顧斌,陳志堅(jiān),陳欣迪
(1. 河海大學(xué) 土木與交通學(xué)院,江蘇 南京,210098;2. 河海大學(xué) 地球科學(xué)與工程學(xué)院,江蘇 南京,210098;3. 河海大學(xué) 港口海岸與近海工程學(xué)院,江蘇 南京,210098)
大尺寸混凝土箱梁日照溫度場(chǎng)的實(shí)測(cè)與仿真分析
顧斌1,陳志堅(jiān)2,陳欣迪3
(1. 河海大學(xué) 土木與交通學(xué)院,江蘇 南京,210098;2. 河海大學(xué) 地球科學(xué)與工程學(xué)院,江蘇 南京,210098;3. 河海大學(xué) 港口海岸與近海工程學(xué)院,江蘇 南京,210098)
基于對(duì)蘇通大橋輔助航道橋運(yùn)營(yíng)期溫度數(shù)據(jù)的分析以及對(duì)不同尺寸箱梁的溫度場(chǎng)的仿真計(jì)算,研究大尺寸箱梁溫度場(chǎng)的分布特點(diǎn)及其影響,提出腹板溫度梯度和底板溫度梯度的修正方法。研究結(jié)果表明:大尺寸混凝土箱梁豎向溫度分布特點(diǎn)為腹板溫度整體高于梗腋部位溫度,而梗腋部位的溫度又整體高于底板溫度;計(jì)算大尺寸混凝土箱梁的溫度效應(yīng)時(shí),由腹板溫度和底板溫度引起的豎向撓度曲率誤差最高可達(dá)33.3%。腹板沿壁厚方向最大溫度梯度可達(dá)9 ℃,當(dāng)上部結(jié)構(gòu)上下行分幅布置時(shí),外側(cè)腹板和內(nèi)側(cè)腹板有不可忽略的橫向溫差。
大尺寸混凝土箱梁;溫度分布;溫度梯度;橫向溫差;撓度曲率
近幾十年來(lái),全球相繼發(fā)生多起由溫度應(yīng)力導(dǎo)致混凝土橋梁的嚴(yán)重裂損事故,研究結(jié)果表明[1?5],太陽(yáng)輻射引起的溫差應(yīng)力是其產(chǎn)生的主要原因。國(guó)內(nèi)外許多學(xué)者基于工程熱傳導(dǎo)理論和現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù),對(duì)混凝土箱梁在太陽(yáng)輻射作用下的溫度分布、影響因素及分析方法進(jìn)行了大量的研究,如Elbadry等[3,6]提出了全面考慮太陽(yáng)輻射、大氣溫度、風(fēng)速、橋址及橋梁走向和材料物理特性等因素影響的箱梁溫度場(chǎng)分布的二維有限元計(jì)算方法;Mirambell等[7]基于有限差分法和有限元法提出了 2種計(jì)算橋梁溫度分布的數(shù)值方法;Larsson等[8]通過(guò)對(duì)混凝土板的野外現(xiàn)場(chǎng)實(shí)驗(yàn),論證了基于氣象參數(shù)的有限元模型的可行性,最后運(yùn)用當(dāng)?shù)貧庀笳居涗浀臍庀髷?shù)據(jù)對(duì)混凝土板的溫度場(chǎng)進(jìn)行了仿真模擬,估算了50年一遇的溫度梯度極值,并與歐洲規(guī)范進(jìn)行了對(duì)比評(píng)述;肖建莊等[9?11]也均基于熱傳導(dǎo)理論建立了箱梁溫度場(chǎng)的有限元計(jì)算方法;Roberts-Wollman等[12]在2.5 a的混凝土箱梁溫度場(chǎng)實(shí)測(cè)資料的基礎(chǔ)上,提出了預(yù)測(cè)箱梁豎向溫差的方法,并與實(shí)測(cè)值及規(guī)范規(guī)定的溫度梯度進(jìn)行了比較;Mondal等[13]對(duì)美國(guó)一座預(yù)應(yīng)力橋梁進(jìn)行了長(zhǎng)達(dá) 5 a的溫度監(jiān)測(cè),對(duì)箱梁最大豎向溫差和箱梁內(nèi)空氣溫度的關(guān)系進(jìn)行了回歸分析;雷笑等[1?2,14]對(duì)國(guó)內(nèi)一些混凝土箱梁橋進(jìn)行了溫度觀測(cè),并分別提出了各自觀測(cè)橋梁的溫度分布形式。這些學(xué)者的研究者重點(diǎn)是箱梁溫度場(chǎng)的數(shù)值模擬計(jì)算和基于實(shí)測(cè)數(shù)據(jù)的箱梁溫度梯度的分析,而涉及大尺寸混凝土箱梁溫度場(chǎng)分布的研究較少,但Li等[15]通過(guò)對(duì)加拿大的1座跨海大橋的溫度實(shí)測(cè)研究表明:對(duì)于大尺寸箱梁計(jì)算來(lái)說(shuō),現(xiàn)有規(guī)范規(guī)定的溫度梯度分布模式不夠準(zhǔn)確。本文作者基于蘇通大橋輔助航道橋運(yùn)營(yíng)期的實(shí)測(cè)溫度數(shù)據(jù),分析了大尺寸箱梁溫度場(chǎng)的分布特點(diǎn),并基于橋址逐時(shí)實(shí)測(cè)氣象數(shù)據(jù)建立了考慮了太陽(yáng)輻射、結(jié)構(gòu)幾何尺寸、所處地理位置、橋梁方位和所用材料物理特性等因素的混凝土箱梁溫度場(chǎng)有限元模型,對(duì)大尺寸混凝土箱梁的溫度場(chǎng)分布以及其影響因素進(jìn)行研究。
蘇通大橋輔航道橋位于南通市和蘇州(常熟)市之間,呈南北走向,軸向角為354o,位于東經(jīng)121o、北緯 31.77o,其跨徑布置見(jiàn)圖 1,上部結(jié)構(gòu)上下行分幅布置,主墩頂部?jī)煞鶚蛳淞河脵M隔梁連接,兩主墩與主梁固結(jié)。橋面鋪裝層為11 cm厚的瀝青混凝土,全橋采用單箱單室直腹板混凝土結(jié)構(gòu),箱梁頂寬16.4 m,底寬7.5 m。根部梁高15 m,高跨比為1/17.9,跨中梁高4.5 m,高跨比為1/60,梁高采用1.6 次拋物線變化。
為了反映在日照等環(huán)境作用下雙幅箱梁截面溫度分布狀態(tài)沿橋縱向不同位置、不同截面高度箱梁溫度分布情況,選擇2個(gè)箱梁斷面為溫度觀測(cè)斷面,斷面位置和溫度測(cè)點(diǎn)布置分別如圖1~3所示。同時(shí),為了反映箱梁溫度與大氣溫濕度和風(fēng)速的關(guān)系,在跨中斷面布置了3個(gè)大氣溫濕度測(cè)點(diǎn),在主橋橋面處布置了風(fēng)速測(cè)點(diǎn)。
圖1 箱梁溫度觀測(cè)截面分布示意圖(單位:cm)Fig.1 Layout of measuring section
圖2 T1截面測(cè)點(diǎn)布置(單位:cm)Fig.2 Layout of temperature sensors at T1 section
圖3 T4截面測(cè)點(diǎn)布置(單位:cm)Fig.3 Layout of temperature sensors at T4 section
根據(jù)歷史氣象數(shù)據(jù)可知,7月為南通地區(qū)一年中較熱的時(shí)間段,故本文選取2008年7月的實(shí)測(cè)溫度數(shù)據(jù)為研究對(duì)象。
圖4所示為T1截面的頂板混凝土實(shí)測(cè)溫度。從圖4可以看出:受日照輻射影響,頂板表面以下0.35m深處混凝土的溫度,每天約有2 ℃的波動(dòng),頂板表面以下0.69 m和1.02 m深處的混凝土溫度在1 d內(nèi)波動(dòng)微小,且頂板在夜間沒(méi)有出現(xiàn)負(fù)溫差現(xiàn)象。
圖4 頂板混凝土實(shí)測(cè)溫度?時(shí)間曲線Fig.4 Curves of measured temperature?time in upper plate of box girder
圖5所示為T1截面外側(cè)(西)腹板混凝土的實(shí)測(cè)溫度。從圖5可知:受日照輻射和日落降溫的作用,最靠近表面的1號(hào)測(cè)點(diǎn)溫度在1 d內(nèi)波動(dòng)較大,約為 3℃;腹板沿壁厚方向一般在白天出現(xiàn)正溫差現(xiàn)象,在夜間出現(xiàn)負(fù)溫差現(xiàn)象。圖6所示為T1截面的外側(cè)(東)腹板混凝土的實(shí)測(cè)溫度。實(shí)測(cè)結(jié)果表明:外側(cè)(東)腹板混凝土溫度整體略低于上游幅箱梁外側(cè)(西)腹板混凝土溫度,但變化趨勢(shì)基本一樣。圖7所示為T1截面的內(nèi)側(cè)腹板混凝土的實(shí)測(cè)溫度。從圖7可以看出:內(nèi)側(cè)腹板混凝土溫度整體比外側(cè)腹板的溫度低;內(nèi)側(cè)腹板溫度在1 d內(nèi)波動(dòng)也很小。
圖5 外側(cè)腹板(西)混凝土實(shí)測(cè)溫度?時(shí)間曲線Fig.5 Curves of measured temperature?time in outside web(west) of box girder
圖6 外側(cè)腹板(東)混凝土實(shí)測(cè)溫度?時(shí)間曲線Fig.6 Curves of measured temperature?time in outside web(east) of box girder
圖7 內(nèi)側(cè)腹板混凝土實(shí)測(cè)溫度?時(shí)間曲線Fig.7 Curves of measured temperature?time in inside web of box girder
圖8所示為T1截面的底板混凝土實(shí)測(cè)溫度。從圖8可知:底板的溫度整體低于腹板溫度;在溫度上升階段,底板沿壁厚方向存在較大的溫度梯度。
圖 9所示為腹板平均溫度與底板平均溫度的對(duì)比。從圖9可以看出:東側(cè)和西側(cè)的腹板混凝土的平均溫度遠(yuǎn)大于底板的平均溫度,最高溫差可達(dá)4.5 ℃;而內(nèi)側(cè)腹板混凝土的平均溫度也大于底板的平均溫度,最大溫差為1.7 ℃,發(fā)生的時(shí)間均為溫度上升階段的末期。
從以上分析來(lái)看,大尺寸雙幅箱梁的溫度場(chǎng)分布與《公路橋規(guī)》和《鐵路橋規(guī)》的規(guī)定有所不同,主要表現(xiàn)為:外側(cè)腹板受日照輻射影響,沿壁厚方向存在較大的正溫差現(xiàn)象;外側(cè)腹板和內(nèi)側(cè)腹板存在 2~3 ℃的橫向溫差;底板與腹板之間存在負(fù)溫差現(xiàn)象,特別是溫度上升階段的末期較大。
圖8 底板混凝土實(shí)測(cè)溫度?時(shí)間曲線Fig.8 Curves of measured temperature?time in bottom plate of box girder
圖9 腹板平均溫度和底板平均溫度的比較Fig.9 Comparison of web average temperature and bottom plate average temperature
由于溫度測(cè)點(diǎn)布置有限,為了弄清大尺寸箱梁溫度場(chǎng)的分布特點(diǎn)及其對(duì)混凝土箱梁溫度效應(yīng)產(chǎn)生的影響,需借助有限元對(duì)箱梁的溫度場(chǎng)進(jìn)行仿真分析。
混凝土箱梁與環(huán)境熱交換示意圖如圖10所示。在日照作用下,混凝土箱梁與外界的熱交換不僅有來(lái)自太陽(yáng)的短波輻射,也有與周圍環(huán)境之間的對(duì)流和長(zhǎng)波
圖10 混凝土箱梁與環(huán)境熱交換示意圖Fig.10 Heat transfer between concrete box girder and environment
輻射熱交換。箱梁外表面熱平衡可由下式表示:
式中:qS為箱梁外表面所吸收的太陽(yáng)輻射熱流密度;qR為箱梁外表面所吸收的地表反射的太陽(yáng)輻射熱流密度;qB為箱梁外表面所吸收的大氣輻射熱流密度;qG為箱梁外表面所吸收的地表輻射熱流密度;qCa為箱梁外表面與大氣對(duì)流換熱的熱流密度;qRa為箱梁外表面向周圍環(huán)境發(fā)出的輻射熱流密度。
箱梁外表面所吸收的太陽(yáng)輻射熱流密度由太陽(yáng)直接輻射和太陽(yáng)散射輻射組成,可以表示為
式中:a為箱梁外表面短波吸收系數(shù);β為太陽(yáng)高度角;IB和ID分別為晴天條件下水平面太陽(yáng)直接輻射強(qiáng)度和散射輻射強(qiáng)度,具體計(jì)算見(jiàn)文獻(xiàn)[16];θ和η分別為陽(yáng)光對(duì)箱梁表面的入射角和箱梁表面的傾角。
投射到箱梁表面的地表反射qR可由下式計(jì)算:
式中:ξe為地面短波反射率,文獻(xiàn)[17]給出的水面反射率經(jīng)擬合可以表示為
大氣輻射具有灰體輻射的特性,無(wú)云天箱梁外表面所吸收的大氣輻射熱流密度qB的公式為
式中:εc為箱梁表面長(zhǎng)波輻射系數(shù);εa為大氣輻射系數(shù),取值范圍為0.5~0.9;C0為黑體輻射系數(shù);Ta為大氣溫度,K。
箱梁外表面所吸收的地表輻射熱流密度 qG可以表示為
式中:εu為地表的輻射系數(shù);TE為地表溫度,K。
箱梁外表面與大氣對(duì)流換熱的熱流密度 qCa可表示為
式中:Ts為箱梁外表面溫度,K;hc為熱交換系數(shù),通常由試驗(yàn)來(lái)確定或按經(jīng)驗(yàn)公式計(jì)算。在土木工程中,可按下式計(jì)算[4]:
式中:v為風(fēng)速,m/s。
箱梁向外界發(fā)出的熱輻射可以表示為
關(guān)于太陽(yáng)位置參數(shù)、太陽(yáng)在箱梁表面的入射角以及懸臂板在腹板上的陰影長(zhǎng)度等計(jì)算,見(jiàn)文獻(xiàn)[17]。
瀝青混凝土表面和混凝土表面對(duì)的太陽(yáng)輻射吸收率[17]分別取為0.9和0.6,對(duì)長(zhǎng)波輻射的吸收率分別取為0.9和0.88。瀝青混凝土和混凝土熱力學(xué)參數(shù)見(jiàn)表1。
表1 材料熱力學(xué)參數(shù)Table 1 Material thermodynamics parameters
大氣輻射系數(shù)取為0.82,江水輻射系數(shù)參照文獻(xiàn)[17]取為0.96,江水溫度參照文獻(xiàn)[18]近似地取為恒定值24 ℃。
本文以天氣較為晴朗的 2008?07?02—07?07這6 d為計(jì)算時(shí)間,對(duì)后3 d進(jìn)行溫度場(chǎng)模擬,其中前3 d為渡越時(shí)間,以獲取較為準(zhǔn)確的初始溫度場(chǎng)。研究時(shí)段的風(fēng)速變化和環(huán)境溫度變化分別見(jiàn)圖11和圖12。
采用軟件ANSYS來(lái)進(jìn)行箱梁溫度場(chǎng)的計(jì)算分析,選用的4個(gè)二維節(jié)點(diǎn)熱實(shí)體單元plane55可以模擬瀝青混凝土和混凝土的傳熱。
圖11 實(shí)測(cè)環(huán)境溫度?時(shí)間曲線Fig.11 Curves of measured ambient temperature?time
圖12 風(fēng)速變化時(shí)程圖Fig.12 Curves of wind speed?time
經(jīng)有限元求解,可得每一時(shí)刻箱梁的溫度場(chǎng)。T1截面的頂板、腹板和底板等處測(cè)點(diǎn)的計(jì)算溫度和實(shí)測(cè)溫度變化如圖13~15所示。從圖13~15可知:計(jì)算溫度與實(shí)測(cè)溫度吻合均良好,兩者不僅在規(guī)律上相似,且誤差也均在0.5 ℃之內(nèi),這說(shuō)明基于橋址逐時(shí)實(shí)測(cè)氣象數(shù)據(jù)建立的有限元模型可以準(zhǔn)確模擬箱梁實(shí)際溫度場(chǎng)。
圖13 頂板計(jì)算溫度和實(shí)測(cè)溫度變化時(shí)程圖Fig.13 Calculated value and measured value of temperature at various positions in upper plate of box girder
圖14 內(nèi)側(cè)腹板測(cè)點(diǎn)計(jì)算溫度和實(shí)測(cè)溫度變化時(shí)程圖Fig.14 Calculated value and measured value of temperature at various positions in inside web of box girder
圖15 底板計(jì)算溫度和實(shí)測(cè)溫度變化時(shí)程圖Fig.15 Calculated value and measured value of temperature at various positions in bottom plate of box girder
為了分析箱梁不同高度,腹板厚度和底板厚度對(duì)箱梁溫度場(chǎng)的影響,除計(jì)算T1和T4截面的溫度場(chǎng)外,本文又選取北主墩以南40 m和88 m的箱梁截面進(jìn)行了計(jì)算,分別簡(jiǎn)稱為T2和T3截面,截面尺寸如圖16所示。
圖16 箱梁截面尺寸(單位:cm)Fig.16 Section size of concrete box girder
研究豎向溫度梯度模式時(shí),頂板溫度采用腹板上方頂板沿截面深度方向的平均溫度,腹板溫度采用內(nèi)側(cè)腹板與外側(cè)腹板沿截面深度方向的平均溫度,底板溫度采用沿截面深度方向的平均值。將有限元計(jì)算結(jié)果進(jìn)行整理后,各截面沿豎向溫度分布如圖17所示。從圖17可以看出:除底板外,箱梁的最低溫度一般出現(xiàn)在梗腋部位,腹板下面較深的部位受日照輻射影響,溫度比靠近梗腋部位的腹板高2 ℃左右;腹板和底板的整體溫度隨其厚度增加而減??;箱梁底板外表面的溫度與較深部位的腹板溫度相近,但當(dāng)?shù)装遢^厚時(shí),溫度從底板外表面向內(nèi)部迅速衰減,并小于腹板和梗腋的溫度。由以上結(jié)果可知,大尺寸箱梁豎向溫度梯度主要特點(diǎn)為:腹板溫度整體高于梗腋溫度,而梗腋部位的溫度又均高于底板溫度,底板與腹板和梗腋之間存在負(fù)溫差現(xiàn)象。
箱梁的溫度自應(yīng)力可以表示為
式中:t(y)為距頂板y處的溫度,℃;α為材料線膨脹系數(shù);ε0為箱梁底板外表面的變形;ψy為截面豎向撓曲變形曲率。根據(jù)平衡條件,ε0和ψy可分別表示為:
式中:b(y)為箱梁在高度y處的寬度;yc為箱梁截面質(zhì)心離底板外表面的距離。
大尺寸箱梁的腹板和底板的厚度較大,占箱梁截面積的比率較高,且對(duì)箱梁沿水平向的慣性矩貢獻(xiàn)也比較大,稍高的腹板溫度和較低的底板溫度可能對(duì)箱梁溫度應(yīng)力產(chǎn)生較大的影響。由于我國(guó)《公路橋規(guī)》和《鐵路橋規(guī)》均沒(méi)有考慮腹板和底板的溫度梯度對(duì)箱梁溫度效應(yīng)的影響,因此,為了研究腹板和底板溫度對(duì)箱梁溫度效應(yīng)的影響,本文采用不計(jì)腹板和底板溫度梯度和考慮實(shí)際溫度梯度來(lái)計(jì)算梁底應(yīng)變?chǔ)?和截面豎向撓曲變形曲率ψy,計(jì)算結(jié)果如表2所示。從表2可以看出:隨箱梁尺寸的增大,腹板和底板的溫度對(duì)箱梁的梁底應(yīng)變和截面豎向撓曲變形曲率影響也越來(lái)越大,最大誤差分別可達(dá)108.8%和33.3%,由對(duì)截面豎向撓曲變形曲率ψy的影響可以推斷:腹板和底板的溫度對(duì)箱梁橋的撓度也會(huì)產(chǎn)生一定的影響。
圖17 各個(gè)截面沿豎向溫度分布曲線Fig.17 Temperature distribution along vertical direction of each section
圖 18所示為頂板溫差最大時(shí)刻各截面腹板沿截面高度的平均溫度分布情況。從圖18可知:當(dāng)箱梁尺寸較大時(shí)腹板溫度分布規(guī)律為:靠近梗腋部位的溫度基本不變,自頂板以下3.0~6.5 m,腹板溫度基本呈線性遞增趨勢(shì),并在6.5 m以下趨于恒定值;腹板底部的溫度一般比梗腋處高2 ℃左右。根據(jù)腹板溫度分布規(guī)律,建議大尺度箱梁腹板溫度分布的模式可修正為:
式中:tg為梗腋部位溫度,℃;L為箱梁的懸臂長(zhǎng)度;y為計(jì)算點(diǎn)離頂板的距離。
圖 19所示為頂板溫差最大時(shí)刻各截面箱梁腹板沿壁厚方向的溫度分布情況。從圖19可以看出:箱梁外側(cè)西邊腹板受下午太陽(yáng)輻射的影響,存在較大的溫度梯度,最大可達(dá)9 ℃,溫度梯度與箱梁的高度和腹板的厚度均呈正相關(guān)關(guān)系,箱梁內(nèi)側(cè)腹板溫度梯度較小,整體溫度也低于外側(cè)腹板。為研究?jī)?nèi)外側(cè)腹板橫向溫差的影響,利用式(10)~(12)可計(jì)算出腹板外側(cè)最大的自應(yīng)力和箱梁的橫向撓曲變形曲率,如表3所示。從表3可以看出:當(dāng)箱梁高度較高,腹板較厚時(shí),由內(nèi)側(cè)和外側(cè)腹板溫差引起的最大自應(yīng)力可達(dá)3.2 MPa,而且引起的橫向撓曲變形曲率也與由箱梁豎向溫差引起的豎向撓曲變形曲率相當(dāng)。
表 2 ε0和 ψy計(jì)算值Table 2 Calculated value of ε0 and ψy
圖18 各個(gè)截面腹板沿豎向溫度分布曲線Fig.18 Curves of web temperature distribution along vertical direction of each section
圖19 各個(gè)截面腹板壁厚方向溫度分布曲線Fig.19 Temperature distribution along web of section
表 3 σmax和 ψx計(jì)算值Table 3 Calculated value of σmax and ψx
頂板溫差最大時(shí)各截面底板沿壁厚方向溫度分布如圖20所示??梢?jiàn):底板外表面溫度隨底板厚度變化不大,溫度較低部位一般發(fā)生在距底板外表面 0.75h處;底板溫度梯度隨底板厚度增加而變大。假設(shè)底板溫度分布函數(shù)為
式中:te為離外面0.75h處的溫度,℃;t0為溫度擬合值,℃;a為溫度梯度的衰減系數(shù);y′為計(jì)算點(diǎn)離底板外表面距離;h為底板厚度。
擬合曲線及參數(shù)分別如圖20和表4所示。從圖20可以看出:溫度理論值與擬合值擬合結(jié)果較好。從表4可知:底板溫度梯度的衰減系數(shù)a與底板的厚度呈負(fù)相關(guān)。t0與底板的厚度呈正相關(guān),圖21所示為t0和衰減系數(shù)a與厚度的關(guān)系。從圖21可以看出:當(dāng)?shù)装宓暮穸却笥?.6 m時(shí),底板的溫度梯度以及其衰減系數(shù)與其厚度基本呈線性變化。
結(jié)合表2、表4和圖17可知:當(dāng)?shù)装搴穸龋?.6 m時(shí),可以不考慮底板溫度的影響;當(dāng)?shù)装搴穸取?.6 m時(shí),底板的溫度分布可以表示為
衰減系數(shù)a和溫度梯度t0可擬合為式(16)和(17):
當(dāng) 0.6 m≤h≤1.7 m 時(shí),t0e?0.75ha<0.35,故式(15)可以近似為:
圖20 底板計(jì)算溫度和擬合溫度沿壁厚方向分布曲線Fig.20 Curves of calculated and fitted temperature distribution along wall thickness of bottom plate
表4 底板溫度分布的擬合參數(shù)Table 4 Fitting parameters of bottom plates temperature distribution
圖21 底板溫度梯度以及其衰減系數(shù)與底板厚度的關(guān)系Fig.21 Temperature gradient of bottom plates and its attenuation coefficient versus thickness of bottom plates
(1) 大尺寸箱梁沿截面高度方向的溫度分布模式不同于規(guī)范中的規(guī)定,其主要特點(diǎn)為:腹板溫度整體高于梗腋溫度,而梗腋部位的溫度均高于底板溫度,底板與腹板和梗腋之間存在負(fù)溫差現(xiàn)象。
(2) 大尺寸箱梁腹板和底板溫度梯度對(duì)箱梁的溫度效應(yīng)產(chǎn)生重要影響,故在施工監(jiān)控時(shí)應(yīng)對(duì)大尺度箱梁的溫度梯度進(jìn)行修正,以對(duì)溫度效應(yīng)獲得較準(zhǔn)確的預(yù)測(cè)。
(3) 由于大尺寸箱梁的高度較高,其腹板大部分處于太陽(yáng)照射之下,沿壁厚方向可產(chǎn)生較大的溫度梯度,沿壁厚方向的溫度梯度可達(dá)9 ℃;當(dāng)上部結(jié)構(gòu)上下行分幅布置時(shí),外側(cè)腹板和內(nèi)側(cè)腹板之間存在較大的橫向很差,由這橫向溫差引起的最大自應(yīng)力可達(dá)3.2 MPa,而且引起的橫向撓曲變形曲率也與由箱梁豎向溫差引起的豎向撓曲變形曲率相當(dāng)。
[1] 雷笑, 葉見(jiàn)曙, 王毅, 等. 基于長(zhǎng)期觀測(cè)的混凝土箱梁溫度與應(yīng)變分析[J]. 江蘇大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 31(2):230?234, 239.
LEI Xiao, YE Jianshu, WANG Yi, et al. Analysis of concrete box-girder temperature and strain based on long term observation[J]. Journal of Jiangsu University: Natural Science Edition, 2010, 31(2): 230?234, 239.
[2] 張亮亮, 楊磊, 楊轉(zhuǎn)運(yùn), 等. 大跨混凝土箱梁溫度場(chǎng)分析[J].土木建筑與環(huán)境工程, 2011, 33(1): 36?42.
ZHANG Liangliang, YANG Lei, YANG Zhuanyun, et al.Temperature Field Analysis of Long-span Concrete Box Girders[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(1): 36?42.
[3] Elbadry M M, Ghail A. Temperature variations in concrete bridges[J]. Journal of the Structural Engineering, 1983, 109(10):2355?2374.
[4] Saetta A, Scotta R, Vitaliani R. Stress analysis of concrete structures subjected to variable thermal loads[J]. Journal of Structural Engineering, 1995, 121(3): 446?457.
[5] 韓大建, 譚毅平. 預(yù)應(yīng)力混凝土單室箱梁橋的溫度變化[J].四川大學(xué)學(xué)報(bào): 工程科學(xué)版, 2008, 40(6): 7?13.
HAN Dajian, TAN Yiping. Temperature variation in pre-stressed concrete single-cell box-girder bridges[J]. Journal of Sichuan University: Engineering Science Edition, 2008, 40(6): 7?13.
[6] Branco F A, Mendes P A. Thermal actions for concrete bridge design[J]. Journal of Structural Engineering, 1993, 119(8):2313?2331.
[7] Mirambell E, Aguado A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering,1990, 116(9): 2388?2409.
[8] Larsson O, Thelandersson S. Estimating extreme values of thermal gradients in concrete structures[J]. Materials and Structures, 2011, 44(8): 1491?1500.
[9] 肖建莊, 宋志文, 趙勇, 等. 基于氣象參數(shù)的混凝土結(jié)構(gòu)日照溫度作用分析[J]. 土木工程學(xué)報(bào), 2010(4): 30?36.
XIAO Jianzhuang, SONG Zhiwen, ZHAO Yong, et al. Analysis of solar temperature action for concrete structure based on meteorological parameters[J]. China Civil Engineering Journal,2010(4): 30?36.
[10] 汪劍, 方志. 混凝土箱梁橋的溫度場(chǎng)分析[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2008(4): 23?28.
WANG Jian, FANG Zhi. Temperature variation of concrete box girder bridge[J]. Journal of Hunan University: Natural Sciences,2008(4): 23?28.
[11] 王衛(wèi)鋒, 陳國(guó)雄, 馬文田. 混凝土連續(xù)剛構(gòu)橋箱梁的溫度監(jiān)測(cè)與分析[J]. 華南理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2007(2):69?74.
WANG Weifeng, CHEN Guoxiong, MA Wentian. Monitoring and analysis of temperature for concrete box girder in continuous rigid frame bridge[J]. Journal of South China University of Technology: Natural Science Edition, 2007(2): 69?74.
[12] Roberis-Wollman C L, Breen J E, Cawrse J. Measurements of thermal gradients and their effects on segmental concrete bridge[J]. Journal of Bridge Engineering, 2002, 7(3): 166?174.
[13] Mondal P, DeWolf J T. Development of computer-based system for the temperature monitoring of a post-tensioned segmental concrete box-girder bridge[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(1): 65?77.
[14] 方志, 汪劍. 大跨預(yù)應(yīng)力混凝土連續(xù)箱梁橋日照溫差效應(yīng)[J].中國(guó)公路學(xué)報(bào), 2007, 20(1): 62?67.
FANG Zhi, WANG Jian. Sun light thermal difference effect on long-span PC continuous box girder bridge[J]. China Journal of Highway and Transport, 2007, 20(1): 62?67.
[15] Li D N, Maes M A, Dilger W H. Thermal design criteria for deep prestressed concrete girders based on data from confederation bridge[J]. Canadian Journal of Civil Engineering, 2004, 31(5):813?825.
[16] Muneer T, Gui M S. Evaluation of sunshine and cloud cover based models for generating solar radiation data[J]. Energy Conversion and Management, 2000, 41(5): 461?482.
[17] Kehlbeck F. 太陽(yáng)輻射對(duì)橋梁結(jié)構(gòu)的影響[M]. 劉興法, 譯. 北京: 中國(guó)鐵道出版社, 1981: 9?29.
Kehlbeck F. Influence of bridge structure caused by solar radiation[M]. LIU Xing-fa, trans. Beijing: China Rail-way Publishing House, 1981: 9?29.
[18] 孫大明, 田慧峰, 張歡, 等. 長(zhǎng)江上游水溫監(jiān)測(cè)及水溫和氣溫關(guān)系研究[J]. 建筑節(jié)能, 2010, 38(12): 74?77.
SUN Daming, TIAN Huifeng, ZHANG Huan, et al. Monitoring of water temperature and changing relationship between the water temperature and air temperature in the upper Yangtze River[J]. Building Energy Efficiency, 2010, 38(12): 74?77.
(編輯 趙俊)
Measurement and simulation on solar temperature field of large size concrete box girder
GU Bin1, CHEN Zhijian2, CHEN Xindi3
(1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;2. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China;3. College of Harbour, Costal and Offshore Engineering, Hohai University, Nanjing 210098, China)
Based on analysis of measured temperature of auxiliary shipping channel bridge of the Sutong bridge during the operation period and simulation calculation of temperature field of concrete box girder with different size cross section, the characteristics of temperature distribution of large size concrete box girder and its effect were analyzed. A correction method of web and bottom plate temperature gradient was proposed. The results show that the temperature of web is higher than that of the haunch, and the temperature of haunch is mostly higher than that of the bottom plate. The maximum error of vertical deflection curvature caused by the temperature of web and bottom plate can reach 33%. The temperature gradient along the thickness direction of web can reach 9 ℃. When the concrete box girder structure is arranged separately, the effect of transverse temperature difference caused by inside web and outside web cannot be neglected.
large size concrete box girder; temperature distribution; temperature gradient; transverse temperature difference; deflection curvature
U448.35
A
1672?7207(2013)03?1252?10
2012?03?12;
2012?06?04
江蘇省交通科學(xué)研究規(guī)劃項(xiàng)目(08Y60)
顧斌(1986?),男,江蘇淮安人,博士研究生,從事大跨徑橋梁的安全監(jiān)控研究;電話:15950579224;E-mail: hhgbhh@sina.cn