• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerodynamics of flexible wing in bees’ hovering flight

    2013-01-02 01:24:48YinDongfuZhangZhisheng

    Yin Dongfu Zhang Zhisheng

    (School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Humans have long been fascinated with flight through the air, and observations of nature fliers’ effortless defiance of gravity first inspired our dreams of taking to the air. Nonetheless, the early attempts to use flapping wings for propulsion failed; consequently, researchers paid more attention to fixed and rotary wings study and achieved great success in the past 100 years. However, traditional fixed-wing and rotary-wing flight began to fail as the flow dynamics entered a regime of insect-sized flights. The small scale air vehicles require different design ideas compared with the conventional ones. Then researchers turned to micro air vehicle(MAV)design by imitating insect flight,and looked forward to producing the micro flapping vehicle. But we have less-detailed understanding of flight mechanics so far. Previous studies show that the steady-state mechanism is inadequate to predict the aerodynamic lift and power requirements of small insects[1]. Some new techniques, such as the computational fluid dynamics (CFD) method and the unsteady theory, are required to reveal the mechanism of insect flight.

    Previous studies on flapping flight have been undertaken from analytical, experimental and computational aspects. Sun et al.[2]investigated lift and power requirements for hovering flight in Drosophila virilis using the computational fluid dynamics method. Wang et al.[3]compared computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane. Liu[4]addressed an integrated and rigorous model for the simulation of insect flapping flight. However, the above models are based on idealized rigid wings and they do not consider the effect of the wings’ flexion during insect hovering flight. Insects use flapping wings to generate forces to balance their weight for hovering. Although insect wings are small and only account for 0.4% to 6.0% of body mass, they provide enough force for insect flight[5]. For the lift coefficient, the moderate wing flexibility leads to a 15% to 30% increase compared with the rigid wing[6]. To understand the mechanism of insect flight, Tanaka et al.[5,7]investigated wing flexibility on lift generation in hoverfly flight,and they pointed out that the flexible deformation should not be ignored.

    In order to hovering, the flapping wings need to generate enough lift to support body weight in the vertical direction while maintaining a balance of aerodynamic forces and moments to stabilize the body, and need to consume more power compared with forward flight[8]. To provide a detailed view of the aerodynamics, control and energetics of the flexible wing in insect normal hovering flight, the aerodynamics of 2-dimensional flexible wing in bees’ hovering flight is studied. Understanding the mechanism of insect flight will help us to design micro-flapping flight aircraft.

    1 Insect Flapping Flight Coordinate Systems

    1.1 Four coordinate systems of flapping flight

    To study the movement and deformation of the insect wings, four coordinate systems are defined as follows[4]:

    1) A global system (o0x0y0z0) It is equivalent to an inertial system.

    2) A body-fixed system (o1x1y1z1) Its origin is in the centroid of an insect, positivex1oriented the insect head, positivez1oriented the wing tip, positivey1oriented vertically upward. Fig.1(a) shows the angles of pitchθ, rollφ, and yawψwith respect to the body-fixed system.

    4) A flexible wing-fixed system (o3x3y3z3) Its origin is at the centroid of the insect wings, positivex3oriented the leading edge, positivez3oriented the wing tip, positivey3oriented vertically upward.

    The deformation of the insect wings generally includes chordwise and spanwise deflections[6], so the chordwise bending angleδand the spanwise bending angleγare defined. The wing near root and leading edge is simplified as rigid and the other part is flexible. Fig.1(c) shows the chordwise bending angleδand the spanwise bending angleγwith respect to the flexible body-fixed system.

    Fig.1 Definition of insect flapping angles. (a) Body-fixed coordinate System; (b) Rigid wing-fixed coordinate system; (c) Flexible wing-fixed coordinate system

    1.2 Transformation among four coordinate systems

    The global system, the body-fixed system, the rigid wing-fixed system and the flexible wing-fixed system are used to reveal the insects’ position, gesture, the wings movement, and the wings deformation, respectively. To solve the general problem of insect flight, the coordinate system transformation is investigated. As shown in Fig.2(a), the transformation between the global system and the body-fixed system can be written as

    (1)

    Fig.2 Transformation among four coordinate systems. (a) Transformation between global system and body-fixed system; (b) Transformation between body-fixed system and rigid wing-fixed system; (c) Transformation between rigid wing-fixed system and flexible wing-fixed system

    As shown in Fig.2(b), the transformation between the body-fixed system and the rigid wing-fixed system can be written as

    (2)

    As shown in Fig.2(c), the transformation between the rigid wing-fixed system and the flexible wing-fixed system can be written as

    (3)

    whereK=(-xt,-yt,-zt), andKis a vector pointing fromo2too3.

    1.3 Elliptic coordinate system

    Although the above coordinate systems have the versatility, the elliptic coordinate system may be more helpful in 2-dimensional wing research. The computation of 2-dimensional insect hovering showed that a hovering motion can generate enough lift to support a typical insect weight[9]. As the cross-section of 2-dimensional wings is similar to an ellipse, wing chord can be simplified as an ellipse to facilitate the theoretical analysis and computation. The movement of the ellipse can be expressed in the elliptical coordinate. Fig.3 shows the established elliptic coordinate system.

    Fig.3 Established elliptic coordinate system

    The conversion between the elliptic coordinate system and the Cartesian coordinate system is

    x=acoshmcosn,y=asinhmsinn

    (4)

    where (-a, 0) and (a, 0) are two focuses of the ellipse; curves of constantmform ellipses, and curves of constantnform hyperbolae. The dashed ellipse represents the torsional wing chord andφis the torsion angle. The center of the ellipse coordinate system coincides with the center of the wings’ cross-section. The Navier-Stokes equation and the continuity equation expressed in the elliptic coordinate system have the following forms[10]:

    (5)

    whereuis the velocity field;wis the vorticity field;vis the velocity andSis the scaling factor. The mesh points are naturally clustered around the tips in the elliptical coordinate system. The radius of the computational boundary can be chosen to be 5 to 10 times the half-chord length[3]. While in the Cartesian coordinate system, this value is 20 to 50 times the half-chord length, so it can improve the computational accuracy and reduce the calculation complexity.

    2 Computation Models and Methods

    Fig.4(a) shows the forces and position of a rigid wing in the downstroke phase. During the hovering flight, the tip angle of the stroke plane is particularly small and the stroke plane is approximately horizontal. Hovering with a horizontal stroke plane is termed normal hovering[11]. The wing deformation of normal hovering flight can be represented as Fig.4(b). The thick line represents the wing chord and the filled circle represents the leading edge. In Fig.4,αis the angle of attack;φis the torsion angle;FLis the lift andFDis the drag. In hovering flight,FDis equal to thrust in the horizontal direction andFLis equal to the insect weight in the vertical direction. Insect wings have two forms of movements in one flapping cycle; the wing chord will distort at the beginning and end stage and translate at the middle stage in the stroke plane. The translational movement of a wing is governed byA(t)=A0/2 [cos(2πt/T)+1], and the rotational movement is governed bya(t)=π/[4(1-sin(2πt/T))][12]. Other wing flexure deformation parameters are set the same values as those in Ref.[13].

    Fig.4 The generated forces and movement of wings. (a) Rigid wings in forward flight; (b) Flexible wings in hovering flight

    The computational fluid dynamics problem is defined under the initial and boundary conditions. The solutions to the N-S equations require specific boundary conditions at the solid walls of dynamic flapping wings and the body as well as at the far-field outside boundary. The computational domain has a size of 50c×50c, wherecis the length of the wing chord. Extensive tests have been done to make sure that the domain is large enough to achieve satisfactory accuracy of the results. The outermost boundary of the computational domain is defined as the pressure-outlet wall. The wing boundary condition satisfiesvt=0=0 at the initial movement. The fluid velocity at fluid-wing boundaries is equal to that of the wing boundary. The no-slip condition for viscous fluids states that at the wing boundary, it satisfies the conditionvfluid=vwing.

    The second-order up-wind numerical scheme and the SIMPLEC algorithm are used to solve 2-dimensional incompressible Navier-Stokes equations. At each time step, user-defined functions (UDFs) are used to control the wing’s motions and to obtain the aerodynamic performance. Dynamic mesh techniques are implemented by using the spring-based smoothing model and the local remeshing model.

    The process to calculate the force, moment and power is as follows:

    1) The pressure distribution of every face thread is obtained first, and then the pressure force is computed by looping over all face threads in the domain. The total force is the cumulative force of each face. In hovering flight, lift is the component of total force in the vertical direction,FL=Fcosα, and drag is the component of total force in the horizontal direction,FD=Fsinα(see Fig.4(b)).

    3 Results and Discussion

    The lift coefficient and the drag coefficient are defined as

    (6)

    whereCL,CDare the lift coefficient and the drag coefficient, respectively;ρis the air density;Umis the average velocity of the wing chord;cis the wing chord length. The aerodynamic force acting on the wing is contributed by the pressure and viscous stress on the wing surface, and the total force is the sum of pressure force and viscous force. The lift and drag refer to the total lift and total drag. Fig.5 describes the computation results of lift coefficientCLand drag coefficientCD. Note that the lift coefficient and the drag coefficient are normalized and represented in the same diagram in order to compare the variation trend better. The results show thatCLandCDhave a similar variation trend with Wang’s research[3]. The small difference may be due to the parameter settings and wings flexible deformation. The wing is considered to be rigid in Wang’s research, while the wing is considered to be flexible in this paper.

    Fig.5 Computation results of lift and drag coefficients

    The negative lift and drag means that the direction of lift and drag is opposite to definition. The large lift and drag peaks at the beginning and the end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation of the wing and the wing’s rotation. The rotational circulation is caused by the Magnus effect, which makes the wing generate an upward force. This effect is similar to a rotational circulation mechanism[14]. Unlike the rigid wing’s results[15], the small peaks before large peaks in the first quarter-cycle can be explained by the convex flow effect. The wings are rigid in the translation process, so the drag has a steady increase at this stage. Then the wing has a flexible deformation (see Fig.4(b)①) before the rotation phase, and the wings area against airflow is reduced, so the drag has a slight decrease in this stage. The small peaks after large peaks in the second quarter-cycle can be explained by the concave flow effect, and the wings flexible deformation has not changed after the rotation phase (see Fig.4(b)②), so the wings area against airflow is increased and the drag has a slight increase an this stage. A similar theory can be used to explain the small drag peaks in the next half flapping cycle.

    The average viscous force is probably 1/400 of the pressure force and the average viscous moment is only 1/775 of the pressure moment in our computation, as shown in Fig.6(a). The viscous force and moment can be ignored during the following insects’ normal hovering flight research. The total force and the total moment can be represented by the pressure force and the pressure moment, respectively. The average rotational power is probably 1/20 of the translational power, as shown in Fig.6(b), so insects will consume more energy for translational movement than for rotational movement. The positive power means that the flapping wings do work on fluid and the movement of wings needs to consume energy. The negative power means that the fluid produces work on flapping wings. This will help the wing form a convex flow shape and save the energy consumption of insect flight.

    Fig.6 Aerodynamic moment changes and consumed power during several flapping cycles. (a) Comparison between pressure moment and viscous moment; (b) Comparison between translational power and rotational power

    4 Conclusion

    Four insect flapping flight coordinate systems are established to represent the bees’ position, attitude and wings deformation. Then the computation models of the 2-dimensional flexible wing are established, and the force, moment, and power changes are investigated. According to the computational results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect. The small force and drag peaks can be explained by the convex flow effect and the concave flow effect. The viscous force, moment and rotational power are small and can be ignored. In the future research, a lot of work needs to be done to reveal the flight mechanism, such as numerical calculation of 3-dimensional flexible wing, quantitative analysis of force, moment and power. Understanding the mechanism of insect flight will be a great promotion of micro-flapping flight design and application.

    [1]Ellington C P. The aerodynamics of hovering insect flight. VI. lift and power requirements[J].PhilosophicalTransactionsoftheRoyalSocietyofLondonSeriesB—BiologicalSciences, 1984,305(1122):145-181.

    [2]Sun Mao, Tang Jian. Lift and power requirements of hovering flight in Drosophila virilis[J].TheJournalofExperimentalBiology, 2002,205(16): 2413-2427.

    [3]Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J].TheJournalofExperimentalBiology, 2004,207(3):449-460.

    [4]Liu Hao. Integrated modeling of insect flight: from morphology, kinematics to aerodynamics[J].JournalofComputationalPhysics, 2009,228(2): 439-459.

    [5]Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees[J].ProceedingsoftheRoyalSocietyofSeriesB—BiologicalSciences, 2013,280(22): 1-8.

    [6]Tian Fangbo, Luo Haoxiang, Song Jialei, et al. Force production and asymmetric deformation of a flexible flapping wing in forward flight[J].JournalofFluidsandStructures, 2013,36:149-161.

    [7]Tanaka H, Whitney J P, Wood R J. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight[J].IntegrativeandComparativeBiology, 2011,51(1): 142-150.

    [8]Fry S N, Sayaman R, Dickinson M H. The aerodynamics of hovering flight in Drosophila[J].TheJournalofExperimentalBiology, 2005,208(12):2303-2318.

    [9]Wang Z J. Two dimensional mechanism for insect hovering[J].PhysicalReviewLetters, 2000,85(10): 2216-2219.

    [10]Wang Z J. The role of drag in insect hovering[J].TheJournalofExperimentalBiology, 2004,207(23):4147-4155.

    [11]Sun Mao. High-lift generation and power requirements of insect flight[J].FluidDynamicsResearch, 2005,37(1/2):21-39.

    [12]Wang Z J. Computation of insect hovering[J].MathematicalMethodsintheAppliedSciences, 2001,24(17/18):1515-1521.

    [13]Lu Guang, Yan Jingping, Zhang Zhisheng, et al. Dissection of a flexible wing’s performance for insect-inspired flapping-wing micro air vehicles[J].AdvancedRobotics, 2012,26(5/6): 409-435.

    [14]Dickinson M H, Lehmann F O, Sane S. Wing rotation and the aerodynamic basis of insect flight[J].Science, 1999,284(5422):1954-1960.

    [15]Zhang Genbao, Liu Yijun, Shi Wu, et al. Numerical simulation of two-dimensional flapping-wing MAVs[J].JournalofDonghuaUniversity:NaturalScience, 2011,37(2): 256-260. (in Chinese)

    亚洲精品乱久久久久久| 身体一侧抽搐| 久久人人97超碰香蕉20202| av在线播放免费不卡| 国产免费现黄频在线看| 女警被强在线播放| 真人做人爱边吃奶动态| 少妇 在线观看| 国产亚洲精品第一综合不卡| 国产欧美亚洲国产| 两性夫妻黄色片| 法律面前人人平等表现在哪些方面| 搡老熟女国产l中国老女人| 精品国产亚洲在线| 国产不卡av网站在线观看| 免费观看人在逋| bbb黄色大片| www.熟女人妻精品国产| 国产精品98久久久久久宅男小说| 国产xxxxx性猛交| 国产一区二区三区在线臀色熟女 | tocl精华| www.精华液| 91九色精品人成在线观看| 亚洲五月色婷婷综合| 精品久久久久久,| 亚洲久久久国产精品| 交换朋友夫妻互换小说| 国产亚洲欧美精品永久| 老司机亚洲免费影院| 嫩草影视91久久| 亚洲av成人av| 国产熟女午夜一区二区三区| 亚洲在线自拍视频| 热re99久久精品国产66热6| 一区二区日韩欧美中文字幕| 男女免费视频国产| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 精品电影一区二区在线| 午夜福利免费观看在线| 性少妇av在线| 亚洲专区字幕在线| 精品国产一区二区三区四区第35| 99国产精品免费福利视频| 久久精品人人爽人人爽视色| 久9热在线精品视频| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 80岁老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕 | 十八禁网站免费在线| 丝袜人妻中文字幕| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 老熟女久久久| 欧美激情高清一区二区三区| 国产成人免费观看mmmm| 高清欧美精品videossex| 国产精品影院久久| 狠狠狠狠99中文字幕| 国产区一区二久久| 91老司机精品| 黄色 视频免费看| 人妻 亚洲 视频| 男女之事视频高清在线观看| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 亚洲精品国产区一区二| 大香蕉久久网| 免费不卡黄色视频| 热99国产精品久久久久久7| 色在线成人网| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 精品电影一区二区在线| 色94色欧美一区二区| 高清毛片免费观看视频网站 | 成年人黄色毛片网站| 国产在线精品亚洲第一网站| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 国产成人精品在线电影| 美女视频免费永久观看网站| 三级毛片av免费| 中文字幕人妻熟女乱码| 一区在线观看完整版| 久久性视频一级片| 在线观看日韩欧美| 人人妻人人澡人人看| 亚洲综合色网址| 伦理电影免费视频| 窝窝影院91人妻| 亚洲一区二区三区不卡视频| 成年版毛片免费区| 动漫黄色视频在线观看| 亚洲欧美色中文字幕在线| 欧美老熟妇乱子伦牲交| 久久香蕉国产精品| 国产精品.久久久| 波多野结衣一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 中文字幕制服av| 国产亚洲欧美在线一区二区| 热99re8久久精品国产| 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 亚洲免费av在线视频| 免费一级毛片在线播放高清视频 | 人妻丰满熟妇av一区二区三区 | 国产成人精品无人区| 久久久国产一区二区| 777久久人妻少妇嫩草av网站| 精品人妻在线不人妻| 亚洲av熟女| 亚洲成国产人片在线观看| 咕卡用的链子| 色在线成人网| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 一级,二级,三级黄色视频| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 国产一卡二卡三卡精品| 男人的好看免费观看在线视频 | 国产成人欧美| 欧美激情极品国产一区二区三区| 嫁个100分男人电影在线观看| 黑人欧美特级aaaaaa片| 黄色 视频免费看| 人人妻人人澡人人爽人人夜夜| 日本撒尿小便嘘嘘汇集6| 女人爽到高潮嗷嗷叫在线视频| 天天影视国产精品| 亚洲五月天丁香| 制服人妻中文乱码| 身体一侧抽搐| 91成年电影在线观看| 麻豆国产av国片精品| 黄色a级毛片大全视频| 美女视频免费永久观看网站| 久久香蕉国产精品| 老司机午夜十八禁免费视频| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 亚洲七黄色美女视频| 可以免费在线观看a视频的电影网站| 成年人午夜在线观看视频| 午夜福利欧美成人| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲国产一区二区在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美网| 日本五十路高清| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 建设人人有责人人尽责人人享有的| 久久久久久亚洲精品国产蜜桃av| 怎么达到女性高潮| 欧美日韩亚洲高清精品| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 757午夜福利合集在线观看| av视频免费观看在线观看| 一区二区三区精品91| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 一进一出抽搐动态| 王馨瑶露胸无遮挡在线观看| 欧美 日韩 精品 国产| 国产一区在线观看成人免费| 日本黄色日本黄色录像| 亚洲人成电影免费在线| 午夜福利影视在线免费观看| 日本欧美视频一区| cao死你这个sao货| 精品第一国产精品| 亚洲精品中文字幕在线视频| 成人亚洲精品一区在线观看| 日韩一卡2卡3卡4卡2021年| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 在线国产一区二区在线| 国产高清激情床上av| tocl精华| 天天躁日日躁夜夜躁夜夜| 国产一区在线观看成人免费| 日韩大码丰满熟妇| 王馨瑶露胸无遮挡在线观看| 亚洲成人免费av在线播放| 久久精品国产亚洲av高清一级| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 亚洲精品在线美女| 黄色视频,在线免费观看| 在线播放国产精品三级| 女人被躁到高潮嗷嗷叫费观| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 精品国产乱码久久久久久男人| 国产精品免费大片| 免费在线观看影片大全网站| 欧美激情高清一区二区三区| 成人影院久久| 国产欧美日韩一区二区三区在线| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 精品电影一区二区在线| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 亚洲欧美日韩另类电影网站| 天堂√8在线中文| 精品久久蜜臀av无| 麻豆成人av在线观看| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| 高清视频免费观看一区二区| 日本撒尿小便嘘嘘汇集6| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀| 99香蕉大伊视频| 咕卡用的链子| 人妻 亚洲 视频| 精品无人区乱码1区二区| 欧美日韩精品网址| 亚洲精品美女久久av网站| 国产单亲对白刺激| 麻豆成人av在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品亚洲av一区麻豆| 国产精品免费视频内射| 午夜福利乱码中文字幕| 最近最新中文字幕大全免费视频| 中文字幕最新亚洲高清| 久久精品国产a三级三级三级| 亚洲精品美女久久久久99蜜臀| 国产成人精品无人区| 男人操女人黄网站| 国产精品免费大片| 国产成+人综合+亚洲专区| 亚洲全国av大片| 久久久久精品人妻al黑| 久久久久国内视频| 亚洲精品国产色婷婷电影| 757午夜福利合集在线观看| 99国产极品粉嫩在线观看| 欧美激情 高清一区二区三区| 极品教师在线免费播放| 极品人妻少妇av视频| 国产精品电影一区二区三区 | 久久亚洲真实| 91麻豆av在线| 黑人猛操日本美女一级片| 色综合欧美亚洲国产小说| 中文字幕最新亚洲高清| 中文字幕精品免费在线观看视频| 丝瓜视频免费看黄片| 国产午夜精品久久久久久| 国产精华一区二区三区| 国产精品一区二区在线不卡| 手机成人av网站| 巨乳人妻的诱惑在线观看| 亚洲九九香蕉| 精品无人区乱码1区二区| 一级毛片精品| 国产成人欧美| 精品免费久久久久久久清纯 | 成人免费观看视频高清| 法律面前人人平等表现在哪些方面| 超碰97精品在线观看| 久久久久精品人妻al黑| 亚洲精品国产一区二区精华液| 天天躁夜夜躁狠狠躁躁| 母亲3免费完整高清在线观看| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 桃红色精品国产亚洲av| 国产免费男女视频| 十八禁网站免费在线| 久久久久视频综合| 超碰97精品在线观看| 黄频高清免费视频| 欧美最黄视频在线播放免费 | av线在线观看网站| av网站免费在线观看视频| 淫妇啪啪啪对白视频| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 天天操日日干夜夜撸| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 狠狠狠狠99中文字幕| 欧美最黄视频在线播放免费 | 天堂动漫精品| 777米奇影视久久| 老汉色∧v一级毛片| 亚洲国产精品一区二区三区在线| 9191精品国产免费久久| 亚洲成av片中文字幕在线观看| av片东京热男人的天堂| 国产亚洲av高清不卡| 午夜亚洲福利在线播放| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 一级片'在线观看视频| 午夜精品国产一区二区电影| 超色免费av| 欧美激情久久久久久爽电影 | videos熟女内射| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 精品久久久久久久久久免费视频 | 丰满的人妻完整版| 首页视频小说图片口味搜索| 黄色 视频免费看| 1024视频免费在线观看| 成人永久免费在线观看视频| 女人久久www免费人成看片| 国产高清国产精品国产三级| 亚洲欧美色中文字幕在线| 国产成人一区二区三区免费视频网站| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 久久精品国产综合久久久| 十八禁网站免费在线| 中文字幕色久视频| 老熟妇仑乱视频hdxx| a级毛片在线看网站| 午夜91福利影院| www.999成人在线观看| 久久久国产一区二区| 午夜影院日韩av| 一进一出抽搐动态| 老汉色∧v一级毛片| 黄片大片在线免费观看| 岛国在线观看网站| 黑丝袜美女国产一区| 久久热在线av| 欧美午夜高清在线| 亚洲综合色网址| 精品亚洲成a人片在线观看| 精品熟女少妇八av免费久了| 国产亚洲精品久久久久久毛片 | 精品国产超薄肉色丝袜足j| 天天操日日干夜夜撸| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 91老司机精品| 91麻豆精品激情在线观看国产 | 欧美不卡视频在线免费观看 | 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 成人手机av| 一二三四在线观看免费中文在| 满18在线观看网站| 老司机深夜福利视频在线观看| 久久久国产精品麻豆| 窝窝影院91人妻| 精品乱码久久久久久99久播| 久久人妻av系列| 久久精品国产亚洲av香蕉五月 | 精品乱码久久久久久99久播| 黄色丝袜av网址大全| 99re在线观看精品视频| 久久草成人影院| 天天躁狠狠躁夜夜躁狠狠躁| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费 | 午夜福利免费观看在线| 免费在线观看日本一区| 久久精品国产清高在天天线| 亚洲精品国产色婷婷电影| 久久亚洲精品不卡| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 精品一区二区三区视频在线观看免费 | 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 精品国内亚洲2022精品成人 | 男女高潮啪啪啪动态图| 精品视频人人做人人爽| 欧美另类亚洲清纯唯美| 欧美在线黄色| 大片电影免费在线观看免费| 国产不卡一卡二| 中出人妻视频一区二区| 亚洲第一av免费看| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| 亚洲美女黄片视频| 性少妇av在线| 在线视频色国产色| 国产成人欧美在线观看 | 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 精品午夜福利视频在线观看一区| 老熟女久久久| 国产成人影院久久av| 亚洲av成人一区二区三| 亚洲国产精品sss在线观看 | 国产亚洲av高清不卡| 大香蕉久久网| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| 欧美精品人与动牲交sv欧美| 久久国产精品人妻蜜桃| 国产日韩欧美亚洲二区| 国产成人精品无人区| 国产1区2区3区精品| 精品一品国产午夜福利视频| tocl精华| 亚洲一区中文字幕在线| 欧美激情极品国产一区二区三区| 高清av免费在线| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女 | 成人18禁在线播放| 人妻丰满熟妇av一区二区三区 | x7x7x7水蜜桃| 国产精品久久久av美女十八| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 亚洲精品久久午夜乱码| 久久精品人人爽人人爽视色| 亚洲专区字幕在线| 国产精品久久久久久人妻精品电影| 国产乱人伦免费视频| 亚洲一区二区三区欧美精品| 亚洲国产欧美日韩在线播放| 亚洲五月婷婷丁香| 悠悠久久av| 久久精品亚洲av国产电影网| 亚洲精品一卡2卡三卡4卡5卡| 叶爱在线成人免费视频播放| 99国产精品99久久久久| 久久久久精品人妻al黑| 国产精品一区二区免费欧美| 一区二区日韩欧美中文字幕| 狂野欧美激情性xxxx| 老熟妇仑乱视频hdxx| 日韩大码丰满熟妇| 麻豆成人av在线观看| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 亚洲av成人av| 两个人看的免费小视频| 国产蜜桃级精品一区二区三区 | 极品少妇高潮喷水抽搐| 在线观看日韩欧美| 999久久久精品免费观看国产| 99国产精品一区二区蜜桃av | 国产精品自产拍在线观看55亚洲 | 亚洲精品美女久久av网站| 91大片在线观看| 午夜福利乱码中文字幕| 人妻久久中文字幕网| 精品亚洲成国产av| 国产男女内射视频| 日韩欧美三级三区| 国产成人免费无遮挡视频| 亚洲中文av在线| 咕卡用的链子| 久久精品91无色码中文字幕| 在线观看www视频免费| 午夜精品久久久久久毛片777| 久久人人97超碰香蕉20202| 亚洲人成伊人成综合网2020| 欧美精品高潮呻吟av久久| 中文字幕色久视频| 欧美黄色片欧美黄色片| 在线观看免费高清a一片| 香蕉丝袜av| 亚洲五月色婷婷综合| 在线观看日韩欧美| 99re在线观看精品视频| 国产精品一区二区在线不卡| 国产精品一区二区在线观看99| 欧美精品啪啪一区二区三区| 嫁个100分男人电影在线观看| 纯流量卡能插随身wifi吗| 国产单亲对白刺激| 精品国产美女av久久久久小说| 久久 成人 亚洲| 51午夜福利影视在线观看| av免费在线观看网站| 亚洲人成电影免费在线| 亚洲第一av免费看| 人妻丰满熟妇av一区二区三区 | 亚洲欧美日韩高清在线视频| 久久中文字幕人妻熟女| 一边摸一边做爽爽视频免费| 无人区码免费观看不卡| 一a级毛片在线观看| 精品久久久久久久久久免费视频 | av网站免费在线观看视频| 国产一区二区三区视频了| 国产97色在线日韩免费| 久久天堂一区二区三区四区| 美女福利国产在线| a级毛片在线看网站| 午夜视频精品福利| 91麻豆av在线| 99re6热这里在线精品视频| 天天躁日日躁夜夜躁夜夜| 一边摸一边抽搐一进一小说 | 91麻豆av在线| 国产精品二区激情视频| 国产亚洲精品一区二区www | 亚洲av成人不卡在线观看播放网| 国产激情久久老熟女| 在线天堂中文资源库| 超碰成人久久| 欧美成狂野欧美在线观看| videos熟女内射| 最新美女视频免费是黄的| 午夜福利在线免费观看网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 在线观看免费视频网站a站| 黄色a级毛片大全视频| 国内毛片毛片毛片毛片毛片| 久久国产精品影院| 精品一区二区三区四区五区乱码| 黄色女人牲交| 在线国产一区二区在线| 一级,二级,三级黄色视频| 丝瓜视频免费看黄片| 多毛熟女@视频| 女人久久www免费人成看片| 久久精品亚洲精品国产色婷小说| 嫁个100分男人电影在线观看| 精品亚洲成a人片在线观看| 中文字幕最新亚洲高清| 成在线人永久免费视频| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区久久| av欧美777| 日日摸夜夜添夜夜添小说| 亚洲精品中文字幕一二三四区| 精品一区二区三区视频在线观看免费 | 视频在线观看一区二区三区| 老熟女久久久| 亚洲精品国产色婷婷电影| 亚洲av电影在线进入| 久热爱精品视频在线9| 精品国产一区二区久久| 丰满的人妻完整版| 在线观看舔阴道视频| 青草久久国产| 国产在线观看jvid| xxxhd国产人妻xxx| 亚洲av第一区精品v没综合| 国产高清视频在线播放一区| 亚洲精品国产一区二区精华液| 久久香蕉国产精品| 久热爱精品视频在线9| 精品久久久久久电影网| 精品国产美女av久久久久小说| 99久久99久久久精品蜜桃| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 91老司机精品| 交换朋友夫妻互换小说| 伊人久久大香线蕉亚洲五| www.熟女人妻精品国产| 大陆偷拍与自拍| 身体一侧抽搐| 欧美另类亚洲清纯唯美| 欧美日韩中文字幕国产精品一区二区三区 | 免费看十八禁软件| 亚洲少妇的诱惑av| 夫妻午夜视频| 深夜精品福利| 国产男女内射视频| 高清欧美精品videossex| 91字幕亚洲| 国产麻豆69| 精品亚洲成a人片在线观看| 久久午夜亚洲精品久久| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 在线国产一区二区在线| 欧美日韩中文字幕国产精品一区二区三区 | 美女视频免费永久观看网站| 十分钟在线观看高清视频www| 欧美黄色片欧美黄色片| 欧美性长视频在线观看| 两性夫妻黄色片| 巨乳人妻的诱惑在线观看| av国产精品久久久久影院| 久久人妻熟女aⅴ| 亚洲国产欧美日韩在线播放| 欧美中文综合在线视频|