• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RBF neural network regression modelbased on fuzzy observations

    2013-01-02 01:24:14ZhuHongxiaShenJiongSuZhigang

    Zhu Hongxia Shen Jiong Su Zhigang

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

    Radial basis function (RBF) neural networks have been applied and evaluated in a wide variety of fields[1-7]. Most of the recent RBF neural networks assume a perfect knowledge of the values of the response for learning samples. That is to say, the observations are supposed to be precise (i.e., point-valued). However, in many real-life situations, such standard observations cannot be obtained. Information about the response is usually obtained through measuring devices or sensors with limited precision. Therefore, it is necessary to extend the RBF neural networks to deal with imprecise data and propose a new methodology in the imprecise setting. Up to date, there is little literature on extending the RBF neural networks to deal with imprecise data. Cheng and Lee[1]proposed a fuzzy version of the RBF neural network, in which the weight coefficients are assumed to be fuzzy. In this regard, the output of such a fuzzy RBF neural network is fuzzy, and the application of fuzzy weight coefficients usually leads to learning complexity. In practice, it is more appropriate to obtain precise prediction in some sense, although the training samples can only be imprecise. In this paper, we suppose that the imprecise data are represented by fuzzy membership functions and investigate the RBF network regression with crisp inputs and fuzzy output. Unlike the existing family fuzzy RBF neural networks, our proposed method does not require the weight coefficients to be fuzzy, which reduces the learning complexity, and the prediction output is precise point value.

    There exist two obstacles preventing the classical RBF neural networks to deal with imprecise data. The first one is how to determine the radial basis functions (i.e., the centers and widths of nodes in the hidden layer) when the response is a fuzzy membership function. The second one is how to identify the linear functions (i.e., the weight coefficients of nodes in the hidden layer) when observations (of responses) are fuzzy membership functions. To solve the first problem, we propose a data-driven automatic method. This method treats the input data and output data separately, but it considers both the structure of input data and the performance of the RBF neural networks so as to find the optimal number of nodes in the hidden layer with an acceptable accuracy. To identify final linear behaviors, a novel algorithm for estimating parameters in a fuzzy setting is needed. Recently, a significant contribution is the extension of the expectation-maximization (EM) algorithm[8]to fuzzy data, i.e., the so-called fuzzy EM algorithm[9]. Using the fuzzy EM algorithm, the weight coefficients in RBF neural networks can be identified when observations are fuzzy membership functions. Therefore, we propose a fuzzy observations-based RBF neural network (FORBFNN) regression model and it can be automatically data-driven.

    1 Fuzzy EM Algorithm

    LetX, referred to as the complete-data vector, be a random vector, taking value in sample spaceχand describing the result of a random experiment. The probability density function (pdf) ofXis denoted byg(x,ψ), whereψ={ψ1,ψ2,…,ψd}Tis a column vector of unknown parameters with parameter spaceΩ.

    Ifx, a realization ofX, is known exactly, we can compute the maximum likelihood estimate (MLE) ofψas any value maximizing the complete-data likelihood function:

    L(ψ;x)=g(x;ψ)

    (1)

    (2)

    (3)

    the likelihood function (2) can be written as a product ofnitems,

    (4)

    and the observed-data log likelihood is

    (5)

    The E-step consists in the calculation of

    (6)

    The M-step requires the maximization ofQ(ψ,ψ(q)) with respect toψover the parameter spaceΩ, i.e., findingψ(q+1)such that

    Q(ψ(q+1),ψ(q))≥Q(ψ,ψ(q))ψ∈Ω

    The fuzzy EM algorithm alternately repeats the E- and M-steps until the increment of observed-data likelihood becomes smaller than some threshold.

    2 Proposed RBF Neural Network Based on Fuzzy Observations

    2.1 Identification of radial basis functions

    The basic topology of the RBF neural network comprises in sequence a hidden layer and a linear processing unit forming the output layer. Fig.1 depicts this topology of a multi-input single-output network, wherecrepresents the number of nodes in the hidden layer. The set of input-output data pairs can be symbolized asT={(ui,xi)∈Rp×R|xi=f(ui),i=1,2,…,n}, wherenis the number of training samples,ui={ui1,ui2,…,uip}Tis thei-thp-dimensional input vector andxiis thei-th output variable. The Gaussian type RBF functions with the following form are selected:

    (7)

    (8)

    Fig.1 Basic topology of an RBF neural network

    This section presents the strategy to identify radial basis functions when the observations are in the following form:

    (9)

    To address the proposed strategy, a new performance measure is first needed, which is called mean square fuzzy expectation error and defined as

    (10)

    The proposed strategy is an iterative procedure with two termination conditions: 1) The approximate accuracy is not higher than a given acceptable performanceε, i.e., MSEfuzzy≤ε; 2) The number of nodes in the hidden layer (i.e., node base) is bigger than a given maximum numberRmax, i.e.,c>Rmax. Either condition 1) or condition 2) is satisfied, the iteration is then terminated. These two conditions can ensure a desirable tradeoff between the accuracy and the size of the node base according to the designer’s intuition or expertise.

    First, an initial node in the hidden layer is generated. The initial node is extracted by a simple method. The center and width of such node are determined by

    (11)

    (12)

    In this original initial node base, the weight coefficients are identified using the fuzzy EM algorithm, which will be detailed in the following section.

    Secondly, a new node in the hidden layer is constructed. The vector that has the worst MSEfuzzy,i, denoted byui′, is considered as the candidate center of this new node:

    (13)

    Because the candidate center is only based on performance error, it is possible for an outlier to be considered as a new center. Although the preprocessing of data maybe detects and eliminates the outliers, it is still needed to reduce the effects of the noisy data and exclude the chance of an outlier to become a center. In addition, we do not want the new candidate center to be too close to the existing centers. Therefore, the following conditions should be satisfied:

    (14a)

    (14b)

    whereΔ1andΔ2are constants;μi,i′is the membership degree of thei-th data belonging to thei′-th cluster, determined in the following way[11]:

    (15)

    The role of condition (14a) is to prevent an outlier to be a new center, and the condition (14b) ensures that the new center is not located very close to the other existing centers. Hence, the constantsΔ1andΔ2can be defined as

    (16)

    (17)

    If the selected vectorui′satisfies (14), then it is declared as the center of a new node. Otherwise, it is marked as an outlier and the process of selecting the vector that has the worse performance is repeated without considering the outliers. When none of the existing vectors satisfies (14), the procedure is terminated to avoid over-fitting. The center and width of the new node are defined as

    vnew,j=ui′,jj=1,2,…,porvnew=ui′

    (18)

    (19)

    Finally, once the new node is added to the node base, the node number increases one, i.e.,c=c+1, and we havevc=vnew,sc=snew. Due to the added node, the node base should be updated. The centersvkof the previous (c-1) nodes existing in the node base can be maintained whereas their widthssk(k=1,2,…,c-1) can be updated according to Eq.(19) only by replacing indexi′ with the indexk(k=1,2,…,c-1).

    From the above interpretations, it is evident that the computational complexity of the proposed strategy isnO(Rmax).

    2.2 Identification of weight coefficients of RBF by fuzzy EM algorithm

    For the following discussion, we first transform the estimated output in Eq.(8) to the following vector or matrix form:

    (20)

    where

    According to the above interpretations, the complete-data pdf can be defined as

    (21)

    By using the complete-data pdf, the complete-data log likelihood is computed as

    (22)

    (23)

    (24)

    (25)

    whereΦ(·) denotes the cumulative distribution function (cdf) of the standard normal distribution, andx*denotes (x-m)/σfor allx. It is easy to obtain that

    m(Φ(b*)-Φ(a*))

    (26)

    (27)

    where the denominator is given by Eq.(25). The numerator is

    (28)

    which can be computed using Eq.(26) and

    (m2+σ2)(Φ(b*)-Φ(a*))

    (29)

    We finally compute

    (30)

    The numerator is

    (31)

    which can be computed using Eq.(29) and

    m3(Φ(b*)-Φ(a*))

    (32)

    The M-step requires maximizingQ(ψ,ψ(q)) with respect toψ. This can be achieved by differentiatingQ(ψ,ψ(q)) with respect towandσ, which results in

    Equating these derivatives to zero and solving forwandσ, we obtain the following unique solution:

    w(q+1)=(HHT)-1Hβ(q)

    (33)

    σ(q+1)=

    (34)

    When the iteration terminates, we can obtain the regression weight coefficientswand thus obtain the final RBF neural network regression model with crisp inputs and fuzzy membership output.

    3 Simulations

    In this section, we validate the performance of FORBFNN by using a numerical simulation, in which the

    behavior of a nonlinear system is defined as

    x=usinuu∈[0,10]

    (35)

    To model the situation where responsexcan only be imprecisely observed, triangular fuzzy membership function (see Eq.(24)) is adopted. The core and support of such kind of fuzzy membership functions are generated according to the following two-step strategy:

    Step1Generate the coresxiof fuzzy observations,xi=f(ui)+εi, whereεi~N(0,δmax).

    In the simulation, four different study cases for deviationδi, i.e.,δi∈{[0,0.01],[0,1],[0,2],[0,3]} are considered. Note that too wide range of imprecision is not considered, because too wide range of imprecision leads to useless training samples about the given system. In each study case, the size of training samplesn=21, accuracy thresholdε=10-5and maximum node numberRmax=4,5,6,7. In addition, we consider that there are not outliers existing in the data sets. Therefore, the parameterηin Eq.(16) can be set to be zero.

    To validate the performance, there are 101 testing samples produced according to

    (37)

    The numerical results are shown in Tab.1, and four graphical results randomly selected from the 100 trials in each study case are shown in Fig.2.

    Tab.1 Approximation and prediction errors (mean plus or minus one standard deviation) in different ranges of imprecision

    Fig.2 Four data sets and prediction results randomly selected from 100 trials for four study cases. (a) δi∈[0,3]; (b) δi∈[0,2]; (c) δi∈[0,1]; (d) δi∈[0,0.01]

    Fig.2 illustrates the prediction results of the FORBFNN model in different ranges of imprecision. It can be seen that the predicted curves can approach the true behavior. The difference between the predicted curves and true behavior becomes smaller with the decrease in imprecision. Especially, such difference approaches zero in the precise and certain case.

    Tab.1 presents the approximate and prediction accuracies when the maximum number of nodes in the hidden layerRmaxtakes different values in different ranges of imprecision. They numerically show the performance of the FORBFNN model. For a given range of imprecision, theRmaxcorresponding to the highest approximate accuracy is determined as the node number without considering over-fitting. For instance in the first caseδi∈[0,3] in Tab.1, the highest approximate accuracy appears whenRmax=5; therefore, the number of nodes in node base is 5, i.e.,c=5. We call a model over-fitting if its approximate accuracy becomes small whereas its associated prediction accuracy is high, see the case whenδi∈[0,3] in Tab.1. The over-fitting always occurs in the cases when high imprecision exists. In this regard, it suggests constructing the FORBFNN with small size of node base in the high imprecision cases. In addition, we can see that the performance of the FORBFNN can be improved when the number of nodes in the hidden layer increases to a limit.

    In a word, the FORBFNN can deal with imprecise data, and its performance is determined by the ranges of imprecision. The lower the imprecision, the higher the approximate and predicated accuracies.

    4 Conclusion

    This paper proposes a fuzzy observations-based RBF neural network used to deal with problems when the response of a system can be represented by fuzzy membership functions. In this approach, the weight coefficients used to combine the outputs of the nodes in the hidden layer are identified by the fuzzy EM algorithm, and both the performance accuracy and the size of node number in node base (i.e., the complexity of the produced model) are considered simultaneously. The performance of the FORBFNN is illustrated by using some simulations.

    There are still some further works that need to be studied for the extensive applications of our proposed method, such as how to establish fuzzy data from running data. If such an issue is solved, it can be widely used in engineering practice.

    [1]Cheng C B, Lee E S. Fuzzy regression with radial basis function network[J].FuzzySetsandSystems, 2001,119(2): 291-301.

    [2]Lu S W, Basar T. Robust nonlinear system identification using neural-network models[J].IEEETransactionsonNeuralNetworks, 1998,9(3): 407-429.

    [3]Li Y, Qiang S, Zhuang X, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks[J].IEEETransactionsonNeuralNetworks, 2004,15(3): 693-701.

    [4]Panda S S, Chakraborty D, Pal S K. Flank wear prediction in drilling using back propagation neural network and radial basis function network[J].AppliedSoftComputing, 2008,8(2): 858-871.

    [5]Rivas V M, Merelo J J, Castillo P A, et al. Evolving RBF neural networks for time-series forecasting with EvRBF[J].InformationSciences, 2004,165(3/4): 207-220.

    [6]Wei H K, Song W Z, Li Q. A RBF network based online modeling method for real-time cost model in power plant[J].ProceedingsoftheCSEE, 2004,24(7): 246-252. (in Chinese)

    [7]Kumar R, Ganguli R, Omkar S N. Rotorcraft parameter estimation using radial basis function neural network[J].AppliedMathematicsandComputation, 2010,216(2): 584-597.

    [8]Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via EM algorithm[J].JournaloftheRoyalStatisticalSocietyB, 1977,39(1): 1-38.

    [9]Denoeux T. Maximum likelihood estimation from fuzzy data using the EM algorithm[J].FuzzySetsandSystems, 2011,183(1): 72-91.

    [10]Zadeh L A. Probability measures of fuzzy events[J].JournalofMathematicalAnalysisandApplications, 1968,23(2): 421-427.

    [11]Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression model[J].InternationalJournalofApproximateReasoning, 2003,32(2/3): 85-102.

    乱人伦中国视频| 国产亚洲精品第一综合不卡| 亚洲va日本ⅴa欧美va伊人久久| 51午夜福利影视在线观看| 精品久久久久久,| 新久久久久国产一级毛片| 一边摸一边做爽爽视频免费| 中文亚洲av片在线观看爽 | 在线视频色国产色| 日韩欧美一区视频在线观看| 一区福利在线观看| 国产精品九九99| 一区福利在线观看| 久久久久国产一级毛片高清牌| 免费观看a级毛片全部| 大陆偷拍与自拍| 精品国产国语对白av| 欧美中文综合在线视频| 国产麻豆69| 午夜老司机福利片| 亚洲精品在线美女| 老司机靠b影院| 韩国精品一区二区三区| 伊人久久大香线蕉亚洲五| 欧美精品高潮呻吟av久久| 国产精品免费一区二区三区在线 | 日韩三级视频一区二区三区| 大香蕉久久网| 18禁观看日本| 法律面前人人平等表现在哪些方面| 黄色怎么调成土黄色| 国产精品欧美亚洲77777| 色综合欧美亚洲国产小说| 十分钟在线观看高清视频www| 免费看十八禁软件| 国产精品秋霞免费鲁丝片| 99热网站在线观看| 日韩一卡2卡3卡4卡2021年| 欧美一级毛片孕妇| 久久久久久久久免费视频了| 美女福利国产在线| 人人妻人人添人人爽欧美一区卜| 高清欧美精品videossex| 欧美激情久久久久久爽电影 | 国产免费现黄频在线看| 日韩熟女老妇一区二区性免费视频| 视频区欧美日本亚洲| av视频免费观看在线观看| 精品国产美女av久久久久小说| 国产精品av久久久久免费| 精品福利永久在线观看| a在线观看视频网站| 久久午夜亚洲精品久久| 国产精品美女特级片免费视频播放器 | 精品人妻熟女毛片av久久网站| 欧美激情极品国产一区二区三区| 一边摸一边抽搐一进一小说 | 天堂俺去俺来也www色官网| 91大片在线观看| 久热爱精品视频在线9| 国产亚洲精品久久久久久毛片 | 亚洲成av片中文字幕在线观看| 日韩欧美一区视频在线观看| 在线永久观看黄色视频| 久久午夜综合久久蜜桃| 国产欧美日韩精品亚洲av| videosex国产| 久久精品人人爽人人爽视色| 亚洲av欧美aⅴ国产| 波多野结衣一区麻豆| 国产成人欧美在线观看 | av欧美777| 亚洲第一青青草原| 狠狠婷婷综合久久久久久88av| 麻豆av在线久日| 99久久国产精品久久久| a在线观看视频网站| 中文亚洲av片在线观看爽 | 中文字幕人妻丝袜一区二区| 亚洲在线自拍视频| 一级片'在线观看视频| 美女扒开内裤让男人捅视频| 色播在线永久视频| 国产精品综合久久久久久久免费 | 女警被强在线播放| 老司机午夜福利在线观看视频| 精品午夜福利视频在线观看一区| 黄色毛片三级朝国网站| 精品少妇久久久久久888优播| 欧美乱码精品一区二区三区| 欧美日韩瑟瑟在线播放| 久久国产亚洲av麻豆专区| 99久久国产精品久久久| 女警被强在线播放| xxx96com| 啦啦啦视频在线资源免费观看| 757午夜福利合集在线观看| 欧美 日韩 精品 国产| 人妻一区二区av| 19禁男女啪啪无遮挡网站| 亚洲国产精品一区二区三区在线| 大香蕉久久成人网| 老司机午夜十八禁免费视频| 国产高清videossex| 亚洲欧洲精品一区二区精品久久久| 一级毛片女人18水好多| 老司机亚洲免费影院| av不卡在线播放| 热re99久久精品国产66热6| 亚洲成人免费电影在线观看| 免费看a级黄色片| 亚洲av美国av| 91av网站免费观看| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| 大型av网站在线播放| 亚洲人成77777在线视频| 黄色视频,在线免费观看| 亚洲五月天丁香| 亚洲成a人片在线一区二区| 成人影院久久| 午夜日韩欧美国产| 大型黄色视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 桃红色精品国产亚洲av| 黄频高清免费视频| 好男人电影高清在线观看| 日韩欧美国产一区二区入口| 好男人电影高清在线观看| 国产91精品成人一区二区三区| 十八禁网站免费在线| 交换朋友夫妻互换小说| 日本wwww免费看| 久久ye,这里只有精品| 99精品在免费线老司机午夜| av中文乱码字幕在线| 精品国产乱码久久久久久男人| 精品午夜福利视频在线观看一区| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 国产日韩一区二区三区精品不卡| 新久久久久国产一级毛片| 亚洲七黄色美女视频| 国产精品久久电影中文字幕 | www.999成人在线观看| 国产成人一区二区三区免费视频网站| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区| 波多野结衣一区麻豆| 亚洲午夜理论影院| 久久精品国产亚洲av香蕉五月 | 成人国产一区最新在线观看| 天天操日日干夜夜撸| 欧美精品av麻豆av| 欧美日韩亚洲高清精品| 69av精品久久久久久| 国产精品永久免费网站| 亚洲精品国产区一区二| 黄色视频,在线免费观看| 99久久国产精品久久久| 18禁裸乳无遮挡动漫免费视频| 久久久国产精品麻豆| 电影成人av| 国产成人av教育| 看片在线看免费视频| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 久9热在线精品视频| xxxhd国产人妻xxx| 亚洲成人免费电影在线观看| 久久精品熟女亚洲av麻豆精品| 久久人妻福利社区极品人妻图片| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 两人在一起打扑克的视频| 欧美最黄视频在线播放免费 | av天堂久久9| 日韩免费高清中文字幕av| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 午夜福利,免费看| 一夜夜www| 亚洲免费av在线视频| 国产成人精品久久二区二区免费| 久久香蕉精品热| 亚洲精品国产区一区二| 国产精品久久久人人做人人爽| 国产高清激情床上av| 免费av中文字幕在线| 久久人人爽av亚洲精品天堂| 高清在线国产一区| 在线观看舔阴道视频| 欧美+亚洲+日韩+国产| 久久香蕉国产精品| 三级毛片av免费| 亚洲va日本ⅴa欧美va伊人久久| 一进一出好大好爽视频| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 国产一区二区三区在线臀色熟女 | 国产1区2区3区精品| 国产成人系列免费观看| 国产国语露脸激情在线看| 欧美国产精品va在线观看不卡| 亚洲成人国产一区在线观看| 精品国产一区二区久久| 一级黄色大片毛片| 免费观看人在逋| 国产精品一区二区在线不卡| 欧美精品高潮呻吟av久久| 中文欧美无线码| 午夜91福利影院| 少妇被粗大的猛进出69影院| 亚洲精品乱久久久久久| 自线自在国产av| 51午夜福利影视在线观看| 午夜免费鲁丝| 一进一出好大好爽视频| 狂野欧美激情性xxxx| 中文亚洲av片在线观看爽 | 一二三四在线观看免费中文在| 国产精品.久久久| 日韩欧美在线二视频 | 欧美丝袜亚洲另类 | 亚洲专区字幕在线| 91精品三级在线观看| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡| 日韩熟女老妇一区二区性免费视频| 午夜成年电影在线免费观看| videos熟女内射| 欧美精品一区二区免费开放| 亚洲午夜精品一区,二区,三区| 久久香蕉国产精品| 久久人人爽av亚洲精品天堂| 国产蜜桃级精品一区二区三区 | 久久亚洲精品不卡| 国产精品亚洲av一区麻豆| 黄网站色视频无遮挡免费观看| 亚洲九九香蕉| 一级毛片高清免费大全| 日本精品一区二区三区蜜桃| 国产成人啪精品午夜网站| 老熟女久久久| 一级作爱视频免费观看| 国产亚洲av高清不卡| 亚洲性夜色夜夜综合| 亚洲精品国产色婷婷电影| 伊人久久大香线蕉亚洲五| 国产黄色免费在线视频| 又黄又爽又免费观看的视频| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久| 男女午夜视频在线观看| 三级毛片av免费| 久久精品91蜜桃| 观看美女的网站| 窝窝影院91人妻| 丰满的人妻完整版| 少妇的丰满在线观看| 动漫黄色视频在线观看| 日韩欧美精品免费久久 | 国产真人三级小视频在线观看| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 性色av乱码一区二区三区2| 国产色婷婷99| 88av欧美| 中文在线观看免费www的网站| 日韩成人在线观看一区二区三区| 久久久久性生活片| 成人国产一区最新在线观看| 久9热在线精品视频| av天堂中文字幕网| 欧美在线一区亚洲| 日本熟妇午夜| 18禁在线播放成人免费| 麻豆一二三区av精品| 国产精品一及| 尤物成人国产欧美一区二区三区| 在线观看一区二区三区| 欧美丝袜亚洲另类 | 在线天堂最新版资源| 免费观看人在逋| 免费一级毛片在线播放高清视频| 18禁国产床啪视频网站| 亚洲国产精品久久男人天堂| www日本黄色视频网| 亚洲人与动物交配视频| 成人特级黄色片久久久久久久| 久久6这里有精品| 一区二区三区国产精品乱码| 国产国拍精品亚洲av在线观看 | 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 日韩免费av在线播放| 男人的好看免费观看在线视频| 欧美日韩瑟瑟在线播放| 91在线精品国自产拍蜜月 | 色播亚洲综合网| 久久久久免费精品人妻一区二区| 久久久国产精品麻豆| 久久久精品大字幕| 深夜精品福利| 亚洲在线自拍视频| 88av欧美| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 精华霜和精华液先用哪个| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| 美女 人体艺术 gogo| 免费在线观看影片大全网站| 亚洲无线在线观看| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 国产激情欧美一区二区| 久久香蕉国产精品| 免费一级毛片在线播放高清视频| 男女床上黄色一级片免费看| 久久久精品大字幕| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 最新中文字幕久久久久| 特大巨黑吊av在线直播| 国产成人系列免费观看| 国产单亲对白刺激| 搡老岳熟女国产| 无人区码免费观看不卡| 99久久久亚洲精品蜜臀av| 久久久久九九精品影院| 久久精品91蜜桃| 成人无遮挡网站| 国产精品一区二区三区四区免费观看 | 亚洲成人久久爱视频| 天天一区二区日本电影三级| 日韩欧美三级三区| 久久久久性生活片| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 免费搜索国产男女视频| 精品人妻一区二区三区麻豆 | 午夜福利高清视频| 一个人观看的视频www高清免费观看| 美女被艹到高潮喷水动态| 国产一区在线观看成人免费| 国产亚洲欧美98| 好男人电影高清在线观看| www.www免费av| 欧美不卡视频在线免费观看| 99国产精品一区二区蜜桃av| 色老头精品视频在线观看| 男女之事视频高清在线观看| 岛国在线观看网站| 少妇裸体淫交视频免费看高清| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| 综合色av麻豆| 久久久久免费精品人妻一区二区| 超碰av人人做人人爽久久 | 99在线人妻在线中文字幕| svipshipincom国产片| 精品国产三级普通话版| 久久久久精品国产欧美久久久| 国产真人三级小视频在线观看| 国产v大片淫在线免费观看| 国产三级在线视频| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 亚洲成a人片在线一区二区| av中文乱码字幕在线| 国产精品美女特级片免费视频播放器| 精品人妻偷拍中文字幕| 一级黄片播放器| 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| av女优亚洲男人天堂| 国产高清视频在线播放一区| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 国产69精品久久久久777片| 国产野战对白在线观看| 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看| 俺也久久电影网| 又紧又爽又黄一区二区| 中国美女看黄片| 女同久久另类99精品国产91| tocl精华| 成人国产一区最新在线观看| 成年免费大片在线观看| eeuss影院久久| 亚洲av不卡在线观看| 啦啦啦免费观看视频1| 成年女人毛片免费观看观看9| 美女免费视频网站| 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 在线播放无遮挡| 日韩人妻高清精品专区| 69人妻影院| 久久伊人香网站| 欧美又色又爽又黄视频| 极品教师在线免费播放| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 制服丝袜大香蕉在线| 午夜久久久久精精品| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 丁香六月欧美| 婷婷六月久久综合丁香| x7x7x7水蜜桃| 国产一级毛片七仙女欲春2| 亚洲av熟女| 色综合婷婷激情| 丰满的人妻完整版| xxxwww97欧美| 九九在线视频观看精品| 久久久久久大精品| 99久久精品国产亚洲精品| 国内精品美女久久久久久| 给我免费播放毛片高清在线观看| 精品电影一区二区在线| 成人鲁丝片一二三区免费| 少妇人妻一区二区三区视频| 国产精品 欧美亚洲| 久久久久久久久大av| 久久人妻av系列| 精品乱码久久久久久99久播| 国产激情欧美一区二区| 国产精品女同一区二区软件 | 性欧美人与动物交配| 中文字幕人成人乱码亚洲影| 国产高清videossex| 亚洲熟妇中文字幕五十中出| 国产亚洲精品av在线| 性色av乱码一区二区三区2| 99久久九九国产精品国产免费| 男人舔女人下体高潮全视频| 久99久视频精品免费| 欧美又色又爽又黄视频| 亚洲欧美精品综合久久99| 午夜a级毛片| 国产 一区 欧美 日韩| 九色成人免费人妻av| 日韩欧美在线乱码| 欧美在线一区亚洲| 999久久久精品免费观看国产| 一本久久中文字幕| 嫩草影视91久久| 亚洲精品456在线播放app | 亚洲成人精品中文字幕电影| 蜜桃久久精品国产亚洲av| 国产精品一及| 成人精品一区二区免费| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 麻豆成人午夜福利视频| 国产午夜精品久久久久久一区二区三区 | 一级毛片高清免费大全| 搡老妇女老女人老熟妇| 又紧又爽又黄一区二区| 国产美女午夜福利| www日本黄色视频网| 中文在线观看免费www的网站| 国产av不卡久久| 在线观看舔阴道视频| 淫妇啪啪啪对白视频| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 亚洲国产精品成人综合色| 久久精品91蜜桃| 国产中年淑女户外野战色| 人人妻人人澡欧美一区二区| 欧美国产日韩亚洲一区| 国产av不卡久久| 国产精品亚洲美女久久久| 久久亚洲真实| 老熟妇仑乱视频hdxx| 国产成人欧美在线观看| 91麻豆精品激情在线观看国产| 免费人成在线观看视频色| 天天添夜夜摸| av福利片在线观看| 操出白浆在线播放| 91av网一区二区| 最新美女视频免费是黄的| 欧美日韩中文字幕国产精品一区二区三区| 成人永久免费在线观看视频| 国产精品久久视频播放| 中文字幕av成人在线电影| 中出人妻视频一区二区| 97超视频在线观看视频| 午夜免费男女啪啪视频观看 | 欧美日韩黄片免| 国产亚洲av嫩草精品影院| 日本黄色视频三级网站网址| 嫁个100分男人电影在线观看| 亚洲av成人精品一区久久| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 又粗又爽又猛毛片免费看| 欧美成人免费av一区二区三区| 岛国视频午夜一区免费看| 亚洲午夜理论影院| 久久天躁狠狠躁夜夜2o2o| 免费在线观看影片大全网站| 欧美一级毛片孕妇| 国产欧美日韩精品亚洲av| 久久精品亚洲精品国产色婷小说| 嫁个100分男人电影在线观看| 99国产极品粉嫩在线观看| 校园春色视频在线观看| 国产成人福利小说| 国产毛片a区久久久久| 国产欧美日韩一区二区精品| 在线视频色国产色| 淫妇啪啪啪对白视频| 免费观看人在逋| 一个人看的www免费观看视频| 欧美日韩福利视频一区二区| 欧美在线黄色| 久久久精品大字幕| 国产黄色小视频在线观看| 在线天堂最新版资源| 国产视频内射| 免费电影在线观看免费观看| 久久久久免费精品人妻一区二区| 性色avwww在线观看| av中文乱码字幕在线| 中文字幕人妻熟人妻熟丝袜美 | 亚洲精品一卡2卡三卡4卡5卡| 精品熟女少妇八av免费久了| 久久精品夜夜夜夜夜久久蜜豆| 国产成人a区在线观看| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 国产精品爽爽va在线观看网站| 国产精品亚洲av一区麻豆| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 变态另类成人亚洲欧美熟女| 俺也久久电影网| 久久精品91蜜桃| 精品一区二区三区视频在线 | 国产伦人伦偷精品视频| 搞女人的毛片| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 18美女黄网站色大片免费观看| 在线a可以看的网站| 日本一二三区视频观看| 亚洲电影在线观看av| 国产真实乱freesex| 久久久久亚洲av毛片大全| 免费看日本二区| 免费高清视频大片| 成年版毛片免费区| 18禁黄网站禁片午夜丰满| 国产免费av片在线观看野外av| 亚洲国产欧美网| 国模一区二区三区四区视频| 日本与韩国留学比较| 天堂网av新在线| 日日干狠狠操夜夜爽| 老熟妇仑乱视频hdxx| 国内久久婷婷六月综合欲色啪| 综合色av麻豆| 日本黄色视频三级网站网址| 狂野欧美激情性xxxx| 国产成人福利小说| 变态另类成人亚洲欧美熟女| 欧美黄色淫秽网站| 国产高清视频在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 别揉我奶头~嗯~啊~动态视频| 搡女人真爽免费视频火全软件 | 国产欧美日韩精品亚洲av| 国产精品国产高清国产av| 亚洲成人久久爱视频| 欧美午夜高清在线| 久久精品国产亚洲av涩爱 | 午夜日韩欧美国产| 嫁个100分男人电影在线观看| 91av网一区二区| 看片在线看免费视频| 国产成人影院久久av| 亚洲国产精品999在线| 久久久久久久亚洲中文字幕 | 欧美国产日韩亚洲一区| 乱人视频在线观看| 亚洲中文字幕日韩| 欧美中文日本在线观看视频| 日本 av在线| 国产成人a区在线观看| 综合色av麻豆| 熟女少妇亚洲综合色aaa.| 小说图片视频综合网站| 禁无遮挡网站| 悠悠久久av| 99久久精品国产亚洲精品| 五月伊人婷婷丁香| 蜜桃久久精品国产亚洲av| 宅男免费午夜| xxx96com|