• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature combination via importance-inhibition analysis

    2013-01-08 08:26:20YangSichunGaoChaoYaoJiaminDaiXinyuChenJiajun
    關(guān)鍵詞:省份河流

    Yang Sichun Gao Chao Yao Jiamin Dai Xinyu Chen Jiajun

    (1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China)(2School of Computer Science, Anhui University of Technology, Maanshan 243032, China)(3School of Computer Science and Information Engineering, Chuzhou University, Chuzhou 239000, China)

    Automatic question answering (QA)[1]is a hot research direction in the field of natural language processing (NLP) and information retrieval (IR), which allows users to ask questions in natural language, and returns concise and accurate answers. QA systems include three major modules, namely question analysis, paragraph retrieval and answer extraction. As a crucial component of question analysis, question classification classifies questions into several semantic categories which indicate the expected semantic type of answers to questions. The semantic category of a question helps to filter out irrelevant answer candidates, and determine the answer selection strategies.

    In current research on question classification, the method based on machine learning is widely used, and features are the key to building an accurate question classifier[2-10]. Li et al.[2-3]presented a hierarchical classifier based on the sparse network of winnows (SNoW) architecture, and made use of rich features, such as words, parts of speech, named entity, chunk, head chunk, and class-specific words. Zhang et al.[4]proposed a tree kernel support vector machine classifier, and took advantage of the structural information of questions. Huang et al.[5-6]extracted head word features and presented two approaches to augment hypernyms of such head words using WordNet. However, when used to train question classifiers, these features were almost combined incrementally via importance analysis (IA) which is based on the importance of individual features. This method is effective when using only a few features, but for very rich features, it may prevent question classification from further improvement due to the problem of ignoring the inhibition among features.

    In order to alleviate this problem, this paper proposes a new method for combining features via importance-inhibition analysis (IIA). By taking into account the inhibition among features as well as the importance of individual features, the IIA method more objectively depicts the process of combining features, and can further improve the performance of question classification. Experimental results on the Chinese questions set show that the IIA method performs more effectively than the IA method on the whole, and achieves the same highest accuracy as the one by the exhaustive method.

    1 Feature Extraction

    We use an open and free available language technology platform (LTP) (http://ir.hit.edu.cn/demo/ltp) which integrates ten key Chinese processing modules on morphology, word sense, syntax, semantics and other document analysis, and take the question “中國哪一條河流經(jīng)過的省份最多?(Which river flows through most provinces in China?)” as an example. The result of word segmentation, POS tagging, named entity recognition and dependency parsing of the sample question is presented in Fig.1.

    We extract bag-of-words (BOW), part-of-speech (POS), word sense (WSD,WSDm), named entity (NE), dependency relation (R) and parent word (P) as basic features. Here, WSD is the 3-layer coding, i.e., coarse, medium and fine grained categories in the semantic dictionary “TongYiCiCiLin”, while WSDm is the 2-layer, i.e., coarse and medium grained word category. Tab.1 gives the features and their values of the sample question.

    Fig.1 Analysis result of the sample question with LTP platform

    Tab.1 Features and their values of the sample question

    2 Combining Features via Importance-inhibition Analysis

    The basic features described above belong to different syntactic and semantic categories, and contribute to question classification from various levels of language knowledge. We combine these basic features to further improve the performance of question classification. Since the BOW feature is the basis of other features, it is always combined with other features. For example, the POS feature follows the BOW feature when these two types of features are combined.

    With respect to the methods for combining features, the most intuitive one is the exhaustive method which lists all the feature combinations one by one. The exhaustive method is inefficient and not feasible in practical applications. In existing literature, combining features is conducted just on the basis of the importance of the features. However, this method may prevent it from further improvement on question classification due to the problem of ignoring the inhibition among features. For example, the dependency relation feature R and the POS feature belong to the same syntactic category, and they both contribute to question classification. However, since R covers POS to a large extent in syntactic expression, R will inhibit POS when they appear in the same feature combination. Similarly, the word sense features WSD and WSDm belong to the same semantic category, since the difference between WSD and WSDm is not obvious, they will inhibit each other when they are present at the same feature combination. From the above discussions, we find that an effective method for combining features should take into account the inhibition among features as well as the importance of individual features.

    In this paper, we propose a new method for combining features via importance-inhibition analysis. Before introducing the IIA method in detail, we should specify some notations. In our importance-inhibition analysis setting, the feature set is a basic concept following the common feature combination.

    Now we can give some formal definitions.

    Definition1(importance) Given featuresfiandfj,fiis more important thanfjif the accuracy offiis higher than that offj.

    Algorithm 1 gives the implement of the IIA method.

    Algorithm1Importance-inhibition analysis algorithm

    Input:F

    1)nfeatures to form feature setF;

    4) Fori=2 ton

    forj=1 to |F|

    F=F-F′;

    The IIA method is on the basis of the (k-1)_ary feature combination to obtain the bestk_ary one, so compared with the exhaustive method, it can significantly improve the efficiency of feature combination. In addition, since the IIA method takes into account the inhibition among features as well as the importance of individual features, compared with the IA method, it can more objectively depict the process of combining features and ensure a better performance of question classification.

    3 Experimental Results and Analysis

    3.1 Data set and evaluation

    In our experiments, we use the Chinese questions set provided by IRSC lab of HIT (http://ir.hit.edu. cn), which contains 6 266 questions belonging to 6 categories and 77 classes.

    The open and free available Liblinear-1.4(http://www.csie.ntu.edu.tw/~cjlin/liblinear/) which is a linear classifier for data with millions of instances and features which is used to be the classifier. We use 10-fold cross validation on the total question set to evaluate the performance of the question classifications.

    3.2 Combining features via IIA

    According to the IIA method, we take BOW as the initial feature, and combine POS, NE, WSD, WSDm, R and P features gradually to form feature combinations, such as 2_ary, 3_ary, 4_ary and so on. The accuracies of individual features are presented in Fig.2(a). Figs.2(b) to (d) list all the accuracies of 2_ary, 3_ary and 4_ary feature combinations respectively, where Base1, Base2 and Base3 stand for the corresponding best 1_ary, 2_ary, 3_ary feature combinations.

    Fig.2 Accuracies of n_ary feature combinations. (a) 1_ary; (b) 2_ary; (c) 3_ary; (d) 4_ary

    In Fig.2(b) and Fig.2(c), the P feature has the highest classification accuracy among all the candidates, but the accuracies of Base1+P and Base2+P are not the highest in all the 2_ary and 3_ary feature combinations, respectively. In particular, the accuracy of Base1+P is the last but one in all the 2_ary feature combinations.

    In Fig.2(b), the accuracy of Base1+NE is lower than that of Base1, so NE is no longer considered in subsequent rounds. Similarly, in Fig.2(d), the accuracies of Base3+POS and Base3+WSDm are both lower than that of Base3, so POS and WSDm are not considered in subsequent rounds. This is greatly convenient for filtering noise features.

    In Fig.2(c) and Fig.2(d), the accuracies of Base1+NE, Base3+POS, Base3+WSDm are lower than those of Base1 and Base3, respectively. The reason is that R covers POS to a large extent in syntactic expression, and the difference between WSD and WSDm is very small. As a result, there exists the inhibition among features when they are in the same feature combination.

    3.3 Performance comparison with IA

    In order to verify the efficiency and effectiveness of IIA, we conduct performance comparison with IA. Tab.2 shows the accuracies of the feature combinations via IIA and IA, respectively, where the “2_ary” column means 2_ary combinations, the “Base” row denotes the best (n-1)_ary combinations, “+POS” row means the feature combined with its baseline, the accuracy in bold means the maximum ofn_ary combinations, and the one in bold with underline shows the maximum of all the combinations.

    Tab.2 Accuracies of feature combinations via IIA and IA %

    Fig.3 conducts the comparison of average and maximum accuracies between IIA and IA, where theXaxis denotesn_ary feature combinations, theYaxis denotes classification accuracies.

    Fig.3 Performance comparison between IIA and IA

    From Fig.3, we can see that IIA shows a gradual increase in average and maximum accuracies in all the feature combinations, while IA shows a slight decline in accuracy at the 4_ary and 7_ary ones. The reason is that IIA is based on the best previous feature combination to obtain the current one. In addition, IIA performs as well as IA in average accuracy at 3_ary feature combinations, and achieves a great improvement over IA in average and maximum accuracies at 2_ary and 4_ary feature combinations. In particular, IIA achieves 0.813 9% and 0.829 9% higher than IA in average and maximum accuracies at 4_ary feature combinations, so we can draw a conclusion that IIA performs significantly better than IA on the whole.

    In order to further verify the efficiency and effectiveness of IIA, we conduct performance comparison with the exhaustive method. Experimental results show that the exhaustive method carries on 6 rounds for acquiring 63 feature combinations, while IIA does 3 rounds with 13 feature combinations gained. This demonstrates that IIA is much more efficient and feasible than the exhaustive method in practical applications. Furthermore, IIA gets the accuracy of 82.413% which is the highest one gained by the exhaustive method.

    4 Conclusion

    In this paper, we propose a new method called IIA to combine features via importance-inhibition analysis. The method takes into account the inhibition among various features as well as the importance of individual features. Experimental results on the Chinese question set show that the IIA method performs more effectively than the IA method on the whole, and achieves the same highest accuracy as the one gained by the exhaustive method.

    The IIA method is a heuristic one in nature, and may be faced with the problem of a local optimum. In our further work, we will make great efforts to achieve more efficient and effective optimization for combining features.

    AcknowlegementWe would like to thank the IRSC laboratory of Harbin Institute of Technology for their free and available LTP platform.

    [1]Zhang Z C, Zhang Y, Liu T, et al. Advances in open-domain question answering [J].ActaElectronicaSinica, 2009,37(5):1058-1069. (in Chinese)

    [2]Li X, Roth D. Learning question classifiers[C]//Procofthe19thInternationalConferenceonComputationalLinguistics. Taipei,China, 2002: 1-7.

    [3]Li X, Roth D. Learning question classifiers: the role of semantic information[J].JournalofNaturalLanguageEngineering, 2006,12(3): 229-250.

    [4]Zhang D, Lee W. Question classification using support vector machines[C]//Procofthe26thAnnualInternationalACMSIGIRConferenceonResearchandDevelopmentinInformationRetrieval. Toronto, Canada, 2003: 26-32.

    [5]Huang Z H, Thint M, Qin Z C. Question classification using head words and their hypernyms[C]//Procofthe2008ConferenceonEmpiricalMethodsinNaturalLanguageProcessing. Honolulu, Hawaii, USA, 2008: 927-936.

    [6]Huang Z H, Thint M, Celikyilmaz A. Investigation of question classifier in question answering[C]//Procofthe2009ConferenceonEmpiricalMethodsinNaturalLanguageProcessing. Singapore, 2009: 543-550.

    [7]Li F T, Zhang X, Yuan J H, et al. Classifying what-type questions by head noun tagging[C]//Procofthe22ndInternationalConferenceonComputationalLinguistics. Manchester,UK, 2008: 481-488.

    [8]Li X, Huang X J, Wu L D. Combined multiple classifiers based on TBL algorithm and their application in question classification [J].JournalofComputerResearchandDevelopment, 2008,45(3): 535-541. (in Chinese)

    [9]Sun J G, Cai D F, Lu D X, et al. HowNet based Chinese question automatic classification [J].JournalofChineseInformationProcessing, 2007,21(1):90-95. (in Chinese)

    [10]Zhang Z C, Zhang Y, Liu T, et al. Chinese question classification based on identification of cue words and extension of training set [J].ChineseHighTechnologyLetters, 2009,19(2): 111-118. (in Chinese)

    猜你喜歡
    省份河流
    誰說小龍蝦不賺錢?跨越四省份,暴走萬里路,只為尋找最會(huì)養(yǎng)蝦的您
    河流
    16省份上半年GDP超萬億元
    流放自己的河流
    散文詩(2018年20期)2018-05-06 08:03:44
    河流
    散文詩(2017年17期)2018-01-31 02:34:15
    河流
    散文詩(2017年15期)2018-01-19 03:07:59
    22個(gè)省
    決策探索(2017年11期)2017-06-23 18:41:32
    當(dāng)河流遇見海
    因地制宜地穩(wěn)妥推進(jìn)留地安置——基于對10余省份留地安置的調(diào)研
    靜靜的河流
    雕塑(2000年2期)2000-06-22 16:13:30
    亚洲av美国av| 制服诱惑二区| 少妇的丰满在线观看| 精品少妇内射三级| 丝瓜视频免费看黄片| 国产伦理片在线播放av一区| 国产成人影院久久av| 午夜久久久在线观看| 一本综合久久免费| 建设人人有责人人尽责人人享有的| 伊人久久大香线蕉亚洲五| 丁香六月天网| 国产欧美日韩一区二区三| 高清黄色对白视频在线免费看| 国产一区二区在线观看av| 精品国产乱子伦一区二区三区| 曰老女人黄片| 国产又色又爽无遮挡免费看| 亚洲国产欧美一区二区综合| 中文字幕最新亚洲高清| 国产视频一区二区在线看| 在线观看人妻少妇| 国产亚洲av高清不卡| 欧美精品一区二区免费开放| 狠狠婷婷综合久久久久久88av| 满18在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕色久视频| 国产高清videossex| 精品高清国产在线一区| 在线十欧美十亚洲十日本专区| 女人被躁到高潮嗷嗷叫费观| 久久狼人影院| 久久天堂一区二区三区四区| 精品久久久久久久毛片微露脸| 亚洲七黄色美女视频| 最近最新免费中文字幕在线| 一级,二级,三级黄色视频| 亚洲av电影在线进入| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 久久香蕉激情| 日本一区二区免费在线视频| 两性夫妻黄色片| 如日韩欧美国产精品一区二区三区| 精品福利永久在线观看| 制服诱惑二区| 中文欧美无线码| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 成人亚洲精品一区在线观看| 国产单亲对白刺激| av免费在线观看网站| 人妻 亚洲 视频| 欧美日韩亚洲综合一区二区三区_| 国产极品粉嫩免费观看在线| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 中文字幕另类日韩欧美亚洲嫩草| 成人国产av品久久久| 黑人巨大精品欧美一区二区mp4| 日韩 欧美 亚洲 中文字幕| 亚洲av日韩在线播放| 久久久久国产一级毛片高清牌| av不卡在线播放| tube8黄色片| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆| 99九九在线精品视频| 精品人妻1区二区| 国产一区二区三区在线臀色熟女 | 免费人妻精品一区二区三区视频| 啦啦啦在线免费观看视频4| 狠狠精品人妻久久久久久综合| 啦啦啦 在线观看视频| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区 | 成人免费观看视频高清| 可以免费在线观看a视频的电影网站| 免费在线观看视频国产中文字幕亚洲| h视频一区二区三区| 亚洲国产欧美一区二区综合| xxxhd国产人妻xxx| 久久久久久人人人人人| 香蕉丝袜av| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| 亚洲伊人久久精品综合| 欧美日韩精品网址| 国产欧美日韩精品亚洲av| 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| 自线自在国产av| 国产精品一区二区在线观看99| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| videos熟女内射| 亚洲欧美一区二区三区黑人| 久久热在线av| 午夜精品国产一区二区电影| 国产伦人伦偷精品视频| 最新美女视频免费是黄的| 国产亚洲一区二区精品| 亚洲av电影在线进入| 在线av久久热| 一二三四在线观看免费中文在| 精品乱码久久久久久99久播| 日本vs欧美在线观看视频| 欧美日韩国产mv在线观看视频| 色在线成人网| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 国产精品亚洲av一区麻豆| 9热在线视频观看99| 亚洲视频免费观看视频| 国产国语露脸激情在线看| 精品久久久精品久久久| 宅男免费午夜| 黄色片一级片一级黄色片| 欧美乱码精品一区二区三区| 另类亚洲欧美激情| 欧美人与性动交α欧美精品济南到| 日本av手机在线免费观看| 乱人伦中国视频| 一个人免费在线观看的高清视频| 色尼玛亚洲综合影院| 另类精品久久| 国产精品av久久久久免费| av又黄又爽大尺度在线免费看| 国产精品1区2区在线观看. | 在线看a的网站| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 男女下面插进去视频免费观看| 欧美精品av麻豆av| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| 久久精品亚洲精品国产色婷小说| h视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 91国产中文字幕| 一区二区三区国产精品乱码| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 777久久人妻少妇嫩草av网站| 天堂动漫精品| 一本—道久久a久久精品蜜桃钙片| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| av网站在线播放免费| 国产视频一区二区在线看| 岛国毛片在线播放| 久久久久精品国产欧美久久久| 飞空精品影院首页| 国产精品 国内视频| 久久人妻av系列| 成人国产一区最新在线观看| 一级片免费观看大全| 看免费av毛片| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 手机成人av网站| 99国产精品免费福利视频| 日本vs欧美在线观看视频| 97人妻天天添夜夜摸| www.999成人在线观看| 亚洲国产av影院在线观看| 欧美激情久久久久久爽电影 | 欧美日韩国产mv在线观看视频| h视频一区二区三区| 国产一区二区三区视频了| 极品教师在线免费播放| 欧美久久黑人一区二区| 免费少妇av软件| 亚洲人成电影观看| 超碰成人久久| 国产一区二区三区综合在线观看| 欧美日韩亚洲国产一区二区在线观看 | 可以免费在线观看a视频的电影网站| 少妇 在线观看| 国产一区二区激情短视频| 91麻豆av在线| 欧美日韩亚洲高清精品| 国产有黄有色有爽视频| 国产一区二区 视频在线| 在线亚洲精品国产二区图片欧美| 亚洲国产欧美一区二区综合| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 亚洲精品国产区一区二| 亚洲av欧美aⅴ国产| 一级毛片女人18水好多| 国产av一区二区精品久久| 中文字幕人妻熟女乱码| 女同久久另类99精品国产91| 天堂中文最新版在线下载| 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 十八禁网站网址无遮挡| 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 亚洲av第一区精品v没综合| 天堂8中文在线网| 一个人免费看片子| 免费在线观看黄色视频的| 午夜激情av网站| 国产欧美亚洲国产| www.熟女人妻精品国产| 国产又爽黄色视频| 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 精品久久久久久久毛片微露脸| 亚洲欧洲精品一区二区精品久久久| 韩国精品一区二区三区| 如日韩欧美国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲中文字幕日韩| 高清黄色对白视频在线免费看| 国产av国产精品国产| 男女无遮挡免费网站观看| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久 | 国产99久久九九免费精品| 国产淫语在线视频| 欧美黄色淫秽网站| 欧美 日韩 精品 国产| 夜夜爽天天搞| netflix在线观看网站| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区 | 这个男人来自地球电影免费观看| www日本在线高清视频| 国产一区二区三区综合在线观看| av网站在线播放免费| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说 | 啦啦啦免费观看视频1| 69精品国产乱码久久久| 动漫黄色视频在线观看| 男女边摸边吃奶| 一本久久精品| 五月开心婷婷网| 国产片内射在线| 极品少妇高潮喷水抽搐| 一区二区av电影网| 蜜桃国产av成人99| 欧美亚洲 丝袜 人妻 在线| 亚洲va日本ⅴa欧美va伊人久久| 捣出白浆h1v1| 国产高清国产精品国产三级| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 一区二区三区激情视频| 母亲3免费完整高清在线观看| 欧美日韩国产mv在线观看视频| 亚洲成av片中文字幕在线观看| 大片电影免费在线观看免费| 国产亚洲精品第一综合不卡| 国产麻豆69| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 国产免费现黄频在线看| 久久 成人 亚洲| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 波多野结衣av一区二区av| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 最近最新免费中文字幕在线| 精品福利观看| 亚洲精品中文字幕一二三四区 | 免费观看人在逋| 黄色a级毛片大全视频| 搡老岳熟女国产| 国产麻豆69| 国产精品久久久久久精品古装| av超薄肉色丝袜交足视频| 高清欧美精品videossex| 国产在线免费精品| 日本av手机在线免费观看| 午夜福利欧美成人| 日韩中文字幕视频在线看片| 午夜福利视频在线观看免费| 老司机午夜十八禁免费视频| 亚洲专区中文字幕在线| 一区在线观看完整版| 手机成人av网站| 亚洲九九香蕉| 99国产精品99久久久久| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频网站a站| 成人国语在线视频| 好男人电影高清在线观看| 黄片大片在线免费观看| 黄网站色视频无遮挡免费观看| 欧美在线一区亚洲| 久久久久网色| 在线看a的网站| 美国免费a级毛片| 女人久久www免费人成看片| 天堂8中文在线网| 国产欧美日韩一区二区三| 熟女少妇亚洲综合色aaa.| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 亚洲精品国产区一区二| 亚洲天堂av无毛| 黑人巨大精品欧美一区二区mp4| 大型av网站在线播放| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 十八禁网站网址无遮挡| 啦啦啦中文免费视频观看日本| 人妻一区二区av| 黑人猛操日本美女一级片| 国产xxxxx性猛交| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 国产区一区二久久| 一个人免费看片子| 欧美成人免费av一区二区三区 | 日本五十路高清| 久久这里只有精品19| 欧美成人午夜精品| 国产精品成人在线| 老汉色∧v一级毛片| 国产色视频综合| 亚洲三区欧美一区| 亚洲人成电影观看| 亚洲成人免费电影在线观看| 超色免费av| av免费在线观看网站| 18禁美女被吸乳视频| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 日日摸夜夜添夜夜添小说| 久久久久精品人妻al黑| 啦啦啦中文免费视频观看日本| 亚洲av美国av| 高潮久久久久久久久久久不卡| 蜜桃在线观看..| 国产精品久久电影中文字幕 | 亚洲视频免费观看视频| 9色porny在线观看| 国产一区二区三区综合在线观看| 中文字幕av电影在线播放| 一二三四社区在线视频社区8| 人人澡人人妻人| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| av天堂久久9| 国产一卡二卡三卡精品| 久久国产精品人妻蜜桃| 99精品欧美一区二区三区四区| 国产在线精品亚洲第一网站| 天堂动漫精品| 久久 成人 亚洲| 成人免费观看视频高清| 香蕉久久夜色| 久久精品国产亚洲av高清一级| 免费日韩欧美在线观看| 国产成人精品无人区| 五月天丁香电影| 99国产精品一区二区蜜桃av | 考比视频在线观看| 久久久久精品国产欧美久久久| 国产精品国产av在线观看| 欧美中文综合在线视频| 国产一卡二卡三卡精品| 亚洲精品久久午夜乱码| 日韩熟女老妇一区二区性免费视频| 国产成人免费无遮挡视频| 国产欧美亚洲国产| 欧美日韩国产mv在线观看视频| 99国产综合亚洲精品| 丰满少妇做爰视频| 亚洲精品中文字幕一二三四区 | 国产av又大| 妹子高潮喷水视频| 日本一区二区免费在线视频| 涩涩av久久男人的天堂| 在线av久久热| 欧美黑人精品巨大| 亚洲情色 制服丝袜| 久久av网站| 久久影院123| 一进一出好大好爽视频| 中文字幕最新亚洲高清| 精品乱码久久久久久99久播| 啦啦啦在线免费观看视频4| 女人久久www免费人成看片| 亚洲国产欧美网| 国产一区二区三区在线臀色熟女 | 国精品久久久久久国模美| 国产精品九九99| 国精品久久久久久国模美| 午夜福利免费观看在线| 无限看片的www在线观看| 最近最新中文字幕大全免费视频| 在线观看66精品国产| 这个男人来自地球电影免费观看| 亚洲国产欧美日韩在线播放| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲| 亚洲国产中文字幕在线视频| 欧美变态另类bdsm刘玥| 国产日韩一区二区三区精品不卡| 国产精品国产av在线观看| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 香蕉久久夜色| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 亚洲天堂av无毛| 嫩草影视91久久| 两人在一起打扑克的视频| 在线观看一区二区三区激情| 久久久久精品国产欧美久久久| 深夜精品福利| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 激情在线观看视频在线高清 | 欧美性长视频在线观看| 国产伦人伦偷精品视频| 麻豆成人av在线观看| 欧美日韩视频精品一区| 亚洲av成人不卡在线观看播放网| 老司机午夜福利在线观看视频 | 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院| 91大片在线观看| 日本精品一区二区三区蜜桃| 午夜日韩欧美国产| 久久99一区二区三区| 一二三四在线观看免费中文在| 两性夫妻黄色片| 自线自在国产av| 国产单亲对白刺激| 欧美午夜高清在线| 久久国产亚洲av麻豆专区| 免费观看人在逋| 亚洲精品一卡2卡三卡4卡5卡| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 91精品国产国语对白视频| 免费观看av网站的网址| 欧美精品啪啪一区二区三区| 国产有黄有色有爽视频| 免费在线观看视频国产中文字幕亚洲| 这个男人来自地球电影免费观看| 老汉色∧v一级毛片| 免费不卡黄色视频| 久久久精品免费免费高清| 在线播放国产精品三级| 中文字幕制服av| 久久亚洲真实| 九色亚洲精品在线播放| 老司机影院毛片| 国产亚洲午夜精品一区二区久久| 国产真人三级小视频在线观看| 中文字幕色久视频| 免费黄频网站在线观看国产| 99久久国产精品久久久| 蜜桃国产av成人99| 91国产中文字幕| 热99国产精品久久久久久7| 视频区欧美日本亚洲| 看免费av毛片| 免费在线观看完整版高清| 亚洲avbb在线观看| 国产一区有黄有色的免费视频| 国产精品秋霞免费鲁丝片| 悠悠久久av| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女 | av片东京热男人的天堂| 中文亚洲av片在线观看爽 | 精品熟女少妇八av免费久了| 天堂俺去俺来也www色官网| 久久精品91无色码中文字幕| 无限看片的www在线观看| 亚洲性夜色夜夜综合| 精品少妇内射三级| 亚洲av美国av| 国产精品一区二区免费欧美| 久久久欧美国产精品| 亚洲avbb在线观看| 免费少妇av软件| 亚洲成国产人片在线观看| 国产野战对白在线观看| 欧美一级毛片孕妇| 国产不卡一卡二| 美女扒开内裤让男人捅视频| 在线观看一区二区三区激情| 女警被强在线播放| 黄色 视频免费看| 亚洲精品国产一区二区精华液| 国产男靠女视频免费网站| 国产成人一区二区三区免费视频网站| 天天躁夜夜躁狠狠躁躁| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 色精品久久人妻99蜜桃| 欧美激情久久久久久爽电影 | 成人18禁高潮啪啪吃奶动态图| 亚洲美女黄片视频| 亚洲免费av在线视频| 国产精品久久久久成人av| 手机成人av网站| 日韩人妻精品一区2区三区| 欧美乱码精品一区二区三区| 国产免费现黄频在线看| 国产成人精品久久二区二区免费| 美女高潮到喷水免费观看| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 一区二区三区国产精品乱码| 色94色欧美一区二区| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 十八禁网站免费在线| 久久久久久久久免费视频了| 啦啦啦 在线观看视频| 99国产精品99久久久久| 十八禁网站免费在线| xxxhd国产人妻xxx| 宅男免费午夜| 在线播放国产精品三级| 精品人妻在线不人妻| 91麻豆av在线| 日韩欧美国产一区二区入口| 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美| av福利片在线| 国产精品久久久久久精品古装| 久久久国产成人免费| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频| 亚洲人成电影观看| 妹子高潮喷水视频| av福利片在线| 女人被躁到高潮嗷嗷叫费观| 18禁黄网站禁片午夜丰满| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 成人av一区二区三区在线看| 99香蕉大伊视频| 悠悠久久av| 中文字幕人妻熟女乱码| 久久人人97超碰香蕉20202| 69精品国产乱码久久久| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影 | 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 看免费av毛片| 欧美日本中文国产一区发布| 精品少妇内射三级| 十八禁网站网址无遮挡| 久久99热这里只频精品6学生| 国产在线视频一区二区| 天堂8中文在线网| 一本一本久久a久久精品综合妖精| 久久99热这里只频精品6学生| 岛国毛片在线播放| 国产99久久九九免费精品| 精品久久久久久久毛片微露脸| 一区二区三区乱码不卡18| 满18在线观看网站| 国产精品99久久99久久久不卡| 大香蕉久久成人网| 亚洲全国av大片| 最新在线观看一区二区三区| 成年动漫av网址| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 精品国产国语对白av| 满18在线观看网站| 水蜜桃什么品种好| 亚洲熟女精品中文字幕| 涩涩av久久男人的天堂| 久久久国产一区二区| 高清视频免费观看一区二区| 中文字幕av电影在线播放| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 中文欧美无线码| 自线自在国产av| 国产亚洲欧美精品永久| 一进一出好大好爽视频| 亚洲中文日韩欧美视频| 中文欧美无线码| 国产淫语在线视频| 在线观看舔阴道视频| 久久午夜亚洲精品久久| 国产精品香港三级国产av潘金莲| 精品少妇内射三级| 久久午夜亚洲精品久久| 亚洲精品久久成人aⅴ小说| av电影中文网址|