連真珍 綜述 林紹強(qiáng) 審校
骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell,BMSC)是存在于骨髓中的具有高度自我更新能力和多相分化潛能的成體干細(xì)胞,又稱(chēng)骨髓基質(zhì)干細(xì)胞或間充質(zhì)祖細(xì)胞[1]。BMSC不僅具有高度可塑性和強(qiáng)大的分化潛能,而且具有易獲得、易培養(yǎng)、低免疫原性和避免倫理問(wèn)題等特性。在治療免疫性疾病、皮膚再生、心血管疾病、急性肺損傷、骨損傷和血液系統(tǒng)疾病等方面取得了一定成果[2]。也有報(bào)道指出,BMSC存在致瘤性及安全性等問(wèn)題[3]。BMSC真正廣泛用于臨床治療仍需進(jìn)一步深入研究。本文就BMSC的特性和臨床治療應(yīng)用基礎(chǔ)研究進(jìn)展作一綜述。
骨髓中存在大量的間充質(zhì)干細(xì)胞,是BMSC的主要來(lái)源。分離方法、培養(yǎng)面積、培養(yǎng)基、接種濃度、各種生長(zhǎng)因子、供者年齡和疾病狀態(tài)等均可影響B(tài)MSC的增殖、分化和免疫學(xué)特性。目前在體外分離培養(yǎng)方法主要有:(1)貼壁法,也稱(chēng)全骨髓法或一步法,根據(jù)BMSC具有黏附貼壁生長(zhǎng)的特性進(jìn)行分離;(2)密度梯度離心法,根據(jù)各種骨髓細(xì)胞比重不同獲取單個(gè)核細(xì)胞進(jìn)行貼壁培養(yǎng)。密度梯度離心法被認(rèn)為是最經(jīng)典的方法,目前常用的有Percoll或Ficoll分離法;(3)利用表面標(biāo)記分離純化細(xì)胞方法,根據(jù)間充質(zhì)干細(xì)胞表面標(biāo)記分選。主要有流式細(xì)胞儀分離法和免疫磁珠分選法。流式細(xì)胞儀分離法利用相應(yīng)的熒光素標(biāo)記抗體進(jìn)行篩選。磁珠法分離細(xì)胞是基于細(xì)胞表面抗原能與連接有磁珠的特異性單抗相結(jié)合,從而使細(xì)胞得以分離。由于BMSC特殊的生物學(xué)特性以及其含量很低,而且抗原表面不特異,分離純化較為困難[4]。因此,有待進(jìn)一步研究一種簡(jiǎn)便、高效和經(jīng)濟(jì)的分離和純化方法。
1.形態(tài)和生長(zhǎng)特征:體外培養(yǎng)的BMSC體積小,核仁明顯,核漿比較大,培養(yǎng)時(shí)貼壁,可聚集成均勻的集落。在體外獲取的BMSC為形態(tài)和增殖特性有差異性的異質(zhì)性細(xì)胞群,至少有兩種類(lèi)型的細(xì)胞:紡錘狀的細(xì)胞和扁平或立方形的細(xì)胞。BMSC在原代及第一代骨髓貼壁細(xì)胞培養(yǎng)中,包含形態(tài)多樣的細(xì)胞群,其中大多數(shù)為造血性干細(xì)胞。經(jīng)傳代培養(yǎng),造血性干細(xì)胞逐漸死亡,擴(kuò)增一代和兩代后的細(xì)胞同質(zhì)性分別達(dá)到95﹪和98﹪。體外分離的原代 BMSC 接種后 0~4 d 貼壁生長(zhǎng),但增殖不活躍,為潛伏期;大約 0~4 d 細(xì)胞生長(zhǎng)極為活躍,呈指數(shù)級(jí)遞增,為對(duì)數(shù)增長(zhǎng)期;10d后生長(zhǎng)逐漸減慢,為平臺(tái)期;細(xì)胞生長(zhǎng)曲線呈“S”型。
2.表面標(biāo)志物:間充質(zhì)干細(xì)胞的分化可能是隨機(jī)非方向性的,已經(jīng)分化的間充質(zhì)干細(xì)胞依舊具有轉(zhuǎn)化生成其他類(lèi)型間充質(zhì)細(xì)胞的潛能,而且個(gè)體不同發(fā)育階段的間充質(zhì)干細(xì)胞的表型功能特異方面存在差異。迄今為止對(duì)于間充質(zhì)干細(xì)胞鑒定沒(méi)有特異的分子標(biāo)記,這方面有待進(jìn)一步深入研究。目前廣泛認(rèn)為,間充質(zhì)干細(xì)胞表達(dá)SH2、SH3、CD29、CD44、CD71、CD90、CD106、CD124、CD166 和多種表面蛋白。一般認(rèn)為,BMSC重要標(biāo)志表達(dá)CD29、CD44,CD166,CD105等,但不表達(dá) CD34、CD38、白細(xì)胞表面抗原CD45、CD11a和CD14等造血干細(xì)胞表面標(biāo)志[5]。目前主要通過(guò)其形態(tài)特征、表面標(biāo)記及其具有向骨、脂肪、軟骨等多種方向的分化潛能這多方面相結(jié)合來(lái)進(jìn)行鑒定[6]。
3.低免疫原性:BMSC低表達(dá)組織相容性復(fù)體Ⅱ類(lèi)抗原,不表達(dá)Fas配體和諸如CD40,CD80和CD86等共刺激分子,使其免疫原性降低[7]。BMSC不僅可以逃避免疫系統(tǒng)的識(shí)別,而且還可以主動(dòng)抑制宿主免疫系統(tǒng)。Krampera等[8]研究表明BMSC可以抑制T細(xì)胞增殖而達(dá)到抑制T細(xì)胞介導(dǎo)的免疫反應(yīng)。Nauta等[9]則認(rèn)為BMSC能夠誘導(dǎo)機(jī)體記憶性T細(xì)胞激活并針對(duì)移植物發(fā)生免疫排斥,減少移植物的存活時(shí)間,因此,BMSC可能不是完全免疫豁免。
研究表明BMSC具有多向分化潛能,但不能自發(fā)分化。在體外特定的誘導(dǎo)條件下,可分化為成骨細(xì)胞、軟骨細(xì)胞、脂肪細(xì)胞、肌腱細(xì)胞、星形膠質(zhì)細(xì)胞等多種中胚層來(lái)源的細(xì)胞,它還可以跨胚層分化為神經(jīng)細(xì)胞和胰島細(xì)胞等[10]。但是誘導(dǎo)分化出的細(xì)胞在體內(nèi)是否能有效地歸巢到特定部位,并有效地發(fā)揮生理功能尚待更多的證據(jù)進(jìn)一步研究。在體外誘導(dǎo)分化的研究中,成骨細(xì)胞是報(bào)道最多的一種,在體內(nèi)、體外實(shí)驗(yàn)中均得到肯定??烧T導(dǎo)成骨的因子有地塞米松、維生素C、IL-11、IL-6、透明質(zhì)酸、胰島素樣生長(zhǎng)因子結(jié)合蛋白及其他因子,如BMP、bFGF等。誘導(dǎo)得到的成骨細(xì)胞可通過(guò)檢測(cè)纖維粘連蛋白、骨鈣素、堿性磷酸酶等來(lái)鑒定。研究證明,BMSC能分化為神經(jīng)元和膠質(zhì)細(xì)胞,在腦組織受傷后特別明顯[11]。Woodbury等[12]用β-硫基乙醇、硫代甘油、叔丁基對(duì)甲氧酚等誘導(dǎo)人和大鼠來(lái)源的BMSC分化為神經(jīng)元樣細(xì)胞和神經(jīng)膠質(zhì)細(xì)胞。Perez-Ilzarbe等[13]報(bào)道bFGF培養(yǎng)BMSC表現(xiàn)出明顯的刺激增殖作用,而且在低濃度下具有誘導(dǎo)其向神經(jīng)元樣細(xì)胞分化的作用。地塞米松、胰島素、吲哚美辛和泌乳素等能誘導(dǎo)BMSC分化為脂肪細(xì)胞,在細(xì)胞內(nèi)逐漸聚集含脂質(zhì)豐富的小泡,可以用油紅0染色鑒定。在培養(yǎng)基中加入特定因子體外培養(yǎng),BMSC可向有功能的肝細(xì)胞分化[14]。BMSC能夠分化為胰島素分泌樣細(xì)胞,還能改善局部微環(huán)境,促進(jìn)殘余胰島細(xì)胞增殖和自體干細(xì)胞歸巢到病灶的作用[15]。Chen等[16]將傳代的BMSC置入含煙堿、β-巰基乙醇培養(yǎng),可見(jiàn)成簇分布的胰島樣細(xì)胞。有報(bào)道BMSC還能分化為表皮角質(zhì)細(xì)胞、皮脂腺細(xì)胞和皮脂腺[17]。大量研究顯示BMSC可以被5-Aza誘導(dǎo)為心肌樣細(xì)胞[18]。Yan等[19]運(yùn)用p53抑制劑PFT-a阻斷p53-p21信號(hào)轉(zhuǎn)導(dǎo)通路后,觀察到BMSC向心肌細(xì)胞分化,PFT-a可提高BMSC向心肌細(xì)胞的轉(zhuǎn)化率。Orlic等[20]將Lin(-)C-kit(+)的原始骨髓干細(xì)胞移植到大鼠心肌梗死局部,發(fā)現(xiàn)移植細(xì)胞也可以分化產(chǎn)生心肌細(xì)胞、內(nèi)皮細(xì)胞等。BMSC誘導(dǎo)分化的細(xì)胞類(lèi)型,分化能力及機(jī)制目前還在探索中,細(xì)胞分化是細(xì)胞在可逆性的輕度損傷和細(xì)胞外因素的誘導(dǎo)下,細(xì)胞通過(guò)誘導(dǎo)物與誘導(dǎo)細(xì)胞表面受體結(jié)合而調(diào)控細(xì)胞分化。因此,在誘導(dǎo)分化過(guò)程中,誘導(dǎo)組織的專(zhuān)一性和反應(yīng)組織的反應(yīng)能力必須在時(shí)空上相互配合,才能保證誘導(dǎo)細(xì)胞向特定細(xì)胞分化。
1.肝病的應(yīng)用:BMSC易于外源基因的導(dǎo)入和表達(dá),遺傳背景穩(wěn)定,培養(yǎng)過(guò)程中長(zhǎng)期保持多細(xì)分化的潛能,是有效進(jìn)行肝移植治療肝硬化的新型種子細(xì)胞。在肝纖維化動(dòng)物模型中證實(shí),BMSC具有抗纖維化的作用[21]。Mohamadnejad等[22]治療4例晚期肝硬化患者,體外培養(yǎng)BMSC,再經(jīng)肘靜脈注射回患者。結(jié)果表明,所有患者均無(wú)死亡、急性腎衰竭、肝臟失代償加重、甲胎蛋白持續(xù)增高、肝臟出現(xiàn)腫塊等并發(fā)癥。Tomoya等[23]研究認(rèn)為BMSC對(duì)CCl4誘導(dǎo)的慢性肝功能障礙引起的炎癥纖維化病變有作用。Schmelzle等[24]分析數(shù)據(jù)表明,CD133+骨髓基質(zhì)細(xì)胞對(duì)大部分肝切除產(chǎn)生積極的影響。
2.血液系統(tǒng)疾病的應(yīng)用:Ko?等[25]用體外培養(yǎng)擴(kuò)增的自體BMSC聯(lián)合HSCT治療大劑量化療后的乳腺癌患者28例,移植后造血恢復(fù)增快,提示BMSC可促進(jìn)造血恢復(fù)。Lee等[26]治療1例高危急性髓細(xì)胞白血病患者,采集并移植其父親外周血造血干細(xì)胞聯(lián)合體外擴(kuò)增BMSC,患者無(wú)不良反應(yīng),提示BMSC可用于急性白血病的半相合造血干細(xì)胞移植。Le Blanc等[27]治療7例血液系統(tǒng)疾病患者,將BMSC和造血干細(xì)胞共同移植,患者均健康。實(shí)驗(yàn)證明,BMSC可以促進(jìn)骨髓移植后中性粒細(xì)胞和血小板快速恢復(fù),造血干細(xì)胞聯(lián)合BMSC移植,可以加快造血干細(xì)胞的植入,促進(jìn)造血的恢復(fù),防治急慢性移植物抗宿主病的發(fā)生[28]。
3.骨和軟骨疾病的應(yīng)用:近十年中BMSC被認(rèn)為細(xì)胞替代療法的理想種子,可能是因?yàn)锽MSC旁分泌作用,可分泌多種因子使組織特異性細(xì)胞生長(zhǎng)和分化,并且防止損傷細(xì)胞凋亡。Horwitz等[29]將BMSC靜脈注射到成骨不全患者體內(nèi),術(shù)后6個(gè)月時(shí)患者的身高均增加。Wakitani等[30]治療24例骨關(guān)節(jié)炎患者,給予BMSC并用膠原包被,25 d后即可見(jiàn)軟組織覆蓋,42周后缺損處有透明軟骨樣組織形成,提示用自體BMSC來(lái)修復(fù)關(guān)節(jié)軟骨缺損是可行的。Quarto等[31]將自體BMSC局部注入治療骨折中大面積的骨缺損獲得成功。研究發(fā)現(xiàn)自體BMSC植入治療早期股骨頭壞死有一定的作用[32]。轉(zhuǎn)基因的BMSC治療狗股骨頭缺血性壞死模型實(shí)驗(yàn)中,結(jié)果表明BMSC在治療股骨頭缺血性壞死中有良好的作用[33]。Cella等[34]將BMSC注射入患者骨壞死部位,患者接受手術(shù)后,結(jié)果顯示2周后癥改善,進(jìn)行15個(gè)月后,基本愈合,30個(gè)月后,患者沒(méi)有出現(xiàn)雙膦酸鹽-顎骨壞死跡象。隨著越來(lái)越多的學(xué)者參與,BMSC的研究也會(huì)更加深入,在骨疾病的治療也會(huì)有更廣闊的應(yīng)用前景。但目前對(duì)于BMSC治療機(jī)制的研究還存在很多問(wèn)題。
4.神經(jīng)系統(tǒng)疾病的應(yīng)用:越來(lái)越多的學(xué)者關(guān)注BMSC在神經(jīng)退行性疾病治療方面的研究,為各類(lèi)神經(jīng)損傷的細(xì)胞治療提供新的可能。近兩年,BMSC被視為理想的多巴胺的替代細(xì)胞來(lái)源,為治療帕金森氏病提供可行性的方法[35]。BMSC移植在治療大鼠胸椎脊髓損傷,移植后5周,移植大鼠明顯好轉(zhuǎn),可負(fù)重步行等[36]。有研究顯示BMSC對(duì)亨廷頓氏病(HD)大鼠模型有改善作用[37]。Otero等[38]在研究中,腦內(nèi)注射同種異體BMSC于成年大鼠腦出血模型中,術(shù)后對(duì)內(nèi)源性神經(jīng)再生和移植BMSC的生存進(jìn)行了研究。研究結(jié)果表明,異基因BMSC移植后,供體細(xì)胞能存活在腦組織表達(dá)神經(jīng)元和星形膠質(zhì)細(xì)胞標(biāo)記。顯而易見(jiàn)的,干細(xì)胞作為細(xì)胞替代治療開(kāi)辟了新的視角,大量的研究結(jié)果顯示細(xì)胞治療在神經(jīng)疾病提供了巨大潛力。
5.心血管疾病的應(yīng)用:心血管疾病在老年人群中具有是高度的死亡率和發(fā)病率,干細(xì)胞的發(fā)展為治療缺心血管疾病提供新的治療前景。Amado等[39]的研究結(jié)果表明BMSC療法能夠治療豬的心臟病發(fā)作或者心肌梗塞。Tse等[40]將患者自體BMSC通過(guò)導(dǎo)管把細(xì)胞注入穩(wěn)定型心絞痛患者心臟缺血區(qū),3個(gè)月后患者的癥狀、缺血區(qū)心肌灌注以及心功能明顯改善。Suzuki等[41]在豬慢性冬眠心肌模型中接受自體BMSC,結(jié)果表明接受干細(xì)胞可改善冬眠心肌的冠狀動(dòng)脈血流或減少瘢痕體積,增加心肌細(xì)胞的數(shù)量,并減少細(xì)胞肥大。將BMSC移植到受損心肌中,用免疫熒光顯微鏡觀察發(fā)現(xiàn)超順磁性氧化標(biāo)記的移植細(xì)胞與心肌的心肌標(biāo)志物的定位,表明受損的心肌再生[42]。
6.皮膚缺損創(chuàng)面修復(fù)的應(yīng)用:研究證實(shí),BMSC可以分化為表皮細(xì)胞、毛囊細(xì)胞等參與修復(fù)過(guò)程。Vojtas等[43]報(bào)道,在潰瘍處注射體外擴(kuò)增培養(yǎng)的BMSC,結(jié)果潰瘍面積不斷減小,血供良好,皮膚增厚。BMSC被移植到燒傷動(dòng)物模型中,進(jìn)行再生汗腺排汗試驗(yàn)和免疫組化分析鑒定,多項(xiàng)研究表明外異蛋白修飾的BMSC有修復(fù)和再生受傷的皮膚及其附屬物的應(yīng)用潛力[44]。研究人員發(fā)現(xiàn)在脲佐菌素誘導(dǎo)糖尿病嚙齒類(lèi)動(dòng)物模型側(cè)皮膚缺損模型中,給予BMSC治療大鼠愈合時(shí)間明顯縮短。免疫組織化學(xué)分析,在治療組與對(duì)照組相比,表皮生長(zhǎng)因子、血管內(nèi)皮生長(zhǎng)因子、脯氨酰4-羥化酶和Ki-67表達(dá)量顯著增加,BMSC可通過(guò)組織再生加強(qiáng)皮膚愈合[45]。
7.免疫系統(tǒng)的應(yīng)用:大量文獻(xiàn)顯示,BMSC對(duì)免疫的調(diào)節(jié)涉及多種免疫細(xì)胞及多種可溶性細(xì)胞因子,其相互作用交錯(cuò)復(fù)雜。BMSC可調(diào)節(jié)B淋巴細(xì)胞的增殖、移行、分化、抗體的生成和趨化作用。Corcione等[46]將BMSC和正常人外周血B淋巴細(xì)胞共同培養(yǎng),發(fā)現(xiàn)當(dāng)兩者比例為1:1時(shí),BMSC對(duì)B淋巴細(xì)胞增殖有抑制作用,B淋巴細(xì)胞的功能也受到了限制。學(xué)者用細(xì)胞小室試驗(yàn)證實(shí),BMSC釋放的可溶性細(xì)胞因子如IL-6和細(xì)胞黏附因子-1可顯著抑制B淋巴細(xì)胞的增殖[47]。BMSC除了直接或間接發(fā)揮對(duì)T淋巴細(xì)胞的免疫調(diào)節(jié)作用外,研究表明BMSC能夠通過(guò)上調(diào)調(diào)節(jié)性T細(xì)胞的比例從而誘導(dǎo)免疫耐受[48]。Ciccocioppo等[49]收集難治性或不適合目前可用的治療方法的12例克隆氏病患者,給予BMSC治療,結(jié)果誘導(dǎo)治療無(wú)任何不良影響,黏膜中調(diào)節(jié)性T細(xì)胞的比例顯著增加。除了直接影響淋巴細(xì)胞,BMSC還通過(guò)對(duì)樹(shù)突狀細(xì)胞調(diào)節(jié)實(shí)現(xiàn)對(duì)免疫細(xì)胞的間接調(diào)控。Spaggiari等[50]研究也表明,BMSC不僅能抑制NK細(xì)胞的增殖,而且能抑制對(duì)靶細(xì)胞的殺傷作用等效應(yīng)功能。
目前BMSC的研究和應(yīng)用取得了很大的進(jìn)展,證實(shí)由于強(qiáng)大的分化潛能及具有易于分離培養(yǎng)擴(kuò)增、遺傳背景穩(wěn)定、體內(nèi)植入反應(yīng)較弱等特性,使其在組織工程種子來(lái)源、細(xì)胞代替治療、基因治療等領(lǐng)域得到了日益廣泛的應(yīng)用。但是有關(guān)BMSC的許多生物學(xué)特性和分子調(diào)控機(jī)制尚不十分清楚,BMSC的安全性問(wèn)題還不確定,誘導(dǎo)分化后細(xì)胞是否具有正常的結(jié)構(gòu)和功能,移植細(xì)胞是否整合到相應(yīng)的組織等諸多問(wèn)題有待于人們進(jìn)一步探索。有的學(xué)者認(rèn)為成體干細(xì)胞的可塑性是由細(xì)胞融合所致,或在成體組織中可能有胚胎期殘留下來(lái)的原始多能干細(xì)胞。迄今在BMSC的研究中雖然存在爭(zhēng)議和問(wèn)題,也顯示出許多好的前景和征兆。人們將在不遠(yuǎn)的將來(lái)有效地解決這些問(wèn)題,使BMSC更安全地用于臨床,更好地造福人類(lèi)。
1 Malgieri A,Kantzari E,Patrizi MP,et al.Bone marrow and umbilical cord blood human mesenchymal stem cells:state of the art[J].Int J Clin Exp Med,2010,3(4):248-269.
2 Kagami H,Agata H,Tojo A.Bone marrow stromal cells(bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation[J].Int J Biochem Cell Biol,2011,43(3): 286-289.
3 Winkler J,Hescheler J,Sachinidis A.Embryonic stem cells for clinical research and potential clinical applications in cardiology[J].Biochim Biophys Acta,2005,1740(2):240-248.
4 Xu S,De Becker A,Van Camp B,et al.An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells[J].J Biomed Biotechnol,2010,2010:105940.
5 Petrini M,Pacini S,Trombi L,et al.Identification and purification of mesodermal progenitor cells from human adult bone marrow[J].Stem Cells Dev,2009,18(6):857-866.
6 Sensebe L,Krampera M,Schrezenmeier H,et al.Mesenchymal stem cells for clinical application[J].Vox Sanguinis,2010,98(2):93-107.
7 Aldahmash A,Zaher W,Al-Nbaheen M,et al.Human stromal(mesenchymal)stem cells: basic biology and current clinical use for tissue regeneration[J].Ann Saudi Med,2012,32(1):68-77.
8 Krampera M,Cosmi L,Angeli R,et al.Role for interferongamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells[J].Stem Cells,2006,24(2):386-398.
9 Nauta AJ,Westerhuis G,Kruisselbrink AB,et al.Donorderived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting[J].Blood,2006,108(6):2114-2120.
10 Eva Mezey.The therapeutic potential of bone marrowderived stromal cells[J].J Cell Biochem,2011,112(10):2683-2687.
11 Abouelfetouh A,Kondoh T,Ehara K,et al.Morphological differentiation of bone marrow stromal cells into neuronlike cells after co-culture with hippocampal slice[J].Brain Res,2004,1029(1):114-119.
12 Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61(4):364-370.
13 Perez-Ilzarbe M,Diez-Campelo M,Aranda P,et al.Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy[J].Transfusion,2009,49(9):1901-1910.
14 Chivu M,Dima SO,Stancu CI,et al.In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors[J].Transl Res,2009,154(3):122-132.
15 Vija L,Farge D,Gautier JF,et al.Mesenchymal stem cells: Stem cell therapy perspectives for type 1diabetes[J].Diabetes Metab,2009,35(2):85-93.
16 Chen LB,Jiang XB,Yang L.Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells[J].World J Gastroenterol,2004,10(20):3016-3020.
17 Sasaki M,Abe R,Fujita Y,et al.Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type[J].Immunol,2008,180(4):2581-2587.
18 Yang MC,Wang SS,Chou NK,et al.The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro[J].Biomaterials,2009,30(22):3757-3765.
19 Yan X,Lv A,Xing Y,et al.Inhibition of p53-p21 pathway promotes the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes[J].Mol Cell Biochem,2011,354(1-2):21-28.
20 Quarto R,Mastrogiacomo M,Cancedda R,et al.Repair of large bone defects with the use of autologous bone marrow stromal cells[J].N Engl J Med,2001,344(5):385-386.
21 Abdel Aziz MT,Atta HM,Mahfouz S,et al.Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis[J].Clin Biochem,2007,40(12):893-899.
22 Haraguchi T,Tani K,Takagishi R,et al.Therapeutic potential of canine bone marrow stromal cells (BMSCs)in the carbon tetrachloride (CCl4) induced chronic liver dysfunction mouse model[J].J Vet Med Sci,2012,74(5):607-611.
24 am Esch JS,Schmelzle M,Furst G,et al.Infusion of CD133+bone marrow-derived stem cells after selective portal vein embolization enhances functional hepatic reserves after extended right hepatectomy:a retrospective single-center study[J].Ann Surg,2012,255(1):79-85.
25 Ko? ON,Gerson SL,Cooper BW,et al.Rapid hematopoietic recovery after coinfusion of autologousblood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy[J].J Clin Oncol,2000,18(2):307-316.
26 Lee ST,Jang JH,Cheong JW,et al.Treatment of highrisk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T celldepleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype[J].Br J Haematol,2002,118(4):1128-1131.
27 Le Blanc K,Samuelsson H,Gustafsson B,et al.Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells[J].Leukemia,2007,21(8):1733-1738.
28 Huang YL,Huang SL,Cai Y.Effect of bone marrow mesenchymal stem cell infusion on hemato-poiesis in mice with aplastic anemia[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2007,15(5):1005-1008.
29 Horwitz EM,Gordon PL,Koo WK,et al.Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone[J].Proc Natl Acad Sci USA,2002,99(13):8932-8937.
30 Wakitani S,Imoto K,Yamamoto T,et al.Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees[J].Osteoarthritis Cartilage,2002,10(3):199-206.
31 Quarto R,Mastrogiacomo M,Cancedda R,et al.Repair of large bone defects with the use of autologous bone marrow stromal cells[J].N Engl J Med,2001,344(5):385-386.
32 Zhao D,Cui D,Wang B,et al.Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells[J].Bone,2012,50(1):325-330.
33 Hang D,Wang Q,Guo C,et al.Treatment of osteonecrosis of the femoral head with VEGF165 transgenic bone marrow mesenchymal stem cells in mongrel dogs[J].Cells Tissues Organs,2012,195(6):495-506.
34 Cella L,Oppici A,Arbasi M,et al.Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw[J].Head Face Med,2011,7:16.
35 Thomas MG,Stone L,Evill L,et al.Bone marrow stromal cells as replacement cells for Parkinson′s disease: generation of an anatomical but not functional neuronal phenotype[J].Transl Res,2011,157(2):56-63.
36 Suzuki H,Taguchi T,Kato Y,et al.Transplantation of neurospheres derived from bone marrow stromal cells promotes neurological recovery in rats with spinal cord injury[J].Med Mol Morphol,2011,44(3):131-138.
37 Jiang Y,Lv H,Huang S,et al.Bone marrow mesenchymal stem cells can improve the motor function of a Huntington’s disease rat model[J].Neurol Res,2011,33(3):331-337.
38 Otero L,Zurita M,Bonilla C,et al.Allogeneic bone marrow stromal cell trans-plantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis[J].otherapy,2012,14(1):34-44.
39 Amado LC,Saliaris AP,Schuleri KH,et al.Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction[J].Proc Natl Acad Sci USA,2005,102(32):11474-11479.
40 Tse HF,Kwong YL,Chan JK,et al.Angiogenesis in ischaemic myocardium by intramyocardial autologous bonemarrow mononuclear cell implantation[J].Lancet,2003,361(9351):47-49.
41 Suzuki G,Iyer V,Lee TC,et al.Autologous mesenchymal stem cells mobilize cKit+and CD133+bone marrow progenitor cells and improve regional function in hibernating myocardium[J].Circ Res,2011,109(9):1044-1054.
42 Li XH,Fu YH,Lin QX,et al.Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts[J].Mol Biol Rep,2012,39(2):1333- 1342.
43 Vojtassak J,Danisovic L,Kubes M,et al.Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot[J].Neuro Endocrinol Lett,2006,27(2): 134-137.
44 Cai S,Pan Y,Han B,et al.Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J].Chin Med J,2011,124(15):2260-2268.
45 Kuo YR,Wang CT,Cheng JT,et al.Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes[J].Plast Reconstr Surg,2011,128(4):872-880.
46 Corcione A,Benvenuto F,Ferretti E,et al.Human mesenchymal stem cells modulate B-cell functions[J].Blood,2006,107(1):367-372.
47 Rasmusson I,Le Blanc K,Sundberg B,et al.Mesenchymal stem cells stimulate antibody secretion in human B cells[J].Scand J Immunol,2007,65(4):336-343.
48 Guo Z,Zheng C,Chen Z,et al.Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells,but inhibit the production of Th1 cells[J].Eur J Immunol,2009,39(10):2840-2849.
49 Ciccocioppo R,Bernardo ME,Sgarella A,et al.Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn′s disease[J].Gut,2011,60(6):788-798.
50 Spaggiari GM,Capobianco A,Abdelrazik H,et al.Mesenchymal stem cells inhibit natural killer-cell proliferation,cytotoxicity,and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2[J].Blood,2008,111(3):1327-1333.