• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and analysis of dual-mode structure repetitive control based hybrid current regulation scheme for active power filters

    2013-01-02 01:24:40ZouZhixiangWangZhengChengMing

    Zou Zhixiang Wang Zheng Cheng Ming

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

    With the increasing use of nonlinear loads in power systems and more strict requirements by grid codes, the power quality becomes a critical issue today. The nonlinear loads may cause significant low order harmonics, which will not only increase the power loss in distribution lines but also disturb some sensitive electric equipment. Both the passive and the active power filters (APF) have been proposed to alleviate such low order harmonics[1-3]. Compared with the passive power filters, the APF is considered more attractive due to its high efficiency and controllability[4]. The function of the APF is to generate the out-of-phase harmonics purposely to compensate the existent harmonics in grid. In the past several years, the most important research line for the APF is related with the control schemes, which can effectively improve the performance of the APF system. In fact, the performance of the APF is mainly dependent on the current tracking capability. Many conventional current regulations, such as proportional integral(PI) control[5], hysteresis control[6]and deadbeat control[7], etc. have been applied in the APF system. However, these solutions exhibit some well-known drawbacks[8]and from the investigation of the experimental results, the current tracking capabilities based on these methods are relatively weak.

    The repetitive control is another promising current regulation scheme today. Originating from the internal model principle, the repetitive control provides a high-performance solution for the grid current quality applications[9-12]. The periodic disturbance and error can be easily eliminated by using this repetitive controller. Therefore, the repetitive controller can precisely track the reference current with various order harmonics, and it is very suitable for the current control in the APF application. However, the transient performance of the conventional repetitive controller is unsatisfactory for the APF application because the control output values update everyNsample intervals and the error convergence rate is slow.Nis the sampling times in a fundamental cycle. To accelerate the convergence rate, the odd-harmonic repetitive control scheme was proposed[13]. Compared with the conventional repetitive controller, the odd-harmonic repetitive controller updates its output values everyN/2 sample intervals, and the convergence rate is faster. Since the main harmonics in the power electronic system are odd harmonics, the odd-harmonic repetitive control (OHRC) was proposed for the shunt APF in Ref.[14]. In addition to the similar ability of harmonic rejection as the conventional repetitive control, the OHRC is verified to offer better transient performance. However, the OHRC only provides high gains for the odd harmonics but it has less controllability for the even order harmonics. Actually, the power system produces even order harmonics when power converters are employed under some unusual conditions[15-16]. Unlike the OHRC, the dual-mode structure repetitive controller (DMRC) can eliminate both the odd and even harmonics[17]. In addition, the DMRC also updates the control output values everyN/2 sample intervals. Thus, the DMRC can not only improve the performance of grid current control under general current harmonic conditions, but also maintain the fast convergence rate. It should be noted that the dynamic performance of repetitive control is not satisfactory because of the memory cells in the forward channel. Therefore, the repetitive controller is usually improved by integrating a feedback controller[18]. To provide good performance for both the steady-state and the transient operation of the APF, a novel hybrid current controller is proposed in this paper by integrating the deadbeat control and the DMRC. By using the proposed hybrid current controller, not only the advantages of the deadbeat controller, namely the fast transient response and easy digital implementation are maintained, but also the high robustness and accurate current tracking ability are provided.

    1 System Description

    Fig.1 System configuration of the single-phase shunt APF

    The dynamics of the APF in Fig.1 can be described as follows:

    (1)

    (2)

    where the compensation currenticand the capacitor voltageVcare the state variables, andVinis the input voltage.S(t) denotes the switching function, and the value is 1 or-1.LnandCnare the values of the grid-side inductor and the DC link capacitor, respectively.

    For the operation of the shunt APF, the grid currentisis controlled to track the sinusoidal reference while the DC-link voltage should be kept stable. The cascaded control strategy is proposed to achieve these two control objectives. The current regulation of the shunt APF consists of two parts: One is the current control loop and the other is the reference current generator. The reference current generator is designed based on the instantaneousp-qtheory, which has excellent steady-state performance and can be easily implemented[19]. Unlike the previous current regulation methods, the DMRC and the one-sampling-ahead preview (OSAP) control integrated hybrid current regulation scheme is newly proposed for the APF. Since the focus of this paper is to investigate the performance of harmonic current tracking on the AC side, the standard PI control is used to control the DC link voltage of the APF.

    2 Design and Analysis of Proposed Control Scheme

    2.1 Design of OSAP controller

    Eq.(1) can be described as

    (3)

    wherekandk+1 represent the sampling instants. The grid voltageEcan be assumed constant in each sampling periodTsby considering the sampling frequency is high enough. The OSAP control algorithm is a standard deadbeat control for the current loop. It yieldsic(k+1)=iref(k) with the transfer function asHcl(z)=z-1. The control law for the current-loop is given as

    (4)

    2.2 Proposed hybrid current control

    The proposed hybrid current control scheme is shown in Fig.2. The DMRC in the proposed hybrid controller has the controllability for both the odd and the even order harmonics. TwoN/2 memory cells run in parallel and the controller updates its control output everyN/2 sample intervals. Therefore, the convergence rate of the DMRC in the hybrid controller is faster than that of the conventional repetitive control schemes. The transfer function of the proposed hybrid controller is given as follows:

    (5)

    whereGohrc(z),Gehrc(z),Gf(z)=zandGosap(z) are the discrete transfer functions of the OHRC, the even-harmonic repetitive controller (EHRC), the compensation filter and the OSAP controller, respectively.ko≥0 andke≥0 are the repetitive control gains.

    Fig.2 Proposed hybrid current control system

    In Eq.(5), a low-pass filterQ(z) is employed to enhance the robustness of the system. Particularly, the DMRC will turn into an OHRC or an EHRC whenke=0 orko=0. The DMRC can also be turned into a conventional repetitive controller (CRC) with the repetitive gain ofko+kewhenko=kewith the transfer function as follows:

    (6)

    The open-loop frequency response fromiref(z) toic(z) of the hybrid current controller is given in Fig.3.ko=0.8 andke=0.6 are selected here as the repetitive gains. Obviously, the large gains are available at both the odd and the even order harmonics. Therefore, the proposed hybrid controller can offer a good current tracking capability for both the odd and the even order harmonics. Besides, the phase of the proposed hybrid controllers is zero at the fundamental and the harmonic frequencies by incorporating the phase compensating termGf(z). In order to enhance the robustness of the system,Q(z)=a0z-1+a1+a0zis used, where 2a0+a1=1. It should be mentioned thatQ(z) is a first-order low-pass filter with zero

    Fig.3 Frequency response of the proposed hybrid controller. (a) Magnitude; (b) Phase

    phase shift. With the increase ofa0, the value of ‖1/Q(z)‖ is increased, which will “push” the poles into the unit circle and make the system more stable. However, the gains beyond the cut-off frequency are reduced with the introduction of the filter. Therefore, a tradeoff design should be made between the tracking precision and the system robustness for the low-pass filter.

    2.3 Analysis of voltage loop

    From a physical point of view, the output of the voltage loopplosscan be seen as the total loss of the APF. Therefore, the DC-link voltage is controlled to be constant in the steady state to minimize the losses, and the PI is used in the DC-link voltage controller. From Eq.(2), the DC-link voltage can be derived as

    (7)

    Obviously, due toS(t), theVc(t) in Eq.(7) is discontinued. Eq.(7) can be averaged in one sample interval as

    (8)

    where 〈Vc〉Tsrepresents the average value ofVc(t) in a sample interval, andD(t) denotes the duty ratio. Assuming that the APF is in steady-state, the compensation currenticcan be written as

    (9)

    whereicf(t) andich(t) are the fundamental frequency and harmonic frequencies current components, respectively;ωis the fundamental frequency; andkdenotes thek-th order harmonic. Considering Eq.(8) and Eq.(9), it can be found that the DC-link voltage includes not only the fundamental term but also the harmonic terms, which means both the fundamental and the harmonic components contribute to the oscillation of the DC-link voltage. Practically, only the oscillation is twice that the fundamental frequency when the power exchange between grid and APF is considered. A low-pass filter (LPF) is designed to reduce the effect of the second order harmonic. Fig.4 shows the block diagram of the DC link voltage loop, where the measured voltage is filtered before inputting to the PI controller so that the current inner loop is less affected by the DC-link voltage variation. The cut-off frequency of the LPF is 60 Hz here.Vdc-refis the reference value of the DC-link voltage.

    Fig.4 Block diagram of the DC link voltage loop

    2.4 Robustness analysis

    In practice, the system parameter may fluctuate. The uncertainty of the system parameter can be written as

    Lr=Ln+ΔL

    (10)

    whereLris the real values of the converter-side inductor, and ΔLis the uncertainties of the inductor. Considering the uncertainties of system parameters, the real system transfer function ofHcl(z) becomesHs(z):

    (11)

    Fig.5 Pole map of the APF system with only OSAP when the parameter fluctuates

    2.5 Improvement for suppressing high order harmonics

    For the frequency response of the proposed hybrid current controller in Fig.3(a), the gains of harmonics decrease with the increase in the harmonic order. When the harmonic frequency exceeds 1 kHz, the gains at harmonics almost approach zero. In order to eliminate some specific high order harmonics in the APF system, a modified structure of the proposed hybrid controller is proposed with the resonant controller. The zero steady-state error resonant control has been widely used in the synchronous-frame control system in recent years[20-21]. This controller can be summarized as a set of band pass filters, which generate large gains at the selected frequency. The transfer function of resonant control for selective harmonics is illustrated as follows:

    (12)

    whereωnare the selective harmonic frequencies andknare the control gains. The corresponding structure of the modified controller is shown in Fig.6(a), which incorporates both the DMRC and the resonant controller. The selective harmonic frequencies resonant controller is introduced, which aims to further reduce the selective harmonic contents. The transfer function of the modified controller is given as

    (13)

    whereGdmrc(s) is the transfer function of the pure DMRC. Referring to Ref.[22], the DMRC term in Eq.(13) can be derived as follows:

    (14)

    From Eq.(14), it can be seen that the DMRC term can be divided as a PI term and an infinite resonant term. Therefore, the differences between the pure DMRC and the modified structure controller are the control gains of the selective harmonic frequencies. The corresponding control gains change from 4(ko+ke)/(NTs) for the pure DMRC to 4(ko+ke)/(NTs)+knfor the modified controller. Sinceknis not affected by the low-pass filterQ(z), the magnitudes of the selective frequencies can be increased. It is noteworthy that the performance of the whole system can be improved with the increasing number of resonant units, but the computational complexity will also be increased. Fig.6(b) shows the open-loop frequencies response with the introduction of the 15th and

    Fig.6 Modified current controller. (a) Block diagram; (b) Open-loop frequency response

    the 17th resonant units. It is obviously shown that the gains at the 15th and the 17th harmonic frequencies have been increased effectively.

    2.6 Comparative analysis

    The CRC-based APF[9]and the OHRC-based APF[14]have already been proposed to improve the power quality. Since these two methods are both internal model principle based control, the corresponding APF can track the periodic reference and reject the disturbance well. However, the shortcomings of these two control schemes for APF are also apparent.

    First, the dynamic performance of the CRC-based APF is not good because of theNmemory cells in the feed-forward channel. The CRC updates its output value everyNsample intervals, which means that the control signal will be updated in at least one fundamental cycle. Secondly, the even-harmonic suppression ability of the OHRC-based APF is weak. Since the OHRC is designed only for the odd-harmonic frequency, the even-harmonic can hardly be eliminated by this type of the APF. Therefore, the steady-state performance of the OHRC-based APF is limited. The hybrid control scheme proposed in this paper overcomes the shortcomings of the two methods and achieves good steady-state and dynamic performance.

    From Refs.[22] and [23], it can be concluded that the CRC and the DMRC have the controllability for DC component, the fundamental component and different order harmonics, while the OHRC can only track for the fundamental component and the odd harmonic signals. For the fundamental and odd-harmonic signals, the tracking performance of the OHRC is better than that of the CRC when the same repetitive gains are employed, namely,ko=kr(kris the repetitive gain of the CRC). This is due to the fact that the equivalent odd-harmonic resonant gains of the OHRC are twice larger than those of the CRC. Meanwhile, the equivalent resonant gains of the DMRC is larger than those of the CRC for all the interesting frequencies whenko+ke=kr. The stability domain of repetitive gainkrfor the CRC is 0

    3 Experimental Verification

    To verify the proposed hybrid current regulation scheme experimentally, the laboratory setup is built and the experiments are carried out. The experimental prototype of the APF is based on a Semikron AN-8005 (an H-bridge IGBT inverter). The system configuration is the same as the system configuration described in Fig.1. The single-phase shunt APF is controlled using a dSPACE DS1104 controller card. The parameters are selected as follows:Vc=100 V,E=65 V,Ln=5 mH,Cn=5500 μF,f=50 Hz,Lac=3 mH, and the switching frequencyfs=10 kHz. The nonlinear load is a full-wave diode rectifier withCr=2200 μF. The reactive power with the nominal resistor is approximately zero.

    First, Fig.7(a) shows the grid current with OSAP+CRC; Fig.7(b) shows the grid current of OSAP+OHRC; and Fig.7(c) shows the grid current of the hybrid current controller. Fig.8 shows the measured harmonic spectrum of the three schemes. It is observed that the total harmonic distortion(THD) values are 5.88% and 4.63% for OSAP+CRC and OSAP+OHRC, respectively. The value is reduced to 3.35% by using the proposed hybrid controller. Compared with the CRC approach, the steady-state performance is better and the harmonic contents are lower for almost all the interesting

    Fig.7 Grid current waveform after compensation. (a) OSAP+CRC-controlled APF; (b) OSAP+OHRC-controlled APF; (c) Proposed hybrid-controlled APF

    Fig.8 Harmonic content of grid current. (a) OSAP+CRC-controlled APF; (b) OSAP+OHRC-controlled APF; (c) Proposed hybrid-controlled APF

    frequencies. Compared with the OHRC approach, the proposed DMRC-based hybrid controller has superiority in compensation ability since it can suppress not only the odd order but also the even order harmonics.

    Secondly, Fig.9 shows the measured transient tracking performance of the compensation current with the OSAP+CRC, the OSAP+OHRC, and the proposed hybrid control. In Fig.9(a), the OSAP+CRC starts working att=0.4 s. The tracking error between the reference current and the real current is reduced from 2 to 0.3 A, and the convergence time is about 1s. In Fig.9(b), the OSAP+OHRC controller works att=0.4 s. The corresponding tracking error is reduced from 3 to 0.3 A, and the convergence time is about 0.6s. In Fig.9(c), the hybrid controller begins to work at the same time, and the transient effect is almost the same as that of Fig.9(b). It is obvious that the OSAP+OHRC controller and the proposed hybrid controller have a better convergence rate compared with the OSAP+CRC controller.

    Fig.9 Tracking error of the compensation current. (a) OSAP+CRC-controlled APF; (b) OSAP+OHRC-controlled APF; (c) The proposed hybrid-controlled APF

    Finally, Fig.10(a) and Fig.10(b) show the measured grid current with the compensation of the proposed hybrid controller plus the 15th and the 17th order resonant units and the corresponding harmonic content. Compared with Fig.9(c), it is obviously seen that the contents of the

    Fig.10 Measured grid current using the proposed hybrid control plus 15th and 17th order resonant units. (a) Grid current; (b) Harmonic contents

    15th and the 17th order harmonics have been reduced effectively. The THD of the grid current is further suppressed with the introduction of resonant units, and the value is 2.23%.

    4 Conclusion

    In this paper, a novel hybrid current regulation scheme is proposed for the single-phase shunt APF by integrating the deadbeat control and the DMRC. The all-digital approach can be easily implemented and can also be extended into a three-phase APF system. It not only offers better tracking ability for current harmonics compensation, but also maintains good transient performance. This paper also presents a modified structure, which incorporates the proposed hybrid current controller and the resonant controller, to further suppress some high order specific harmonics. As analyzed in this paper, the DMRC can be regarded as a set of resonant controllers plus a PI term. With the integration of the DMRC and the selective harmonic resonant controller, the control gain at the selective harmonic frequency can be adjusted flexibly. Additionally, the relationships among different repetitive control schemes are also shown. By the experimental results, it is verified that the THD performance of the proposed hybrid controller is better than that of the OHRC+OSAP approach, and its transient performance is better than that of the CRC+OSAP approach. The grid current can achieve good performance and meet the requirements of IEEE 519 quite well.

    [1]Akagi H. Trends in active power line conditioners [J].IEEETransPowerElectronics, 1994,9(5): 263-268.

    [2]Fujita H, Akagi H. A practical approach to harmonic compensation in power systems-series connection of passive and active filters [J].IEEETransIndustryApplications, 1991,27(6): 1020-1025.

    [3]Green T C, Marks J H. Control techniques for active power filters [J].IEEProceedingsofElectricPowerApplications, 2005,152(2): 369-381.

    [4]Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement [J].IEEETransIndustrialElectronics, 1999,46(5): 960-971.

    [5]Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications [J].IEEETransIndustrialElectronics, 1998,45(5): 722-729.

    [6]Lin B R, Tsay S C, Liao M S. Integrated power factor compensator based on sliding mode controller [J].IEEProceedingsofElectricPowerApplications, 2001,148(3): 237-244.

    [7]Nishida K, Rukonuzzman M, Nakaoka M. Advanced current control implementation with robust deadbeat algorithm for shunt single-phase voltage-source type active power filter [J].IEEProceedingsofElectricPowerApplications, 2004,151(3): 283-288.

    [8]Teodorescu R, Liserre M, Rodríguez P.Gridconvertersforphotovoltaicandwindpowersystems[M]. New Jersey: Wiley, 2011:289-311.

    [9]Garcia-Cerrada A, Pinzon-Ardila O, Feliu-Batlle V, et al. Application of a repetitive controller for a three-phase active power filter [J].IEEETransPowerElectronics, 2007,22(1): 237-246.

    [10]Escobar G, Hernandez-Briones P G, Martinez P R, et al. A repetitive-based controller for the compensation of 6l±1 harmonic components [J].IEEETransIndustrialElectronics, 2008,55(4): 3150-3158.

    [11]Costa-Castelló R, Grino R, Parpal R C, et al. High-performance control of a single-phase shunt active filter [J].IEEETransControlSystemsTechnology, 2009,17(6) 1318-1329.

    [12]Ramos G A, Costa-Castelló R. Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control [J].IETControlTheory&Applications, 2012,6(11): 1633-1644.

    [13]Grino R, Costa-Castelló R. Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances [J].Automatica, 2005,41(1): 153-157.

    [14]Costa-Castelló R, Grino R, Fossas E. Odd-harmonic digital repetitive control of a single-phase current active filter [J].IEEETransPowerElectronics, 2004,19(1): 1060-1068.

    [15]Buddingh P C. Even harmonic resonance-an unusual problem [J].IEEETransIndustryApplications, 2003,39(1): 1181-1186.

    [16]Taylor J B. Even harmonics in alternating-current circuits [J].TransactionsoftheAmericanInstituteofElectricalEngineers, 1909, ⅩⅩⅤⅢ(1): 725-732.

    [17]Zhou K, Wang D, Zhang B, et al. Dual-mode structure digital repetitive control [J].Automatica, 2007,43(3):546-554.

    [18]Cosner C, Anwar G, Tomizuka M. Plug in repetitive control for industrial robotic manipulators [C]//ProcIEEEIntConfRobotAutomat. Cincinnati, OH, USA, 1990:1970-1975.

    [19]Superti-Furga G, Todeschini G. Discussion on instantaneous p-q strategies for control of active filters [J].IEEETransPowerElectronics, 2008,23(7): 1945-1955.

    [20]Liserre M, Teodorescu R, Blaabjerg F. Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame [J].IEEETransPowerElectronics, 2006,21(5): 836-841.

    [21]Lascu C, Asiminoaei L, Boldea I, et al. High performance current controller for selective harmonic compensation in active power filters [J].IEEETransPowerElectronics, 2007,22(9): 1826-1835.

    [22]Zou Z, Wang Z, Cheng M. Design and analysis of operating strategies for a generalised voltage-source power supply based on internal model principle [J/OL].IETPowerElectronics. (2013-08-21)[2013-10-09].http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2013.0159.

    [23]Zou Z, Wang Z, Cheng M. Modeling, analysis, and design of multi-function grid-interfaced inverters with output LCL filter [J/OL].IEEETransPowerElectronics. (2013-09-04)[2013-10-09]. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6588968&tag=1.

    欧美日韩av久久| 99精品久久久久人妻精品| 国产精品一区二区在线不卡| 国产精品一区二区精品视频观看| 啦啦啦免费观看视频1| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 我的亚洲天堂| 天堂俺去俺来也www色官网| 在线观看免费视频网站a站| 日韩视频一区二区在线观看| 久久这里只有精品19| 淫妇啪啪啪对白视频| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 国产成人精品在线电影| 最新在线观看一区二区三区| 老司机深夜福利视频在线观看| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 如日韩欧美国产精品一区二区三区| 黄色丝袜av网址大全| 欧美日韩av久久| 99re在线观看精品视频| 国产成人精品无人区| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 涩涩av久久男人的天堂| 中文字幕人妻丝袜制服| 人妻久久中文字幕网| 亚洲专区字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 天堂中文最新版在线下载| 这个男人来自地球电影免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 青草久久国产| 国产成人av教育| 亚洲avbb在线观看| 久久午夜综合久久蜜桃| 真人做人爱边吃奶动态| 亚洲精品国产色婷婷电影| 18禁裸乳无遮挡动漫免费视频| 777米奇影视久久| 丰满人妻熟妇乱又伦精品不卡| 黑人猛操日本美女一级片| 9色porny在线观看| 黑人欧美特级aaaaaa片| 日日摸夜夜添夜夜添小说| 一区二区三区乱码不卡18| 国产精品久久久久成人av| 九色亚洲精品在线播放| 国产精品99久久99久久久不卡| 麻豆乱淫一区二区| 在线亚洲精品国产二区图片欧美| 天天添夜夜摸| 大码成人一级视频| 精品少妇一区二区三区视频日本电影| 中文字幕人妻丝袜一区二区| 日本一区二区免费在线视频| 777米奇影视久久| 青青草视频在线视频观看| 日本av手机在线免费观看| 超碰成人久久| 美女高潮喷水抽搐中文字幕| 久久久水蜜桃国产精品网| 黄片小视频在线播放| 欧美黄色片欧美黄色片| 欧美精品一区二区大全| 久久久精品94久久精品| 飞空精品影院首页| 国产精品一区二区在线观看99| 99久久国产精品久久久| 成年人午夜在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 亚洲综合色网址| 欧美成人午夜精品| 国产精品麻豆人妻色哟哟久久| 美女高潮到喷水免费观看| bbb黄色大片| 亚洲av片天天在线观看| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 免费av中文字幕在线| 一级黄色大片毛片| 精品少妇黑人巨大在线播放| 日韩有码中文字幕| 在线观看舔阴道视频| 午夜福利视频在线观看免费| 亚洲精华国产精华精| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 在线天堂中文资源库| bbb黄色大片| 搡老熟女国产l中国老女人| 国产精品麻豆人妻色哟哟久久| 亚洲一码二码三码区别大吗| 一级毛片电影观看| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| av网站在线播放免费| 午夜激情av网站| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 国产亚洲精品一区二区www | 啦啦啦免费观看视频1| 久久久久久久久久久久大奶| 成人影院久久| av线在线观看网站| 国产伦人伦偷精品视频| 国产日韩一区二区三区精品不卡| 国产男靠女视频免费网站| 日韩欧美免费精品| 国产成人啪精品午夜网站| 亚洲五月色婷婷综合| 国产精品免费一区二区三区在线 | 国产一区二区在线观看av| 天天躁日日躁夜夜躁夜夜| 日韩 欧美 亚洲 中文字幕| 国产黄色免费在线视频| 国产99久久九九免费精品| 老熟女久久久| 精品免费久久久久久久清纯 | 水蜜桃什么品种好| 欧美日本中文国产一区发布| 性少妇av在线| www日本在线高清视频| 两个人免费观看高清视频| 香蕉国产在线看| 午夜福利视频精品| 欧美黑人精品巨大| 国产欧美日韩综合在线一区二区| 久久精品亚洲精品国产色婷小说| 热99久久久久精品小说推荐| 久久久精品国产亚洲av高清涩受| 老司机亚洲免费影院| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 久久国产精品男人的天堂亚洲| 亚洲精品自拍成人| 色综合婷婷激情| 在线观看一区二区三区激情| 欧美精品一区二区免费开放| 久久精品亚洲熟妇少妇任你| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 亚洲三区欧美一区| 90打野战视频偷拍视频| 亚洲精品国产色婷婷电影| 成人av一区二区三区在线看| 免费女性裸体啪啪无遮挡网站| av一本久久久久| 久久久久久久大尺度免费视频| 天天添夜夜摸| 久久人人爽av亚洲精品天堂| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 丰满少妇做爰视频| 精品少妇黑人巨大在线播放| 高清av免费在线| 精品一区二区三区视频在线观看免费 | 丁香六月欧美| 久热这里只有精品99| 日韩大码丰满熟妇| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 国产av又大| 成人永久免费在线观看视频 | 99国产精品99久久久久| 国产欧美日韩一区二区三| 免费在线观看黄色视频的| 免费日韩欧美在线观看| av有码第一页| 久久ye,这里只有精品| 好男人电影高清在线观看| 日本a在线网址| 精品第一国产精品| 99国产极品粉嫩在线观看| 交换朋友夫妻互换小说| 午夜福利视频精品| 久久av网站| 亚洲伊人久久精品综合| 亚洲五月色婷婷综合| 色94色欧美一区二区| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 中文字幕最新亚洲高清| 丁香欧美五月| 国产成人av教育| 下体分泌物呈黄色| 成在线人永久免费视频| 成人影院久久| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 老司机在亚洲福利影院| 国产午夜精品久久久久久| 大码成人一级视频| 99久久人妻综合| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 91国产中文字幕| 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区| 一级片'在线观看视频| 飞空精品影院首页| 99riav亚洲国产免费| 精品国产国语对白av| 欧美午夜高清在线| 国产麻豆69| 亚洲欧美日韩另类电影网站| 免费高清在线观看日韩| 国产99久久九九免费精品| 午夜福利欧美成人| 桃花免费在线播放| 成人av一区二区三区在线看| 纵有疾风起免费观看全集完整版| 香蕉久久夜色| 久久久水蜜桃国产精品网| 亚洲综合色网址| 亚洲国产成人一精品久久久| 汤姆久久久久久久影院中文字幕| 成人永久免费在线观看视频 | 黑人操中国人逼视频| 国产欧美日韩一区二区三| e午夜精品久久久久久久| 曰老女人黄片| 色94色欧美一区二区| 亚洲精品国产色婷婷电影| 精品亚洲成a人片在线观看| 国产黄频视频在线观看| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 国产xxxxx性猛交| 中文字幕人妻熟女乱码| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 国产xxxxx性猛交| 一进一出抽搐动态| 欧美日韩黄片免| 国产福利在线免费观看视频| 精品国产国语对白av| 人妻一区二区av| 精品欧美一区二区三区在线| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品熟女久久久久浪| 国产亚洲欧美在线一区二区| 怎么达到女性高潮| 亚洲av美国av| 欧美精品av麻豆av| h视频一区二区三区| 国产一区二区在线观看av| 精品国产亚洲在线| 这个男人来自地球电影免费观看| 午夜激情av网站| 成在线人永久免费视频| 精品少妇内射三级| 捣出白浆h1v1| 亚洲欧美日韩高清在线视频 | 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 中文字幕最新亚洲高清| 考比视频在线观看| 午夜久久久在线观看| 国产在线一区二区三区精| 国产色视频综合| 五月天丁香电影| 成人亚洲精品一区在线观看| 久久 成人 亚洲| 亚洲,欧美精品.| 一级片'在线观看视频| 久久精品国产a三级三级三级| 两性夫妻黄色片| 国产精品国产高清国产av | 日本vs欧美在线观看视频| 婷婷成人精品国产| 国产黄频视频在线观看| 亚洲欧美激情在线| 91av网站免费观看| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 黄色毛片三级朝国网站| 国产午夜精品久久久久久| 久久影院123| 国产精品麻豆人妻色哟哟久久| 日本一区二区免费在线视频| 国产欧美日韩一区二区三区在线| 欧美成狂野欧美在线观看| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 国产精品国产高清国产av | 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 18禁黄网站禁片午夜丰满| 国产亚洲一区二区精品| 视频在线观看一区二区三区| 国产精品1区2区在线观看. | 国产av又大| 少妇 在线观看| 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品粉嫩美女一区| 日本av手机在线免费观看| 宅男免费午夜| 国产精品一区二区在线不卡| 亚洲精品一二三| 国产激情久久老熟女| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 99香蕉大伊视频| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说 | 日韩欧美一区视频在线观看| 亚洲精品国产一区二区精华液| 丝袜喷水一区| 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| 精品国产一区二区久久| 亚洲专区中文字幕在线| 视频区图区小说| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉激情| 中文亚洲av片在线观看爽 | 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 亚洲精品在线观看二区| 啪啪无遮挡十八禁网站| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 在线永久观看黄色视频| 国产片内射在线| h视频一区二区三区| 精品午夜福利视频在线观看一区 | 一区在线观看完整版| 激情视频va一区二区三区| 免费看十八禁软件| 亚洲av日韩精品久久久久久密| 国产aⅴ精品一区二区三区波| 在线观看免费视频网站a站| 亚洲综合色网址| 日本欧美视频一区| 欧美成人免费av一区二区三区 | 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 日韩精品免费视频一区二区三区| 夫妻午夜视频| 日韩欧美一区二区三区在线观看 | 久久国产亚洲av麻豆专区| 日韩三级视频一区二区三区| 一级毛片精品| 亚洲av电影在线进入| 午夜福利视频精品| 99精国产麻豆久久婷婷| av不卡在线播放| 欧美日韩亚洲综合一区二区三区_| 91九色精品人成在线观看| 99精国产麻豆久久婷婷| 免费在线观看视频国产中文字幕亚洲| 久久人妻熟女aⅴ| 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 精品免费久久久久久久清纯 | 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 后天国语完整版免费观看| av一本久久久久| 精品人妻1区二区| 国产成人精品无人区| 青青草视频在线视频观看| 免费看a级黄色片| 亚洲精华国产精华精| 在线观看免费高清a一片| 乱人伦中国视频| 久久人妻福利社区极品人妻图片| 亚洲欧洲精品一区二区精品久久久| 中文字幕制服av| 大陆偷拍与自拍| 亚洲综合色网址| 12—13女人毛片做爰片一| 大型av网站在线播放| 国产精品免费大片| 久久婷婷成人综合色麻豆| 性色av乱码一区二区三区2| 久久热在线av| 亚洲少妇的诱惑av| 亚洲人成电影观看| 侵犯人妻中文字幕一二三四区| 一级片免费观看大全| 国产精品98久久久久久宅男小说| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线| 色婷婷av一区二区三区视频| 丁香欧美五月| 在线播放国产精品三级| 一二三四社区在线视频社区8| 国产av国产精品国产| 久久精品人人爽人人爽视色| 久久精品亚洲精品国产色婷小说| 夜夜爽天天搞| 一区二区三区激情视频| 免费观看a级毛片全部| 大型黄色视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 国产真人三级小视频在线观看| 国产成人啪精品午夜网站| 国产免费av片在线观看野外av| av天堂久久9| 天堂动漫精品| 91精品国产国语对白视频| 大陆偷拍与自拍| 热99国产精品久久久久久7| 大型av网站在线播放| 在线观看66精品国产| 两性夫妻黄色片| 纯流量卡能插随身wifi吗| 久久这里只有精品19| 久久久国产欧美日韩av| 大片电影免费在线观看免费| 国产91精品成人一区二区三区 | 天天添夜夜摸| 美女国产高潮福利片在线看| 亚洲人成电影观看| 亚洲全国av大片| 操美女的视频在线观看| 精品视频人人做人人爽| 青青草视频在线视频观看| av有码第一页| 久久精品亚洲熟妇少妇任你| 汤姆久久久久久久影院中文字幕| 日韩免费av在线播放| 操美女的视频在线观看| 精品一品国产午夜福利视频| 黄色a级毛片大全视频| 成人免费观看视频高清| 夜夜骑夜夜射夜夜干| cao死你这个sao货| 久久久久久免费高清国产稀缺| 国产欧美日韩综合在线一区二区| 国产精品麻豆人妻色哟哟久久| 夫妻午夜视频| 久久久水蜜桃国产精品网| 99九九在线精品视频| 人人妻,人人澡人人爽秒播| 性少妇av在线| 一区二区日韩欧美中文字幕| 亚洲精品久久午夜乱码| 国内毛片毛片毛片毛片毛片| 变态另类成人亚洲欧美熟女 | 一个人免费看片子| 久久久久精品国产欧美久久久| 一二三四社区在线视频社区8| 午夜日韩欧美国产| 欧美精品一区二区大全| 久久婷婷成人综合色麻豆| 日韩一卡2卡3卡4卡2021年| 久久久国产欧美日韩av| 欧美精品av麻豆av| videosex国产| 一边摸一边抽搐一进一出视频| 嫁个100分男人电影在线观看| 欧美日韩亚洲高清精品| 日韩中文字幕视频在线看片| 国产91精品成人一区二区三区 | 69av精品久久久久久 | 国产区一区二久久| 久久精品国产亚洲av香蕉五月 | 男人舔女人的私密视频| 久久久久国产一级毛片高清牌| 蜜桃在线观看..| 黄色毛片三级朝国网站| 国产福利在线免费观看视频| 热re99久久精品国产66热6| 热99re8久久精品国产| 欧美在线黄色| 我的亚洲天堂| 中文字幕人妻丝袜制服| 亚洲熟女毛片儿| 精品国产一区二区久久| 国产高清激情床上av| 亚洲精品久久午夜乱码| 男女之事视频高清在线观看| 激情视频va一区二区三区| 极品人妻少妇av视频| 午夜福利欧美成人| 亚洲精品久久午夜乱码| 天堂中文最新版在线下载| 亚洲三区欧美一区| 色婷婷av一区二区三区视频| 在线永久观看黄色视频| 国产成人精品久久二区二区免费| 交换朋友夫妻互换小说| 老熟妇仑乱视频hdxx| 久久久久视频综合| 深夜精品福利| 国产成+人综合+亚洲专区| 视频在线观看一区二区三区| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| av有码第一页| 亚洲色图av天堂| 中文字幕人妻熟女乱码| 国产不卡一卡二| 日本av手机在线免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲三区欧美一区| 最新在线观看一区二区三区| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲av国产av综合av卡| 99国产极品粉嫩在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文av在线| 一边摸一边抽搐一进一出视频| 久9热在线精品视频| 免费黄频网站在线观看国产| 久久国产精品人妻蜜桃| 欧美日韩亚洲综合一区二区三区_| 一边摸一边做爽爽视频免费| 日本撒尿小便嘘嘘汇集6| 欧美变态另类bdsm刘玥| 中文字幕高清在线视频| 午夜福利在线观看吧| 91字幕亚洲| 午夜成年电影在线免费观看| 国产免费现黄频在线看| 少妇 在线观看| 国产一区二区在线观看av| 他把我摸到了高潮在线观看 | 久久天躁狠狠躁夜夜2o2o| 老熟妇仑乱视频hdxx| 免费久久久久久久精品成人欧美视频| 五月开心婷婷网| 黄色视频在线播放观看不卡| 国产成人一区二区三区免费视频网站| 国产av一区二区精品久久| 美女福利国产在线| 亚洲av国产av综合av卡| 国产日韩欧美亚洲二区| 人人澡人人妻人| 国产免费福利视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费大片| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区mp4| 国产一区二区在线观看av| 91麻豆精品激情在线观看国产 | 窝窝影院91人妻| 人成视频在线观看免费观看| 12—13女人毛片做爰片一| 亚洲avbb在线观看| 90打野战视频偷拍视频| 午夜两性在线视频| 老司机午夜福利在线观看视频 | 国产aⅴ精品一区二区三区波| 叶爱在线成人免费视频播放| 亚洲精品国产区一区二| av网站在线播放免费| 国产亚洲欧美在线一区二区| 亚洲欧美日韩另类电影网站| 成人国产av品久久久| 国产成人av激情在线播放| 国产亚洲精品久久久久5区| 丝袜在线中文字幕| 亚洲国产中文字幕在线视频| 午夜福利在线免费观看网站| 欧美成人午夜精品| 女性生殖器流出的白浆| 又紧又爽又黄一区二区| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩精品亚洲av| 欧美日韩精品网址| av片东京热男人的天堂| 男女床上黄色一级片免费看| 激情在线观看视频在线高清 | 丰满少妇做爰视频| 日本av免费视频播放| 成年动漫av网址| 精品卡一卡二卡四卡免费| 久久性视频一级片| 精品一区二区三卡| 真人做人爱边吃奶动态| 一区二区三区精品91| 美女午夜性视频免费| 精品高清国产在线一区| 在线观看免费日韩欧美大片| 精品一区二区三卡| 9191精品国产免费久久| 国产黄频视频在线观看| 欧美精品高潮呻吟av久久| 成人影院久久| 国产在线免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情高清一区二区三区| 国产老妇伦熟女老妇高清| 免费看十八禁软件| 老熟妇仑乱视频hdxx| 一本—道久久a久久精品蜜桃钙片| 国产主播在线观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 一个人免费在线观看的高清视频| 岛国在线观看网站| 日本av免费视频播放| 国产亚洲精品第一综合不卡| 成人18禁在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 免费久久久久久久精品成人欧美视频| 深夜精品福利| 国产成+人综合+亚洲专区|