• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and analysis of dual-mode structure repetitive control based hybrid current regulation scheme for active power filters

    2013-02-18 19:35:15ZouZhixiangWangZhengChengMing

    Zou Zhixiang Wang Zheng Cheng Ming

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

    With the increasing use of nonlinear loads in power systems and more strict requirements by grid codes, the power quality becomes a critical issue today. The nonlinear loads may cause significant low order harmonics, which will not only increase the power loss in distribution lines but also disturb some sensitive electric equipment. Both the passive and the active power filters (APF) have been proposed to alleviate such low order harmonics[1-3]. Compared with the passive power filters, the APF is considered more attractive due to its high efficiency and controllability[4]. The function of the APF is to generate the out-of-phase harmonics purposely to compensate the existent harmonics in grid. In the past several years, the most important research line for the APF is related with the control schemes, which can effectively improve the performance of the APF system. In fact, the performance of the APF is mainly dependent on the current tracking capability. Many conventional current regulations, such as proportional integral(PI) control[5], hysteresis control[6]and deadbeat control[7], etc. have been applied in the APF system. However, these solutions exhibit some well-known drawbacks[8]and from the investigation of the experimental results, the current tracking capabilities based on these methods are relatively weak.

    The repetitive control is another promising current regulation scheme today. Originating from the internal model principle, the repetitive control provides a high-performance solution for the grid current quality applications[9-12]. The periodic disturbance and error can be easily eliminated by using this repetitive controller. Therefore, the repetitive controller can precisely track the reference current with various order harmonics, and it is very suitable for the current control in the APF application. However, the transient performance of the conventional repetitive controller is unsatisfactory for the APF application because the control output values update everyNsample intervals and the error convergence rate is slow.Nis the sampling times in a fundamental cycle. To accelerate the convergence rate, the odd-harmonic repetitive control scheme was proposed[13]. Compared with the conventional repetitive controller, the odd-harmonic repetitive controller updates its output values everyN/2 sample intervals, and the convergence rate is faster. Since the main harmonics in the power electronic system are odd harmonics, the odd-harmonic repetitive control (OHRC) was proposed for the shunt APF in Ref.[14]. In addition to the similar ability of harmonic rejection as the conventional repetitive control, the OHRC is verified to offer better transient performance. However, the OHRC only provides high gains for the odd harmonics but it has less controllability for the even order harmonics. Actually, the power system produces even order harmonics when power converters are employed under some unusual conditions[15-16]. Unlike the OHRC, the dual-mode structure repetitive controller (DMRC) can eliminate both the odd and even harmonics[17]. In addition, the DMRC also updates the control output values everyN/2 sample intervals. Thus, the DMRC can not only improve the performance of grid current control under general current harmonic conditions, but also maintain the fast convergence rate. It should be noted that the dynamic performance of repetitive control is not satisfactory because of the memory cells in the forward channel. Therefore, the repetitive controller is usually improved by integrating a feedback controller[18]. To provide good performance for both the steady-state and the transient operation of the APF, a novel hybrid current controller is proposed in this paper by integrating the deadbeat control and the DMRC. By using the proposed hybrid current controller, not only the advantages of the deadbeat controller, namely the fast transient response and easy digital implementation are maintained, but also the high robustness and accurate current tracking ability are provided.

    1 System Description

    Fig.1 System configuration of the single-phase shunt APF

    The dynamics of the APF in Fig.1 can be described as follows:

    (1)

    (2)

    where the compensation currenticand the capacitor voltageVcare the state variables, andVinis the input voltage.S(t) denotes the switching function, and the value is 1 or-1.LnandCnare the values of the grid-side inductor and the DC link capacitor, respectively.

    For the operation of the shunt APF, the grid currentisis controlled to track the sinusoidal reference while the DC-link voltage should be kept stable. The cascaded control strategy is proposed to achieve these two control objectives. The current regulation of the shunt APF consists of two parts: One is the current control loop and the other is the reference current generator. The reference current generator is designed based on the instantaneousp-qtheory, which has excellent steady-state performance and can be easily implemented[19]. Unlike the previous current regulation methods, the DMRC and the one-sampling-ahead preview (OSAP) control integrated hybrid current regulation scheme is newly proposed for the APF. Since the focus of this paper is to investigate the performance of harmonic current tracking on the AC side, the standard PI control is used to control the DC link voltage of the APF.

    2 Design and Analysis of Proposed Control Scheme

    2.1 Design of OSAP controller

    Eq.(1) can be described as

    (3)

    wherekandk+1 represent the sampling instants. The grid voltageEcan be assumed constant in each sampling periodTsby considering the sampling frequency is high enough. The OSAP control algorithm is a standard deadbeat control for the current loop. It yieldsic(k+1)=iref(k) with the transfer function asHcl(z)=z-1. The control law for the current-loop is given as

    (4)

    2.2 Proposed hybrid current control

    The proposed hybrid current control scheme is shown in Fig.2. The DMRC in the proposed hybrid controller has the controllability for both the odd and the even order harmonics. TwoN/2 memory cells run in parallel and the controller updates its control output everyN/2 sample intervals. Therefore, the convergence rate of the DMRC in the hybrid controller is faster than that of the conventional repetitive control schemes. The transfer function of the proposed hybrid controller is given as follows:

    (5)

    whereGohrc(z),Gehrc(z),Gf(z)=zandGosap(z) are the discrete transfer functions of the OHRC, the even-harmonic repetitive controller (EHRC), the compensation filter and the OSAP controller, respectively.ko≥0 andke≥0 are the repetitive control gains.

    Fig.2 Proposed hybrid current control system

    In Eq.(5), a low-pass filterQ(z) is employed to enhance the robustness of the system. Particularly, the DMRC will turn into an OHRC or an EHRC whenke=0 orko=0. The DMRC can also be turned into a conventional repetitive controller (CRC) with the repetitive gain ofko+kewhenko=kewith the transfer function as follows:

    (6)

    The open-loop frequency response fromiref(z) toic(z) of the hybrid current controller is given in Fig.3.ko=0.8 andke=0.6 are selected here as the repetitive gains. Obviously, the large gains are available at both the odd and the even order harmonics. Therefore, the proposed hybrid controller can offer a good current tracking capability for both the odd and the even order harmonics. Besides, the phase of the proposed hybrid controllers is zero at the fundamental and the harmonic frequencies by incorporating the phase compensating termGf(z). In order to enhance the robustness of the system,Q(z)=a0z-1+a1+a0zis used, where 2a0+a1=1. It should be mentioned thatQ(z) is a first-order low-pass filter with zero

    Fig.3 Frequency response of the proposed hybrid controller. (a) Magnitude; (b) Phase

    phase shift. With the increase ofa0, the value of ‖1/Q(z)‖ is increased, which will “push” the poles into the unit circle and make the system more stable. However, the gains beyond the cut-off frequency are reduced with the introduction of the filter. Therefore, a tradeoff design should be made between the tracking precision and the system robustness for the low-pass filter.

    2.3 Analysis of voltage loop

    From a physical point of view, the output of the voltage loopplosscan be seen as the total loss of the APF. Therefore, the DC-link voltage is controlled to be constant in the steady state to minimize the losses, and the PI is used in the DC-link voltage controller. From Eq.(2), the DC-link voltage can be derived as

    (7)

    Obviously, due toS(t), theVc(t) in Eq.(7) is discontinued. Eq.(7) can be averaged in one sample interval as

    (8)

    where 〈Vc〉Tsrepresents the average value ofVc(t) in a sample interval, andD(t) denotes the duty ratio. Assuming that the APF is in steady-state, the compensation currenticcan be written as

    (9)

    whereicf(t) andich(t) are the fundamental frequency and harmonic frequencies current components, respectively;ωis the fundamental frequency; andkdenotes thek-th order harmonic. Considering Eq.(8) and Eq.(9), it can be found that the DC-link voltage includes not only the fundamental term but also the harmonic terms, which means both the fundamental and the harmonic components contribute to the oscillation of the DC-link voltage. Practically, only the oscillation is twice that the fundamental frequency when the power exchange between grid and APF is considered. A low-pass filter (LPF) is designed to reduce the effect of the second order harmonic. Fig.4 shows the block diagram of the DC link voltage loop, where the measured voltage is filtered before inputting to the PI controller so that the current inner loop is less affected by the DC-link voltage variation. The cut-off frequency of the LPF is 60 Hz here.Vdc-refis the reference value of the DC-link voltage.

    Fig.4 Block diagram of the DC link voltage loop

    2.4 Robustness analysis

    In practice, the system parameter may fluctuate. The uncertainty of the system parameter can be written as

    Lr=Ln+ΔL

    (10)

    whereLris the real values of the converter-side inductor, and ΔLis the uncertainties of the inductor. Considering the uncertainties of system parameters, the real system transfer function ofHcl(z) becomesHs(z):

    (11)

    Fig.5 Pole map of the APF system with only OSAP when the parameter fluctuates

    2.5 Improvement for suppressing high order harmonics

    For the frequency response of the proposed hybrid current controller in Fig.3(a), the gains of harmonics decrease with the increase in the harmonic order. When the harmonic frequency exceeds 1 kHz, the gains at harmonics almost approach zero. In order to eliminate some specific high order harmonics in the APF system, a modified structure of the proposed hybrid controller is proposed with the resonant controller. The zero steady-state error resonant control has been widely used in the synchronous-frame control system in recent years[20-21]. This controller can be summarized as a set of band pass filters, which generate large gains at the selected frequency. The transfer function of resonant control for selective harmonics is illustrated as follows:

    (12)

    whereωnare the selective harmonic frequencies andknare the control gains. The corresponding structure of the modified controller is shown in Fig.6(a), which incorporates both the DMRC and the resonant controller. The selective harmonic frequencies resonant controller is introduced, which aims to further reduce the selective harmonic contents. The transfer function of the modified controller is given as

    (13)

    whereGdmrc(s) is the transfer function of the pure DMRC. Referring to Ref.[22], the DMRC term in Eq.(13) can be derived as follows:

    (14)

    From Eq.(14), it can be seen that the DMRC term can be divided as a PI term and an infinite resonant term. Therefore, the differences between the pure DMRC and the modified structure controller are the control gains of the selective harmonic frequencies. The corresponding control gains change from 4(ko+ke)/(NTs) for the pure DMRC to 4(ko+ke)/(NTs)+knfor the modified controller. Sinceknis not affected by the low-pass filterQ(z), the magnitudes of the selective frequencies can be increased. It is noteworthy that the performance of the whole system can be improved with the increasing number of resonant units, but the computational complexity will also be increased. Fig.6(b) shows the open-loop frequencies response with the introduction of the 15th and

    Fig.6 Modified current controller. (a) Block diagram; (b) Open-loop frequency response

    the 17th resonant units. It is obviously shown that the gains at the 15th and the 17th harmonic frequencies have been increased effectively.

    2.6 Comparative analysis

    The CRC-based APF[9]and the OHRC-based APF[14]have already been proposed to improve the power quality. Since these two methods are both internal model principle based control, the corresponding APF can track the periodic reference and reject the disturbance well. However, the shortcomings of these two control schemes for APF are also apparent.

    First, the dynamic performance of the CRC-based APF is not good because of theNmemory cells in the feed-forward channel. The CRC updates its output value everyNsample intervals, which means that the control signal will be updated in at least one fundamental cycle. Secondly, the even-harmonic suppression ability of the OHRC-based APF is weak. Since the OHRC is designed only for the odd-harmonic frequency, the even-harmonic can hardly be eliminated by this type of the APF. Therefore, the steady-state performance of the OHRC-based APF is limited. The hybrid control scheme proposed in this paper overcomes the shortcomings of the two methods and achieves good steady-state and dynamic performance.

    From Refs.[22] and [23], it can be concluded that the CRC and the DMRC have the controllability for DC component, the fundamental component and different order harmonics, while the OHRC can only track for the fundamental component and the odd harmonic signals. For the fundamental and odd-harmonic signals, the tracking performance of the OHRC is better than that of the CRC when the same repetitive gains are employed, namely,ko=kr(kris the repetitive gain of the CRC). This is due to the fact that the equivalent odd-harmonic resonant gains of the OHRC are twice larger than those of the CRC. Meanwhile, the equivalent resonant gains of the DMRC is larger than those of the CRC for all the interesting frequencies whenko+ke=kr. The stability domain of repetitive gainkrfor the CRC is 0

    3 Experimental Verification

    To verify the proposed hybrid current regulation scheme experimentally, the laboratory setup is built and the experiments are carried out. The experimental prototype of the APF is based on a Semikron AN-8005 (an H-bridge IGBT inverter). The system configuration is the same as the system configuration described in Fig.1. The single-phase shunt APF is controlled using a dSPACE DS1104 controller card. The parameters are selected as follows:Vc=100 V,E=65 V,Ln=5 mH,Cn=5500 μF,f=50 Hz,Lac=3 mH, and the switching frequencyfs=10 kHz. The nonlinear load is a full-wave diode rectifier withCr=2200 μF. The reactive power with the nominal resistor is approximately zero.

    First, Fig.7(a) shows the grid current with OSAP+CRC; Fig.7(b) shows the grid current of OSAP+OHRC; and Fig.7(c) shows the grid current of the hybrid current controller. Fig.8 shows the measured harmonic spectrum of the three schemes. It is observed that the total harmonic distortion(THD) values are 5.88% and 4.63% for OSAP+CRC and OSAP+OHRC, respectively. The value is reduced to 3.35% by using the proposed hybrid controller. Compared with the CRC approach, the steady-state performance is better and the harmonic contents are lower for almost all the interesting

    Fig.7 Grid current waveform after compensation. (a) OSAP+CRC-controlled APF; (b) OSAP+OHRC-controlled APF; (c) Proposed hybrid-controlled APF

    Fig.8 Harmonic content of grid current. (a) OSAP+CRC-controlled APF; (b) OSAP+OHRC-controlled APF; (c) Proposed hybrid-controlled APF

    frequencies. Compared with the OHRC approach, the proposed DMRC-based hybrid controller has superiority in compensation ability since it can suppress not only the odd order but also the even order harmonics.

    Secondly, Fig.9 shows the measured transient tracking performance of the compensation current with the OSAP+CRC, the OSAP+OHRC, and the proposed hybrid control. In Fig.9(a), the OSAP+CRC starts working att=0.4 s. The tracking error between the reference current and the real current is reduced from 2 to 0.3 A, and the convergence time is about 1s. In Fig.9(b), the OSAP+OHRC controller works att=0.4 s. The corresponding tracking error is reduced from 3 to 0.3 A, and the convergence time is about 0.6s. In Fig.9(c), the hybrid controller begins to work at the same time, and the transient effect is almost the same as that of Fig.9(b). It is obvious that the OSAP+OHRC controller and the proposed hybrid controller have a better convergence rate compared with the OSAP+CRC controller.

    Fig.9 Tracking error of the compensation current. (a) OSAP+CRC-controlled APF; (b) OSAP+OHRC-controlled APF; (c) The proposed hybrid-controlled APF

    Finally, Fig.10(a) and Fig.10(b) show the measured grid current with the compensation of the proposed hybrid controller plus the 15th and the 17th order resonant units and the corresponding harmonic content. Compared with Fig.9(c), it is obviously seen that the contents of the

    Fig.10 Measured grid current using the proposed hybrid control plus 15th and 17th order resonant units. (a) Grid current; (b) Harmonic contents

    15th and the 17th order harmonics have been reduced effectively. The THD of the grid current is further suppressed with the introduction of resonant units, and the value is 2.23%.

    4 Conclusion

    In this paper, a novel hybrid current regulation scheme is proposed for the single-phase shunt APF by integrating the deadbeat control and the DMRC. The all-digital approach can be easily implemented and can also be extended into a three-phase APF system. It not only offers better tracking ability for current harmonics compensation, but also maintains good transient performance. This paper also presents a modified structure, which incorporates the proposed hybrid current controller and the resonant controller, to further suppress some high order specific harmonics. As analyzed in this paper, the DMRC can be regarded as a set of resonant controllers plus a PI term. With the integration of the DMRC and the selective harmonic resonant controller, the control gain at the selective harmonic frequency can be adjusted flexibly. Additionally, the relationships among different repetitive control schemes are also shown. By the experimental results, it is verified that the THD performance of the proposed hybrid controller is better than that of the OHRC+OSAP approach, and its transient performance is better than that of the CRC+OSAP approach. The grid current can achieve good performance and meet the requirements of IEEE 519 quite well.

    [1]Akagi H. Trends in active power line conditioners [J].IEEETransPowerElectronics, 1994,9(5): 263-268.

    [2]Fujita H, Akagi H. A practical approach to harmonic compensation in power systems-series connection of passive and active filters [J].IEEETransIndustryApplications, 1991,27(6): 1020-1025.

    [3]Green T C, Marks J H. Control techniques for active power filters [J].IEEProceedingsofElectricPowerApplications, 2005,152(2): 369-381.

    [4]Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement [J].IEEETransIndustrialElectronics, 1999,46(5): 960-971.

    [5]Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications [J].IEEETransIndustrialElectronics, 1998,45(5): 722-729.

    [6]Lin B R, Tsay S C, Liao M S. Integrated power factor compensator based on sliding mode controller [J].IEEProceedingsofElectricPowerApplications, 2001,148(3): 237-244.

    [7]Nishida K, Rukonuzzman M, Nakaoka M. Advanced current control implementation with robust deadbeat algorithm for shunt single-phase voltage-source type active power filter [J].IEEProceedingsofElectricPowerApplications, 2004,151(3): 283-288.

    [8]Teodorescu R, Liserre M, Rodríguez P.Gridconvertersforphotovoltaicandwindpowersystems[M]. New Jersey: Wiley, 2011:289-311.

    [9]Garcia-Cerrada A, Pinzon-Ardila O, Feliu-Batlle V, et al. Application of a repetitive controller for a three-phase active power filter [J].IEEETransPowerElectronics, 2007,22(1): 237-246.

    [10]Escobar G, Hernandez-Briones P G, Martinez P R, et al. A repetitive-based controller for the compensation of 6l±1 harmonic components [J].IEEETransIndustrialElectronics, 2008,55(4): 3150-3158.

    [11]Costa-Castelló R, Grino R, Parpal R C, et al. High-performance control of a single-phase shunt active filter [J].IEEETransControlSystemsTechnology, 2009,17(6) 1318-1329.

    [12]Ramos G A, Costa-Castelló R. Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control [J].IETControlTheory&Applications, 2012,6(11): 1633-1644.

    [13]Grino R, Costa-Castelló R. Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances [J].Automatica, 2005,41(1): 153-157.

    [14]Costa-Castelló R, Grino R, Fossas E. Odd-harmonic digital repetitive control of a single-phase current active filter [J].IEEETransPowerElectronics, 2004,19(1): 1060-1068.

    [15]Buddingh P C. Even harmonic resonance-an unusual problem [J].IEEETransIndustryApplications, 2003,39(1): 1181-1186.

    [16]Taylor J B. Even harmonics in alternating-current circuits [J].TransactionsoftheAmericanInstituteofElectricalEngineers, 1909, ⅩⅩⅤⅢ(1): 725-732.

    [17]Zhou K, Wang D, Zhang B, et al. Dual-mode structure digital repetitive control [J].Automatica, 2007,43(3):546-554.

    [18]Cosner C, Anwar G, Tomizuka M. Plug in repetitive control for industrial robotic manipulators [C]//ProcIEEEIntConfRobotAutomat. Cincinnati, OH, USA, 1990:1970-1975.

    [19]Superti-Furga G, Todeschini G. Discussion on instantaneous p-q strategies for control of active filters [J].IEEETransPowerElectronics, 2008,23(7): 1945-1955.

    [20]Liserre M, Teodorescu R, Blaabjerg F. Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame [J].IEEETransPowerElectronics, 2006,21(5): 836-841.

    [21]Lascu C, Asiminoaei L, Boldea I, et al. High performance current controller for selective harmonic compensation in active power filters [J].IEEETransPowerElectronics, 2007,22(9): 1826-1835.

    [22]Zou Z, Wang Z, Cheng M. Design and analysis of operating strategies for a generalised voltage-source power supply based on internal model principle [J/OL].IETPowerElectronics. (2013-08-21)[2013-10-09].http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2013.0159.

    [23]Zou Z, Wang Z, Cheng M. Modeling, analysis, and design of multi-function grid-interfaced inverters with output LCL filter [J/OL].IEEETransPowerElectronics. (2013-09-04)[2013-10-09]. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6588968&tag=1.

    欧美日本亚洲视频在线播放| 午夜久久久久精精品| 亚洲午夜理论影院| 12—13女人毛片做爰片一| 久久婷婷人人爽人人干人人爱| 色综合站精品国产| 黄色片一级片一级黄色片| 欧美另类亚洲清纯唯美| 亚洲最大成人中文| www日本黄色视频网| 亚洲人成77777在线视频| 久久香蕉激情| 一级毛片高清免费大全| ponron亚洲| 久久久国产欧美日韩av| 18禁观看日本| 日本五十路高清| 无遮挡黄片免费观看| 又粗又爽又猛毛片免费看| 12—13女人毛片做爰片一| 久久欧美精品欧美久久欧美| 琪琪午夜伦伦电影理论片6080| 一本一本综合久久| 日日爽夜夜爽网站| www.自偷自拍.com| 国产精品精品国产色婷婷| 成人特级黄色片久久久久久久| 91字幕亚洲| 久久99热这里只有精品18| 免费人成视频x8x8入口观看| 日韩欧美在线二视频| 色老头精品视频在线观看| 99久久久亚洲精品蜜臀av| 久久天堂一区二区三区四区| 嫁个100分男人电影在线观看| 日韩欧美在线二视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一区av在线观看| 男女床上黄色一级片免费看| 久久香蕉激情| 黑人操中国人逼视频| 亚洲 国产 在线| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 看免费av毛片| 午夜视频精品福利| 最近视频中文字幕2019在线8| 精品熟女少妇八av免费久了| 国产亚洲精品综合一区在线观看 | 黄频高清免费视频| 亚洲精品国产一区二区精华液| 超碰成人久久| 精品久久久久久,| 久久人妻福利社区极品人妻图片| 亚洲avbb在线观看| 成人特级黄色片久久久久久久| 国产精品,欧美在线| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩东京热| 成人三级黄色视频| 99久久无色码亚洲精品果冻| 欧美国产日韩亚洲一区| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 两个人视频免费观看高清| 性欧美人与动物交配| 久久久久久久久中文| 男人舔奶头视频| 九九热线精品视视频播放| 99久久国产精品久久久| 无限看片的www在线观看| 久久久久亚洲av毛片大全| 视频区欧美日本亚洲| bbb黄色大片| 亚洲 欧美一区二区三区| 999精品在线视频| 黄色视频不卡| 国产亚洲欧美98| 欧美日韩国产亚洲二区| av欧美777| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 久久婷婷成人综合色麻豆| 19禁男女啪啪无遮挡网站| 一本久久中文字幕| 日韩大尺度精品在线看网址| 嫩草影视91久久| 日韩欧美三级三区| 国产熟女午夜一区二区三区| 韩国av一区二区三区四区| 伊人久久大香线蕉亚洲五| 欧美日韩中文字幕国产精品一区二区三区| 亚洲免费av在线视频| 一本综合久久免费| 久久婷婷人人爽人人干人人爱| 日韩大码丰满熟妇| 国产精品野战在线观看| 亚洲真实伦在线观看| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放 | 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 首页视频小说图片口味搜索| 又黄又爽又免费观看的视频| 免费av毛片视频| 国产亚洲av嫩草精品影院| 男女那种视频在线观看| 好男人电影高清在线观看| 九九热线精品视视频播放| 欧美黄色淫秽网站| 曰老女人黄片| 国产高清视频在线观看网站| aaaaa片日本免费| 中文字幕av在线有码专区| 男女午夜视频在线观看| 老鸭窝网址在线观看| 91大片在线观看| 悠悠久久av| 国产亚洲欧美在线一区二区| 99久久综合精品五月天人人| 久久精品91蜜桃| 哪里可以看免费的av片| 久久草成人影院| 国产精品1区2区在线观看.| 精品国产美女av久久久久小说| 给我免费播放毛片高清在线观看| 一级毛片高清免费大全| 亚洲国产精品999在线| 免费搜索国产男女视频| 一本精品99久久精品77| 欧美+亚洲+日韩+国产| 日本免费a在线| 亚洲欧美精品综合久久99| 精品少妇一区二区三区视频日本电影| 88av欧美| 老司机午夜十八禁免费视频| 国产精品国产高清国产av| 少妇被粗大的猛进出69影院| 国产av又大| 色综合婷婷激情| www日本黄色视频网| 免费看十八禁软件| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 国产成人精品无人区| 日本在线视频免费播放| 欧美又色又爽又黄视频| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 日韩欧美精品v在线| 一个人观看的视频www高清免费观看 | 美女 人体艺术 gogo| 欧美高清成人免费视频www| 国产亚洲精品第一综合不卡| 中亚洲国语对白在线视频| 国内精品久久久久精免费| 在线观看66精品国产| 国产野战对白在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 免费高清视频大片| 99在线人妻在线中文字幕| av超薄肉色丝袜交足视频| 欧美3d第一页| 亚洲欧美日韩高清在线视频| 久久精品亚洲精品国产色婷小说| 午夜福利高清视频| 十八禁网站免费在线| 国产精品久久视频播放| 蜜桃久久精品国产亚洲av| 又黄又粗又硬又大视频| 国产三级中文精品| 国产黄a三级三级三级人| 香蕉国产在线看| 久久人妻av系列| 国产亚洲av高清不卡| 欧美日韩中文字幕国产精品一区二区三区| 国产av一区在线观看免费| 日本黄大片高清| 成在线人永久免费视频| 中文字幕最新亚洲高清| 亚洲美女黄片视频| 在线观看美女被高潮喷水网站 | netflix在线观看网站| av福利片在线观看| 久久精品aⅴ一区二区三区四区| 老鸭窝网址在线观看| 一本精品99久久精品77| 老熟妇仑乱视频hdxx| 国产免费av片在线观看野外av| 久久精品国产亚洲av高清一级| 欧美中文日本在线观看视频| 欧美高清成人免费视频www| 嫩草影视91久久| 色综合站精品国产| 日韩有码中文字幕| 久久久精品大字幕| 国产视频一区二区在线看| 久久精品国产亚洲av香蕉五月| 人成视频在线观看免费观看| 亚洲avbb在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产看品久久| 国产精品爽爽va在线观看网站| 国内毛片毛片毛片毛片毛片| 给我免费播放毛片高清在线观看| 久久伊人香网站| 免费观看精品视频网站| 亚洲成人免费电影在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲七黄色美女视频| 最新美女视频免费是黄的| 国产男靠女视频免费网站| a级毛片在线看网站| 人人妻人人看人人澡| 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 精品国产亚洲在线| 免费搜索国产男女视频| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美日韩东京热| 日韩欧美三级三区| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 国产高清激情床上av| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 欧美zozozo另类| 怎么达到女性高潮| 色综合亚洲欧美另类图片| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| or卡值多少钱| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看| 麻豆国产av国片精品| 亚洲欧美日韩高清专用| 久久久精品大字幕| 不卡一级毛片| 国产一区二区激情短视频| 好男人在线观看高清免费视频| 成人欧美大片| 欧美日韩瑟瑟在线播放| 亚洲男人的天堂狠狠| 91在线观看av| 色在线成人网| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 别揉我奶头~嗯~啊~动态视频| 亚洲午夜理论影院| 国产一区二区在线观看日韩 | 免费在线观看视频国产中文字幕亚洲| 美女黄网站色视频| 99久久精品国产亚洲精品| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 国产日本99.免费观看| 白带黄色成豆腐渣| 99精品欧美一区二区三区四区| 精品无人区乱码1区二区| 欧美日本视频| 久久国产乱子伦精品免费另类| 99久久无色码亚洲精品果冻| 免费看日本二区| 日韩欧美在线乱码| 日韩免费av在线播放| 五月玫瑰六月丁香| 中亚洲国语对白在线视频| 精品日产1卡2卡| 一本大道久久a久久精品| 婷婷精品国产亚洲av在线| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 两性夫妻黄色片| 成人18禁高潮啪啪吃奶动态图| 免费无遮挡裸体视频| 中文字幕人成人乱码亚洲影| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 日日爽夜夜爽网站| 欧美极品一区二区三区四区| 韩国av一区二区三区四区| 久久久久久人人人人人| 久久久久久国产a免费观看| 香蕉国产在线看| 国产精品一区二区免费欧美| 午夜福利高清视频| 香蕉丝袜av| 伦理电影免费视频| 国产一级毛片七仙女欲春2| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 亚洲最大成人中文| 久久中文看片网| 午夜激情福利司机影院| 又黄又粗又硬又大视频| 丰满的人妻完整版| 99久久国产精品久久久| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 亚洲欧美精品综合久久99| 成人特级黄色片久久久久久久| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 88av欧美| 国内精品久久久久精免费| 亚洲激情在线av| 蜜桃久久精品国产亚洲av| 久久国产乱子伦精品免费另类| 中文字幕精品亚洲无线码一区| 成人av一区二区三区在线看| 制服诱惑二区| 我的老师免费观看完整版| 禁无遮挡网站| 不卡一级毛片| 国产熟女午夜一区二区三区| 一进一出抽搐gif免费好疼| 午夜免费激情av| 亚洲专区国产一区二区| 在线观看午夜福利视频| 又紧又爽又黄一区二区| a在线观看视频网站| 欧美不卡视频在线免费观看 | 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| xxx96com| 老汉色av国产亚洲站长工具| 日日夜夜操网爽| 亚洲男人天堂网一区| 丰满人妻熟妇乱又伦精品不卡| av欧美777| 色av中文字幕| 久久亚洲精品不卡| 正在播放国产对白刺激| 免费在线观看完整版高清| 日韩欧美国产在线观看| 88av欧美| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 国产精品一区二区免费欧美| 长腿黑丝高跟| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| a级毛片a级免费在线| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美 | 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| 亚洲av成人av| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| 亚洲av日韩精品久久久久久密| 99精品在免费线老司机午夜| 黄色视频不卡| 黑人操中国人逼视频| 舔av片在线| 中文字幕av在线有码专区| 亚洲无线在线观看| 欧美日韩国产亚洲二区| 最近最新中文字幕大全免费视频| 在线十欧美十亚洲十日本专区| 久久精品国产亚洲av高清一级| www日本在线高清视频| а√天堂www在线а√下载| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 精品福利观看| 又大又爽又粗| 国产99白浆流出| 亚洲欧美日韩高清专用| 伊人久久大香线蕉亚洲五| 精品一区二区三区四区五区乱码| 亚洲成人精品中文字幕电影| 一卡2卡三卡四卡精品乱码亚洲| av欧美777| 国产精品 欧美亚洲| 精品国产美女av久久久久小说| 久久午夜综合久久蜜桃| 88av欧美| 波多野结衣巨乳人妻| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 日本免费a在线| 欧美日韩瑟瑟在线播放| 这个男人来自地球电影免费观看| 亚洲电影在线观看av| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 亚洲人成伊人成综合网2020| 美女大奶头视频| 欧美另类亚洲清纯唯美| 美女黄网站色视频| 国产激情偷乱视频一区二区| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 国产乱人伦免费视频| 又大又爽又粗| ponron亚洲| aaaaa片日本免费| 日韩欧美精品v在线| 精品日产1卡2卡| 99久久精品热视频| 黄色a级毛片大全视频| 亚洲精品粉嫩美女一区| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 国产成人精品久久二区二区免费| 99热只有精品国产| 精品午夜福利视频在线观看一区| 在线a可以看的网站| 18禁美女被吸乳视频| 亚洲成av人片在线播放无| 波多野结衣高清作品| 欧美国产日韩亚洲一区| 欧美在线黄色| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 香蕉国产在线看| 久久久久久免费高清国产稀缺| 桃红色精品国产亚洲av| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 国产片内射在线| 亚洲成人精品中文字幕电影| 一进一出抽搐动态| 欧美日韩黄片免| 国产精品 国内视频| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 免费在线观看日本一区| 丰满的人妻完整版| 校园春色视频在线观看| 国产精品久久久av美女十八| 免费在线观看亚洲国产| 久久久久久九九精品二区国产 | 熟女电影av网| 亚洲五月天丁香| 欧美激情久久久久久爽电影| 亚洲九九香蕉| 99久久99久久久精品蜜桃| 亚洲中文av在线| 黄色a级毛片大全视频| 久久精品国产清高在天天线| 国产99久久九九免费精品| 黄色视频,在线免费观看| 黑人操中国人逼视频| 日本免费a在线| 黄色成人免费大全| 欧美日韩福利视频一区二区| 亚洲自拍偷在线| 日本三级黄在线观看| 欧美黄色片欧美黄色片| 国产爱豆传媒在线观看 | 久久天堂一区二区三区四区| 看片在线看免费视频| 一夜夜www| 亚洲人成网站在线播放欧美日韩| 国产成人av教育| 啦啦啦免费观看视频1| 国产aⅴ精品一区二区三区波| 亚洲中文av在线| 不卡av一区二区三区| 高清毛片免费观看视频网站| 欧美又色又爽又黄视频| 亚洲avbb在线观看| 美女黄网站色视频| 亚洲成av人片在线播放无| 亚洲黑人精品在线| 少妇粗大呻吟视频| 亚洲欧美精品综合久久99| 国产精品免费一区二区三区在线| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 国产99白浆流出| e午夜精品久久久久久久| 男女下面进入的视频免费午夜| 99热这里只有是精品50| 免费看美女性在线毛片视频| 老熟妇乱子伦视频在线观看| 99精品久久久久人妻精品| 欧美av亚洲av综合av国产av| 久久热在线av| 欧美日韩亚洲综合一区二区三区_| 黄色成人免费大全| 无人区码免费观看不卡| 国产成人系列免费观看| 国产成人av激情在线播放| 嫩草影院精品99| av福利片在线观看| 午夜激情福利司机影院| 国产精品av视频在线免费观看| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 国产91精品成人一区二区三区| 看黄色毛片网站| av超薄肉色丝袜交足视频| 日本免费一区二区三区高清不卡| 欧美另类亚洲清纯唯美| 亚洲精品国产精品久久久不卡| 久久久久国产精品人妻aⅴ院| 午夜精品在线福利| 美女免费视频网站| 亚洲av成人精品一区久久| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久久毛片| 午夜老司机福利片| 精品国产美女av久久久久小说| 人人妻人人看人人澡| 中亚洲国语对白在线视频| 伊人久久大香线蕉亚洲五| www.精华液| 色综合站精品国产| 黄色成人免费大全| 老司机午夜十八禁免费视频| 91麻豆精品激情在线观看国产| 99国产精品99久久久久| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 国产精品久久电影中文字幕| 久久久久久久午夜电影| 亚洲色图av天堂| 国产成人av教育| 久久99热这里只有精品18| 亚洲中文日韩欧美视频| 午夜福利在线观看吧| 久久久久亚洲av毛片大全| svipshipincom国产片| 亚洲无线在线观看| 国产精品亚洲一级av第二区| 国产97色在线日韩免费| 亚洲,欧美精品.| 特级一级黄色大片| 国产熟女午夜一区二区三区| avwww免费| 国产精品电影一区二区三区| 99久久无色码亚洲精品果冻| 男人舔奶头视频| 国产人伦9x9x在线观看| 久久人妻福利社区极品人妻图片| 妹子高潮喷水视频| 亚洲av电影不卡..在线观看| 亚洲av日韩精品久久久久久密| 亚洲av五月六月丁香网| 中文字幕精品亚洲无线码一区| 丰满的人妻完整版| 国产精品亚洲美女久久久| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 国产1区2区3区精品| 麻豆av在线久日| 国产亚洲精品第一综合不卡| 夜夜躁狠狠躁天天躁| 亚洲aⅴ乱码一区二区在线播放 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲狠狠婷婷综合久久图片| 欧美三级亚洲精品| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 国产黄片美女视频| 非洲黑人性xxxx精品又粗又长| 国产精品,欧美在线| 欧美性长视频在线观看| 日韩有码中文字幕| 国产欧美日韩一区二区三| 一本综合久久免费| 别揉我奶头~嗯~啊~动态视频| 男女做爰动态图高潮gif福利片| 国产亚洲精品av在线| 男插女下体视频免费在线播放| 亚洲成人中文字幕在线播放| 国产1区2区3区精品| 18禁裸乳无遮挡免费网站照片| 男女午夜视频在线观看| 一级毛片女人18水好多| 亚洲精华国产精华精| 亚洲自拍偷在线| 国产激情欧美一区二区| 一边摸一边抽搐一进一小说| 少妇人妻一区二区三区视频| 日日夜夜操网爽| 国模一区二区三区四区视频 | 亚洲av第一区精品v没综合| 18禁观看日本| 久久人妻av系列| 欧美在线一区亚洲| 97碰自拍视频| 久久久久久久久免费视频了| 一个人观看的视频www高清免费观看 | 亚洲欧美精品综合一区二区三区| 亚洲免费av在线视频| 亚洲精品粉嫩美女一区| 国产视频一区二区在线看| 精品日产1卡2卡| 亚洲狠狠婷婷综合久久图片| 999精品在线视频| 成人18禁在线播放| 18禁美女被吸乳视频| 日韩欧美国产一区二区入口|