox framework, which includes three major steps, i.e., model identification, model estimation, and model diagnostic check[11]. In the model identification step, the orders of the model will be selected based on the minimum information criterion. In the model estimation step, the model parameters will be estimated using primarily the maximum likelihood estimation approach. In the model diagnostic check step, the estimated model will be tested to make sure that the residuals after applying the estimated model on the data containing no autocorrelation structure. It is worthwhile to mention that the above three steps can be conducted iteratively so that the final model will meet the requirements. Since these three steps are generally complex for carrying out manually, commercial software packages have been developed to facilitate ARIMA modeling, e.g., SAS PROC ARIMA[12].

    1.3 Traffic heteroscedasticity

    In conventional statistical analysis models such as analysis of variance, regression, etc., the data are generally assumed to be having constant variance, or the data are called homoscedastic. However, in some cases, e.g., for the traffic flow series, the process variance is time-variant; i.e., traffic flow series is called heteroscedastic. Using traffic flow series collected in the United Kingdom and aggregated at a 15 min aggregation interval, the heteroscedastic phenomenon can be demonstrated in Fig.1.

    Fig.1 Traffic flow heteroscedasticity demonstration

    From Fig.1, we can see that the residual series is scattered around thex-axis while the ranges of the scattering are different for different times of the day; i.e., the residuals scatter more widely for high level traffic in the daytime. This information indicates that certain measures should be taken to handle the added uncertainty for peak hour traffic when developing advanced traffic management and control systems. As mentioned previously, the heteroscedasticity is important for developing ITS applications, and Guo et al.[6]showed that this heteroscedasticity is universal across many sites for a single 15 min aggregation interval. In this paper, we will show that this heteroscedasticity is also significant across different aggregation intervals.

    1.4 Heteroscedasticity test

    The heteroscedasticity test will be performed on the residual series after the autocorrelation structure is removed from the traffic flow series. Based on the residual series, the tests used in this paper include the portmanteau Q-test and the Lagrange multiplier (LM) test, which have the ability of testing the presence of nonlinear effects (such as GARCH effects) in the residuals. Note that the Q-test and the LM test are among many tests that can be selected for performing the heteroscedasticity test, and these two tests are selected in this paper due to their ready implementation and application through commercial software, i.e., SAS PROC AUTOREG. For ARIMA modeling, many off-the-shelf commercial software packages have been developed and in this paper, this SAS PROC AUTOREG is applied to test the heteroscedasticity in the residual series.

    2 Data Description

    2.1 Data collection

    The traffic flow data used in this paper was collected from the MIDAS system installed for the motorway of M25 around London, the United Kingdom. M25 was initially built for servicing the through traffic across London, while over the years, M25 gradually merged into the urban transportation system, servicing many local trips and causing serious congestion issues on M25. Under this circumstance, the MIDAS system was developed for battling this situation. Using the MIDAS, traffic data including traffic volume, speed, occupancy, etc. was continuously registered over traffic detectors installed along the motorway. In this paper, traffic flow data collected from the station 4762a is used. The time range of the data is from Jan 1, 2002, to Dec 31, 2002; i.e., the whole year traffic flow data is used in this paper.

    2.2 Data aggregation

    The purpose of this paper is to investigate the effect of aggregation intervals on the traffic flow heteroscedasticity. Therefore, an important step is to aggregate the traffic flow data over multiple aggregation intervals. In this paper, altogether 30 aggregation intervals are used, i.e., aggregation intervals starting from 1 to 30 min with 1 min increment. Note that the aggregation of traffic flow data follows the rule proposed by Edie[13]and the aggregation operation is carried out using SAS PROC EXPAND, through which the aggregation rule can be easily implemented. The traffic flow data aggregated at 1 min interval are shown in Fig.2. As can be seen that the seasonal pattern can be identified for this 1 min traffic flow data series, which is an important phenomenon that should be handled. In addition, this seasonal pattern also exits in traffic flow series aggregated over other aggregation intervals.

    Fig.2 Traffic flow series demonstration (partial data aggregated at 1 min interval)

    3 Empirical Results

    In this section, the empirical results will be shown, including the ARIMA modeling results and the results of the heteroscedasticity test over multiple traffic flow series aggregated at different aggregation intervals.

    3.1 ARIMA modeling results

    The purpose of ARIMA modeling is to capture and remove the first-order moment of the traffic flow series and hence generate the residuals for the heteroscedasticity test. Note that we have 30 traffic flow series corresponding to 30 aggregation intervals; therefore, we will have 30 identified and estimated ARIMA models.

    As mentioned previously, the ARIMA model can be processed through the steps of identification, estimation, and diagnostic check. In this paper, in the model identification step, the seasonal pattern is first handled by seasonal differencing. As identified in Ref.[14], a weekly pattern can be used. Taking the 15 min aggregation interval as an example, a weekly pattern will have 24 (h/d)×4(data point/h)×7(d)=672 data points. Therefore, for removing the seasonal effects, two traffic flow data points at a distance of 672 aggregation intervals are differenced; i.e., the seasonal differencing order is 672. After seasonal differencing, the differenced series are used to identify the orders of ARIMA.

    Using PROC ARIMA, the orders of the ARIMA model for all the 30 traffic flow series are shown in Tab.1.

    Tab.1 ARIMA modeling and heteroscedasticity test results

    After selecting these orders, the ARIMA models are estimated using the maximum likelihood method and the residuals are computed using the estimated parameters. Then, in the final model diagnostic check step, the selected models and estimated parameters are validated by checking the characteristics of the residual series. According to the ARIMA modeling theory, the residual series should be white noise or the autocorrelations in the residuals are trivial, indicating that the autocorrelation structure has been adequately removed. In this paper, the autocorrelations in all the 30 residual series are trivial, indicating the adequacy of selecting the identified ARIMA models.

    3.2 Heteroscedasticity test results

    Based on the obtained residual series, the heteroscedasticity test results are presented as follows. In the whole series test, for all the aggregation intervals, the two heteroscedasticity tests are applied on the entire residual series with thep-values of the two test statistics less than 0.000 1, showing that for all the 30 residual series the traffic flow series are heteroscedastic.

    For the monthly test, the results are also shown in Tab.1. For each aggregation interval, the entire series is first broken into monthly series, and each monthly series is tested separately. Then the percentage of the heteroscedastic monthly residual series is computed as the test results. We can see that except for the aggregation intervals of 28, 29, and 30 min that have 91.67% heteroscedastic monthly residual series, and the remaining aggregation intervals have 100% heteroscedastic monthly residual series, indicating that traffic flow series are heteroscedastic at the monthly level for these aggregation intervals. The test results indicate that the longer aggregation interval can cancel out the noise in traffic flow data and hence reduce the heteroscedasticity in traffic flow.

    4 Conclusions

    Considering the importance of reliability in many ITS applications, the uncertainty analysis has received increasing attention from transportation research communities. In this direction, the traffic flow heteroscedasticity test and modeling play an essential role. Previous studies have shown that traffic flow is heteroscedastic across stations for a certain data aggregation interval, and in this paper we investigate the effects of multiple aggregation intervals on traffic heteroscedasticity. Using real-world traffic flow data, the following two conclusions can be drawn as follows:

    1) Traffic flow is heteroscedastic across multiple intervals ranging from 1 to 30 min at 1 min increment.

    2) Longer aggregation intervals can cancel out the noise in the traffic flow data and hence reduce the heteroscedasticity in traffic flow series.

    Based on the above conclusions together with the previous investigations, heteroscedasticity can be claimed to be universal for traffic flow data both temporally and spatially, and considerations should be taken to improve the reliability or robustness of ITS-related traffic management and control applications.

    [1]Karlaftis M G, Vlahogianni E I. Memory properties and fractional integration in transportation time series [J].TransportationResearchPartC, 2009,17(4): 444-453.

    [2]Guo J H, Williams B M. Real time short term traffic speed level forecasting and uncertainty quantification using layered Kalman filters [J].TransportationResearchRecord, 2010,2175: 28-37.

    [3]Sohn K, Kim D. Statistical model for forecasting link travel time variability [J].ASCEJournalofTransportationEngineering, 2009,135(7): 440-453.

    [4]Yang M L, Liu Y G, You Z S. The reliability of travel time forecasting [J].IEEETransactionsonIntelligentTransportationSystems, 2010,11(1): 162-171.

    [5]Tsekeris T, Stathopoulos A. Short-term prediction of urban traffic variability: stochastic volatility modeling approach [J].ASCEJournalofTransportationEngineering, 2010,136(7): 606-613.

    [6]Guo J H, Huang W, Williams B M. Integrated heteroscedasticity test for vehicular traffic condition series [J].ASCEJournalofTransportationEngineering, 2012,138(9): 1161-1170.

    [7]Guo J H, Williams B M, Smith B L. Data collection time interval for stochastic short-term traffic flow forecasting [J].TransportationResearchRecord, 2008,2024: 18-26.

    [8]Smith B L, Ulmer J M. Freeway traffic flow rate measurement: investigation into impact of measurement time interval [J].ASCEJournalofTransportationEngineering, 2003,129(3): 223-229.

    [9]Guo J H, Huang W, Wei Y, et al. Effect of time interval on speed estimation using single loop detectors [J].KSCEJournalofCivilEngineering, 2013,17(5): 1130-1138.

    [10]TRB. Highway capacity manual 2000 [R].Washington: Transportation Research Board, 2000.

    [11]Box G E P, Jenkins G M, Reinsel G C.Timeseriesanalysis:forecastingandcontrol[M]. 3rd ed. Upper Saddle River, NJ,USA: Prentice-Hall, 1994.

    [12]SAS Institute, Inc.SASOnlineDocversion8 [M]. Cary, NC, USA: SAS Institute, 2000.

    [13]Edie L C. Discussion of traffic stream measurements and definitions [C]//Procof2ndInternationalSymposiumontheTheoryofTraffic. Paris, France, 1963: 139-154.

    [14]Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results [J].ASCEJournalofTransportationEngineering, 2003,129(6): 664-672.

    亚洲婷婷狠狠爱综合网| 一本色道久久久久久精品综合| 精品人妻熟女毛片av久久网站| 久久久精品区二区三区| 狂野欧美激情性xxxx在线观看| 欧美日韩成人在线一区二区| 亚洲国产日韩一区二区| 欧美性感艳星| 免费人妻精品一区二区三区视频| 亚洲国产精品999| 如何舔出高潮| 一二三四中文在线观看免费高清| 少妇人妻久久综合中文| 久久国产精品大桥未久av| 国产精品不卡视频一区二区| 日韩制服丝袜自拍偷拍| 亚洲精品中文字幕在线视频| 欧美成人午夜免费资源| 春色校园在线视频观看| 人人澡人人妻人| 午夜av观看不卡| 黄色一级大片看看| 老女人水多毛片| a 毛片基地| 日本猛色少妇xxxxx猛交久久| 日韩av不卡免费在线播放| 免费人成在线观看视频色| 水蜜桃什么品种好| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品一区二区三区在线| 另类亚洲欧美激情| 国产一级毛片在线| 中文字幕av电影在线播放| 视频区图区小说| 全区人妻精品视频| 欧美+日韩+精品| 国产日韩欧美亚洲二区| 性色av一级| 久久国产亚洲av麻豆专区| 免费观看a级毛片全部| 视频区图区小说| 一区二区三区精品91| 伦精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 人妻系列 视频| 老司机亚洲免费影院| 久久青草综合色| 国产男女内射视频| 久久这里只有精品19| 亚洲精品久久久久久婷婷小说| 日本免费在线观看一区| 看十八女毛片水多多多| 熟女av电影| 午夜影院在线不卡| 亚洲少妇的诱惑av| 青青草视频在线视频观看| 久久久久精品久久久久真实原创| 亚洲av中文av极速乱| 国产成人精品久久久久久| 国产有黄有色有爽视频| 看免费成人av毛片| 少妇被粗大的猛进出69影院 | 18禁观看日本| 亚洲精品456在线播放app| 久久久久精品性色| 性色avwww在线观看| av在线播放精品| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久影院| 日韩大片免费观看网站| 波多野结衣一区麻豆| 日产精品乱码卡一卡2卡三| 母亲3免费完整高清在线观看 | 天堂俺去俺来也www色官网| 国产精品嫩草影院av在线观看| 黄色怎么调成土黄色| 欧美少妇被猛烈插入视频| 99热网站在线观看| 亚洲色图 男人天堂 中文字幕 | 精品久久久久久电影网| 成人手机av| 边亲边吃奶的免费视频| 女人久久www免费人成看片| 久久久欧美国产精品| 在线观看人妻少妇| 精品亚洲乱码少妇综合久久| 热re99久久精品国产66热6| 国产精品99久久99久久久不卡 | 免费大片黄手机在线观看| 另类精品久久| 国产日韩欧美视频二区| 亚洲少妇的诱惑av| 国产日韩欧美在线精品| 久久av网站| 亚洲经典国产精华液单| 中文字幕人妻丝袜制服| 免费高清在线观看视频在线观看| 99热国产这里只有精品6| 精品久久国产蜜桃| 精品少妇久久久久久888优播| 久久韩国三级中文字幕| 人妻系列 视频| 精品亚洲成国产av| 女性生殖器流出的白浆| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 精品一品国产午夜福利视频| 久久99蜜桃精品久久| 看免费av毛片| 丁香六月天网| 日韩一本色道免费dvd| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美| 在线天堂最新版资源| 午夜激情久久久久久久| 丰满饥渴人妻一区二区三| 亚洲在久久综合| 欧美bdsm另类| 春色校园在线视频观看| 蜜桃在线观看..| 国产精品一国产av| videossex国产| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 97在线视频观看| 韩国av在线不卡| 国产探花极品一区二区| 又大又黄又爽视频免费| 在现免费观看毛片| 欧美激情国产日韩精品一区| 亚洲av成人精品一二三区| 人妻人人澡人人爽人人| 18+在线观看网站| 亚洲天堂av无毛| av国产久精品久网站免费入址| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| 欧美性感艳星| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 校园人妻丝袜中文字幕| 一个人免费看片子| 久久99精品国语久久久| 国产高清国产精品国产三级| 乱人伦中国视频| 天堂中文最新版在线下载| 国产欧美另类精品又又久久亚洲欧美| 激情视频va一区二区三区| 大香蕉久久网| 高清av免费在线| 麻豆乱淫一区二区| 国产一区二区激情短视频 | 精品一区二区免费观看| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 国产在线视频一区二区| 亚洲欧洲国产日韩| 国产免费视频播放在线视频| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 成人影院久久| 国产亚洲精品第一综合不卡 | 欧美成人午夜精品| 18+在线观看网站| 只有这里有精品99| 丝袜美足系列| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 9热在线视频观看99| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | 波野结衣二区三区在线| 成人影院久久| 亚洲av在线观看美女高潮| 亚洲精品aⅴ在线观看| 亚洲情色 制服丝袜| 久久精品国产亚洲av天美| 国产女主播在线喷水免费视频网站| 免费大片18禁| 夜夜爽夜夜爽视频| 欧美bdsm另类| 国产精品一区www在线观看| 久久久久久久久久成人| 777米奇影视久久| 激情视频va一区二区三区| 国产男女超爽视频在线观看| 久久影院123| av线在线观看网站| freevideosex欧美| 人妻人人澡人人爽人人| 久久精品国产亚洲av涩爱| 国产成人免费观看mmmm| 999精品在线视频| 国产精品久久久久久久电影| 精品少妇久久久久久888优播| 一个人免费看片子| 欧美人与性动交α欧美精品济南到 | 26uuu在线亚洲综合色| 老司机亚洲免费影院| 亚洲成av片中文字幕在线观看 | 边亲边吃奶的免费视频| 午夜福利视频精品| 赤兔流量卡办理| 草草在线视频免费看| a级毛片黄视频| 日韩,欧美,国产一区二区三区| 亚洲国产欧美在线一区| 狠狠精品人妻久久久久久综合| 永久网站在线| 高清不卡的av网站| 日韩欧美一区视频在线观看| 欧美日韩精品成人综合77777| 高清欧美精品videossex| 免费在线观看完整版高清| 最近最新中文字幕免费大全7| 在线免费观看不下载黄p国产| 国产一区二区激情短视频 | 2021少妇久久久久久久久久久| 97超碰精品成人国产| 国产一区二区在线观看av| 在线免费观看不下载黄p国产| 大陆偷拍与自拍| 91久久精品国产一区二区三区| 久久精品国产亚洲av天美| 午夜日本视频在线| √禁漫天堂资源中文www| 精品99又大又爽又粗少妇毛片| 国产免费一级a男人的天堂| 黄色怎么调成土黄色| 精品国产一区二区三区四区第35| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 免费观看在线日韩| 国产免费视频播放在线视频| 午夜福利,免费看| 免费不卡的大黄色大毛片视频在线观看| 免费看av在线观看网站| 午夜福利网站1000一区二区三区| 午夜91福利影院| 中国美白少妇内射xxxbb| 桃花免费在线播放| 午夜精品国产一区二区电影| av播播在线观看一区| 老司机亚洲免费影院| 五月开心婷婷网| 一级毛片电影观看| 日韩视频在线欧美| 极品人妻少妇av视频| 韩国高清视频一区二区三区| 插逼视频在线观看| 免费观看无遮挡的男女| 亚洲成av片中文字幕在线观看 | 日本爱情动作片www.在线观看| 精品视频人人做人人爽| 各种免费的搞黄视频| 美女视频免费永久观看网站| 亚洲精品视频女| 一本大道久久a久久精品| 日韩,欧美,国产一区二区三区| 一级a做视频免费观看| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 午夜激情av网站| 国产男女超爽视频在线观看| 久久 成人 亚洲| 亚洲精品一二三| 各种免费的搞黄视频| 中文字幕免费在线视频6| 男女下面插进去视频免费观看 | 你懂的网址亚洲精品在线观看| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 少妇人妻久久综合中文| 高清毛片免费看| 制服丝袜香蕉在线| 婷婷色综合www| 欧美激情极品国产一区二区三区 | 性高湖久久久久久久久免费观看| 中国国产av一级| videos熟女内射| 国产精品一国产av| 麻豆乱淫一区二区| 丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 寂寞人妻少妇视频99o| 在线观看免费高清a一片| 97超碰精品成人国产| 亚洲精品色激情综合| 久久精品国产亚洲av天美| 国产精品一国产av| 99热这里只有是精品在线观看| 人成视频在线观看免费观看| 一级毛片我不卡| 黄色一级大片看看| 校园人妻丝袜中文字幕| 久久av网站| 多毛熟女@视频| 高清毛片免费看| 国产精品一国产av| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 热99国产精品久久久久久7| 看免费成人av毛片| 亚洲欧美日韩卡通动漫| 岛国毛片在线播放| 天美传媒精品一区二区| 国产毛片在线视频| 久久久久人妻精品一区果冻| 男人添女人高潮全过程视频| 国产精品人妻久久久影院| 伊人久久国产一区二区| 香蕉国产在线看| 高清欧美精品videossex| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 夫妻午夜视频| 精品人妻在线不人妻| 亚洲av福利一区| 十八禁高潮呻吟视频| 最黄视频免费看| 99热6这里只有精品| 成人毛片a级毛片在线播放| 2021少妇久久久久久久久久久| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 90打野战视频偷拍视频| 热re99久久国产66热| www.av在线官网国产| 亚洲情色 制服丝袜| 国产成人午夜福利电影在线观看| 中文字幕最新亚洲高清| 日韩成人伦理影院| 男女国产视频网站| 国产精品不卡视频一区二区| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 成人影院久久| av视频免费观看在线观看| 国产激情久久老熟女| 国产成人精品一,二区| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 视频区图区小说| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区| 人妻系列 视频| 国产黄色免费在线视频| 久久久精品区二区三区| 哪个播放器可以免费观看大片| 国产无遮挡羞羞视频在线观看| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 一区二区三区精品91| 国产精品国产三级国产专区5o| 这个男人来自地球电影免费观看 | 国产精品久久久久成人av| 久久久久久久久久人人人人人人| 国产免费一区二区三区四区乱码| 99视频精品全部免费 在线| 午夜91福利影院| 成人亚洲欧美一区二区av| 9191精品国产免费久久| 亚洲经典国产精华液单| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 2021少妇久久久久久久久久久| av.在线天堂| 婷婷色综合www| 免费观看av网站的网址| 亚洲精品日本国产第一区| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 男女免费视频国产| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 狂野欧美激情性bbbbbb| 日本与韩国留学比较| 久久99热6这里只有精品| 91国产中文字幕| 天堂俺去俺来也www色官网| 久久99蜜桃精品久久| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| 97在线人人人人妻| 中文精品一卡2卡3卡4更新| 亚洲欧美色中文字幕在线| 免费不卡的大黄色大毛片视频在线观看| tube8黄色片| 亚洲av福利一区| 免费人成在线观看视频色| 日本猛色少妇xxxxx猛交久久| 久久精品aⅴ一区二区三区四区 | 亚洲高清免费不卡视频| av.在线天堂| 国产精品嫩草影院av在线观看| 国产免费一级a男人的天堂| a 毛片基地| 91午夜精品亚洲一区二区三区| 秋霞在线观看毛片| 国产精品一国产av| 国产深夜福利视频在线观看| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 久久久精品94久久精品| 伦精品一区二区三区| 99热这里只有是精品在线观看| 91国产中文字幕| 晚上一个人看的免费电影| 少妇人妻 视频| 亚洲伊人色综图| 日韩不卡一区二区三区视频在线| 国产乱人偷精品视频| 少妇的丰满在线观看| 免费少妇av软件| 美女国产视频在线观看| 成人综合一区亚洲| 久久久精品94久久精品| 免费看光身美女| 啦啦啦视频在线资源免费观看| 夫妻性生交免费视频一级片| 日本欧美国产在线视频| 日韩av在线免费看完整版不卡| 青春草国产在线视频| 观看av在线不卡| 亚洲美女搞黄在线观看| 久久久久视频综合| 考比视频在线观看| 看免费av毛片| 精品国产露脸久久av麻豆| 女性被躁到高潮视频| 22中文网久久字幕| 久久精品久久久久久久性| 日韩伦理黄色片| 国产亚洲精品第一综合不卡 | 久久久久精品人妻al黑| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 美国免费a级毛片| 亚洲精品aⅴ在线观看| 色婷婷久久久亚洲欧美| 视频在线观看一区二区三区| 久久久久久久大尺度免费视频| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂| 国产国拍精品亚洲av在线观看| 国产不卡av网站在线观看| 色视频在线一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 热re99久久精品国产66热6| 亚洲欧洲国产日韩| 精品一区二区三卡| 青青草视频在线视频观看| 日韩av免费高清视频| 两个人免费观看高清视频| 青青草视频在线视频观看| 久久久国产精品麻豆| 久久国内精品自在自线图片| 一级,二级,三级黄色视频| 亚洲成人一二三区av| 日本wwww免费看| 欧美97在线视频| 国产日韩一区二区三区精品不卡| 亚洲中文av在线| av不卡在线播放| 2022亚洲国产成人精品| 久久久久久久国产电影| 中文精品一卡2卡3卡4更新| 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 91aial.com中文字幕在线观看| 高清毛片免费看| 大片电影免费在线观看免费| 人人妻人人爽人人添夜夜欢视频| 亚洲国产最新在线播放| 22中文网久久字幕| 中文字幕制服av| 国产一区亚洲一区在线观看| 久久av网站| 美女内射精品一级片tv| 欧美精品人与动牲交sv欧美| 亚洲精品456在线播放app| 一级毛片 在线播放| 少妇的逼水好多| 中文字幕av电影在线播放| 制服丝袜香蕉在线| 婷婷色av中文字幕| 国产精品国产三级国产av玫瑰| 热99久久久久精品小说推荐| 男男h啪啪无遮挡| 永久免费av网站大全| 欧美丝袜亚洲另类| 亚洲国产精品专区欧美| 另类亚洲欧美激情| 男男h啪啪无遮挡| 精品福利永久在线观看| 建设人人有责人人尽责人人享有的| 视频区图区小说| 久久精品熟女亚洲av麻豆精品| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在| 少妇 在线观看| 亚洲欧美成人综合另类久久久| 久久国产精品男人的天堂亚洲 | 精品国产露脸久久av麻豆| 亚洲精品第二区| 美女主播在线视频| 久久狼人影院| 亚洲色图综合在线观看| 国产免费福利视频在线观看| 免费看av在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 欧美+日韩+精品| 中文字幕精品免费在线观看视频 | 久久精品国产a三级三级三级| 精品久久国产蜜桃| 女人久久www免费人成看片| 欧美国产精品va在线观看不卡| 黄片无遮挡物在线观看| 国产亚洲精品第一综合不卡 | 久久国产精品大桥未久av| 一二三四在线观看免费中文在 | 免费看av在线观看网站| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 午夜av观看不卡| 一级爰片在线观看| 校园人妻丝袜中文字幕| 男女下面插进去视频免费观看 | 欧美精品国产亚洲| 国产欧美亚洲国产| 黄色视频在线播放观看不卡| 亚洲欧美成人综合另类久久久| 人妻 亚洲 视频| 中文字幕av电影在线播放| 交换朋友夫妻互换小说| 男人舔女人的私密视频| 精品久久国产蜜桃| 波野结衣二区三区在线| 国产精品国产三级国产专区5o| 女人精品久久久久毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品嫩草影院av在线观看| 一区在线观看完整版| 夜夜爽夜夜爽视频| 国产成人免费无遮挡视频| a级毛片在线看网站| av线在线观看网站| 亚洲av电影在线观看一区二区三区| 国产av码专区亚洲av| 免费看av在线观看网站| 欧美精品国产亚洲| 五月开心婷婷网| 在线免费观看不下载黄p国产| 色婷婷av一区二区三区视频| 国产精品不卡视频一区二区| 又黄又粗又硬又大视频| 久久99蜜桃精品久久| 男人舔女人的私密视频| 久久久久视频综合| 国产精品国产av在线观看| 国产精品女同一区二区软件| 成人免费观看视频高清| 日韩免费高清中文字幕av| 亚洲av欧美aⅴ国产| 久久精品久久久久久久性| 免费播放大片免费观看视频在线观看| 涩涩av久久男人的天堂| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 大片免费播放器 马上看| 久久人妻熟女aⅴ| 久久精品夜色国产| 欧美日韩视频精品一区| 国产乱人偷精品视频| 久久久国产一区二区| 蜜桃在线观看..| 国精品久久久久久国模美| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 如日韩欧美国产精品一区二区三区| 欧美成人午夜免费资源| 777米奇影视久久| 亚洲精品一二三| 91精品国产国语对白视频| 日本-黄色视频高清免费观看| 午夜激情av网站| 亚洲天堂av无毛| av黄色大香蕉| 一级a做视频免费观看| 亚洲成av片中文字幕在线观看 | 国产高清国产精品国产三级| 黄色配什么色好看| 国产亚洲精品久久久com| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 大码成人一级视频| 国产伦理片在线播放av一区| 一二三四中文在线观看免费高清| 欧美xxⅹ黑人| 麻豆乱淫一区二区| 久久这里只有精品19| 成年女人在线观看亚洲视频| 国产成人av激情在线播放| 国产av精品麻豆| 丝袜脚勾引网站| 婷婷色综合大香蕉| 亚洲国产毛片av蜜桃av| 久久影院123| 老司机影院毛片|