• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD

    2013-01-02 01:24:00HuChanghuiLuXiaoboDuYijunChenWujun

    Hu Changhui Lu Xiaobo Du Yijun Chen Wujun

    (School of Automation, Southeast University, Nanjing 210096, China)(Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China)

    The direct linear discriminant analysis (DLDA) is an important method for dimension reduction and feature extraction in many applications such as face recognition[1-3], microarray data classification[4], text classification[5]. Yu and Yang[1]first proposed the DLDA algorithm based on eigenvalue decomposition (DLDA/EVD) by utilizing the information of the range space of between-class scatter matrixSband within-class scatter matrixSwfor face identification. In recent years, many approaches have been brought to improve the DLDA algorithm. Song et al.[2]proposed a PD-LDA algorithm by introducing a parameterβto improve the recognition rate; however, the improvement is not obvious and the choice of parameterβis difficult. Paliwal and Sharma[4]developed an improved DLDA algorithm to improve classification accuracy for DNA datasets; however, it is improper to deal with high-dimensional data such as face recognition.

    Dimension reduction and eigenvectors extraction corresponding to nonzero eigenvalues are the main tasks of the DLDA algorithm. To achieve the two tasks, Yu and Yang’s algorithm adopts the principal component analysis(PCA )method and EVD; Song and Paliwal’s[2,4]algorithms use singular value decomposition (SVD). All the algorithms mentioned above are computationally complex. In this paper, two improved DLDA algorithms are proposed to reduce the computational complexity of the conventional DLDA algorithm.

    In this paper, we propose the DLDA/ESVD algorithm that directly uses economic singular value decomposition (ESVD) to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then we further propose the DLDA/QR-ESVD algorithm that uses high-performance column pivoting orthogonal triangular (QR) decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The proposed two algorithms are efficient and outperform the conventional DLDA algorithm in terms of computational complexity. In addition, the DLDA/QR-ESVD algorithm achieves better performance than DLDA/ESVD algorithm by processing high-dimensional low rank matrices.

    1 Direct Linear Discriminant Analysis

    A brief overview of the DLDA algorithm is presented here. The DLDA algorithm aims to find a projection matrix that diagonalizes both within-class scatter matrixSwand between-class scatter matrixSbsimultaneously. In the DLDA algorithm, within-class scatter matrixSwand between-class scatter matrixSbare defined as[6]

    (1)

    (2)

    The precursors[3]HwandHbof the within-class scatter and between-class matrices in Eqs.(1) and (2) are

    (3)

    (4)

    2 Proposed algorithms

    First, the DLDA/ESVD algorithm is presented in detail, and then we further present the DLDA/QR-ESVD algorithm, which can obtain better performance than the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix.

    2.1 DLDA/ESVD algorithm

    Hb=QbDbVb

    (5)

    (6)

    (7)

    Thus, it is easy to verify that

    (8)

    (9)

    Since

    2.2 DLDA/QR-ESVD algorithm

    Hb=QbRbE

    (10)

    (11)

    Then matrixRbcan be decomposed by the ESVD as

    Rb=UbDbVb

    (12)

    where bothUbandVbare orthogonal matrix;Dbis a diagonal matrix; andUb∈Rr×r,Db∈Rr×r,Vb∈Rr×r.

    Substituting Eq.(12) into Eq.(11), we obtain

    Thus, it is easy to verify that

    (13)

    (14)

    Since

    3 Experiments

    The experiments are used to verify the efficiency of the proposed two algorithms and the performance of the DLDA/QR-ESVD is better than that of the DLDA/ESVD by processing a high-dimensional low rank matrix. First, experiments for the DLDA/EVD, DLDA/ESVD and DLDA/QR-ESVD algorithms are conducted on ORL[8], FERET[9]and YALE[10]face databases. Secondly, the comparison testing between the DLDA/ESVD and the DLDA/QR-ESVD are conducted on random matrices. The experiments are tested on the PC with CoreTM2 Duo 2.99 GHz processor with 1.96 GB of RAM using Matlab 7.0 software.

    3.1 Experiments on face databases

    Tab.1 introduces three face databases in experiments, where Size stands for the number of all images in each database; Dimensions are the dimensionalities of image vectors; and Classes are the number of persons.

    Tab.1 Description of three face databases

    In each face database, the recognition rates and the training time of the DLDA/EVD, DLDA/ESVD and DLDA/QR-ESVD algorithms are tested. The recognition rates are used to evaluate the accuracy of the three algorithms. The training time is used to measure the computation time of each algorithm for dimension reduction and feature extraction, and the difference of the execution time in databases is mainly caused by the training time using different algorithms.

    There are three main steps for testing the aforementioned algorithms. First, training sets are randomly selected from the face database, and the rest forms testing sets. Secondly, the training sets are trained to achieve dimension reduction and feature extraction using the above three algorithms under the same conditions, and the training time of each algorithm is recorded. Finally, both the training sets and the testing sets are projected into the optimal LDA subspace, and the nearest neighbor classifier based on the Euclidean distance is adopted to be the final classifier[11]. The final result we take is an average result of classification for 40 times based on cross-validation experiments.

    Fig.1 shows the recognition rates on ORL, FERET and

    Fig.1 Recognition rates on different databases. (a) ORL face database; (b) FERET face database; (c) YALE face database

    YALE face databases by using the DLDA/EVD, DLDA/ESVD and DLDA/QR-ESVD algorithms, respectively. It can be seen that the three algorithms achieve almost the same recognition rates on the three face databases under different numbers of training samples.

    Fig.2 shows the training time on ORL, FERET and YALE face databases by using three algorithms respectively. It can be seen that the training times of the DLDA/ESVD algorithm and the DLDA/QR-ESVD algorithm are distinctly lower than those of the DLDA/EVD algorithm on the three face databases. The proposed two algorithms consume almost the same training time; the reason is that the rank of between-class matrixSbis approximately equal to the number of training sample classes (c≈r) on the three face databases.

    Fig.2 Computation time on different databases. (a) ORL face database; (b) FERET face database; (c) YALE face database

    3.2 Experiments on random data matrices

    As it is difficult to find a public database with high-dimensional low rank data matrices to test the DLDA/ESVD and DLDA/QR-ESVD algorithms. Random data matrixH∈Rm×c(rank(H)=r) with variable dimensionsmfrom 5 000 to 10 000 are generated to verify the proposed two algorithms. Fig.3(a) shows that the proposed two algorithms can achieve similar computation time by processing high-dimensional full rank matrices (c=r=500). Fig.3(b) shows that the computation time of the DLDA/QR-ESVD algorithm is distinctly lower than that of the DLDA/ESVD algorithm by processing high-dimensional low rank matrices (r?c,c=800,r=200).

    Fig.3 Computation time on random data matrices. (a) High-dimensional full rank matrices; (b) High-dimensional low rank matrices

    4 Conclusion

    In this paper, the DLDA/ESVD algorithm is proposed, which directly uses the ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then we further propose the DLDA/QR-ESVD algorithm that uses high-performance column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The proposed two algorithms outperform the DLDA/EVD algorithm in terms of computational complexity and training time. The proposed two algorithms consume almost similar computation time by processing a high-dimensional full rank matrix (r=c). But the computation time of the DLDA/QR-ESVD algorithm is distinctly lower than that of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix (r?c).

    It is worth exploring in two directions. First, since a computationally efficient way of reducing dimension is crucial in many fields of research, a number of applications of the DLDA/ESVD and DLDA/QR-ESVD algorithms should be envisaged. Secondly, the theoretical analysis of the proposed two algorithms should be further studied.

    [1]Yu H, Yang J. A direct LDA algorithm for high dimensional data with application to face recognition [J].PatternRecognition, 2001,34(10): 2067-2070.

    [2]Song F X, Zhang D, Wang J Z, et al. A parameterized direct LDA and its application to face recognition [J].Neurocomputing, 2007,71(1): 191-196.

    [3]Joshi A, Gangwar A, Saquib Z. Collarette region recognition based on wavelets and direct linear discriminant analysis [J].InternationalJournalofComputerApplications, 2012,40(9): 35-39.

    [4]Paliwal K K, Sharma A. Improved direct LDA and its application to DNA microarray gene expression data [J].PatternRecognitionLetters, 2010,31(16): 2489-2492.

    [5]Ye J, Li Q. A two-stage linear discriminant analysis via QR-decomposition [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2005,27(6): 929-941.

    [6]Li R H, Chan C L, Baciu G. DLDA and LDA/QR equivalence framework for human face recognition[C]//The9thIEEEInternationalConferenceonCognitiveInformatics(ICCI). Beijing, China, 2010: 180-185.

    [7]Golub G, Loan C,Matrixcomputations[M]. Baltimore, MD, USA: Johns Hopkins University Press, 1983: 170-236.

    [8]Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification[C]//ProceedingsoftheSecondIEEEWorkshoponApplicationsofComputerVision. Los Alamitos, CA, USA,1994: 138-142.

    [9]Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2000,22(10): 1090-1104.

    [10]Georghiades A, Belhumeur P, Kriegman D. From few to many: illumination cone models for face recognition under variable lighting and pose [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2001,23(6): 643-660.

    [11]Ye J, Janardan R, Park C H, et al. An optimization criterion for generalized discriminant analysis on undersampled problems [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2004,26(8): 982-994.

    高清毛片免费观看视频网站| 一个人免费在线观看电影| 日韩欧美国产在线观看| 丰满乱子伦码专区| netflix在线观看网站| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看| 啦啦啦啦在线视频资源| 日本精品一区二区三区蜜桃| 日韩国内少妇激情av| 简卡轻食公司| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 91久久精品国产一区二区成人| 特级一级黄色大片| 韩国av在线不卡| 美女高潮的动态| 成人无遮挡网站| 18禁在线播放成人免费| 日韩精品青青久久久久久| 国产亚洲精品av在线| 成年免费大片在线观看| 1024手机看黄色片| 亚洲av成人av| 日本免费一区二区三区高清不卡| 国产在线男女| 亚洲av不卡在线观看| 99riav亚洲国产免费| 天堂√8在线中文| 丰满人妻一区二区三区视频av| 人人妻人人澡欧美一区二区| 99久久精品一区二区三区| 日韩 亚洲 欧美在线| 最近视频中文字幕2019在线8| 人人妻,人人澡人人爽秒播| 国产精品1区2区在线观看.| 日韩一区二区视频免费看| 亚洲图色成人| 三级毛片av免费| 97热精品久久久久久| 欧美一区二区亚洲| 99热只有精品国产| 97碰自拍视频| 免费观看在线日韩| 91在线观看av| 亚洲精品乱码久久久v下载方式| 麻豆国产av国片精品| 欧美成人性av电影在线观看| 日韩欧美一区二区三区在线观看| 欧美+亚洲+日韩+国产| 一个人看的www免费观看视频| 日日摸夜夜添夜夜添小说| 成年女人毛片免费观看观看9| 日韩欧美精品免费久久| 色综合站精品国产| 在线观看一区二区三区| 国产精品福利在线免费观看| 人妻夜夜爽99麻豆av| 全区人妻精品视频| 国产精品久久久久久久电影| 婷婷精品国产亚洲av| 欧美精品啪啪一区二区三区| 国产亚洲精品av在线| 成人精品一区二区免费| 国产伦精品一区二区三区四那| 精品久久久久久久久久免费视频| 黄色丝袜av网址大全| 九九爱精品视频在线观看| 中出人妻视频一区二区| 两人在一起打扑克的视频| 麻豆成人午夜福利视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩卡通动漫| 深爱激情五月婷婷| 亚洲av日韩精品久久久久久密| 国产成人福利小说| 国产一区二区在线av高清观看| 国产亚洲91精品色在线| 亚洲av免费在线观看| 欧美黑人欧美精品刺激| 精品午夜福利在线看| 国产精品免费一区二区三区在线| 日韩欧美一区二区三区在线观看| 国产精品av视频在线免费观看| 精品国产三级普通话版| 亚洲精品成人久久久久久| 亚洲成人中文字幕在线播放| 亚洲精品亚洲一区二区| 无遮挡黄片免费观看| 男人舔奶头视频| 精品人妻偷拍中文字幕| 亚洲成人免费电影在线观看| 亚洲经典国产精华液单| 国产毛片a区久久久久| 日韩精品中文字幕看吧| 伦精品一区二区三区| 国产av一区在线观看免费| videossex国产| 久久久久久久午夜电影| 国产不卡一卡二| 伦理电影大哥的女人| 色av中文字幕| 日韩高清综合在线| 直男gayav资源| 国产精品久久视频播放| 欧美成人性av电影在线观看| 99国产精品一区二区蜜桃av| 日韩av在线大香蕉| 亚洲精华国产精华精| 男女视频在线观看网站免费| 制服丝袜大香蕉在线| 免费看美女性在线毛片视频| 免费高清视频大片| 97超视频在线观看视频| 久久久久久久久大av| www.色视频.com| 久久这里只有精品中国| 久久99热这里只有精品18| 色哟哟哟哟哟哟| 成年女人看的毛片在线观看| 又紧又爽又黄一区二区| 又黄又爽又免费观看的视频| 九九在线视频观看精品| 亚洲国产精品合色在线| 亚洲最大成人中文| 久久精品国产亚洲av涩爱 | 成人鲁丝片一二三区免费| 在线免费十八禁| 男插女下体视频免费在线播放| 少妇裸体淫交视频免费看高清| 色哟哟·www| 国国产精品蜜臀av免费| 丰满的人妻完整版| 精品国产三级普通话版| 热99在线观看视频| 成人国产麻豆网| 日本色播在线视频| 大型黄色视频在线免费观看| 日韩欧美 国产精品| 男女那种视频在线观看| 嫁个100分男人电影在线观看| 色综合亚洲欧美另类图片| 日韩,欧美,国产一区二区三区 | 熟妇人妻久久中文字幕3abv| 欧美成人a在线观看| 日韩中字成人| 欧美高清成人免费视频www| 成人性生交大片免费视频hd| 一区福利在线观看| 特级一级黄色大片| 亚洲在线自拍视频| 久久午夜亚洲精品久久| 亚州av有码| 亚洲国产高清在线一区二区三| 男女那种视频在线观看| 天天躁日日操中文字幕| 婷婷六月久久综合丁香| 久久精品国产亚洲av香蕉五月| 少妇丰满av| 一级a爱片免费观看的视频| 国产一区二区在线观看日韩| 久久这里只有精品中国| 国产精品一及| 亚洲精品色激情综合| 变态另类丝袜制服| 久久久久久久午夜电影| 极品教师在线免费播放| 欧美性感艳星| 欧美性感艳星| 免费观看人在逋| 国产高清有码在线观看视频| 亚洲五月天丁香| 1024手机看黄色片| 国产欧美日韩一区二区精品| 97超级碰碰碰精品色视频在线观看| 干丝袜人妻中文字幕| 特大巨黑吊av在线直播| 亚洲图色成人| 内地一区二区视频在线| 蜜桃久久精品国产亚洲av| 十八禁国产超污无遮挡网站| 国产综合懂色| 免费在线观看日本一区| 国产精品人妻久久久久久| 黄色欧美视频在线观看| 美女xxoo啪啪120秒动态图| a级毛片a级免费在线| 亚洲精品在线观看二区| 国产亚洲91精品色在线| 国模一区二区三区四区视频| bbb黄色大片| 国产高清三级在线| 别揉我奶头 嗯啊视频| 蜜桃亚洲精品一区二区三区| 免费人成在线观看视频色| netflix在线观看网站| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 精品国产三级普通话版| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片久久久久久久久女| 男人和女人高潮做爰伦理| 久久人妻av系列| 全区人妻精品视频| 日本免费a在线| 欧美极品一区二区三区四区| 22中文网久久字幕| 一边摸一边抽搐一进一小说| av专区在线播放| 97碰自拍视频| av在线天堂中文字幕| 久9热在线精品视频| 日本在线视频免费播放| 免费一级毛片在线播放高清视频| 久久精品91蜜桃| 草草在线视频免费看| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区免费欧美| 波野结衣二区三区在线| 久久99热这里只有精品18| 一区二区三区四区激情视频 | 精品人妻视频免费看| 99热只有精品国产| 国产精品一区www在线观看 | 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 国产色爽女视频免费观看| 国产视频一区二区在线看| 国产av不卡久久| 精品99又大又爽又粗少妇毛片 | 久久久国产成人精品二区| 成年女人看的毛片在线观看| 日本 欧美在线| 国产激情偷乱视频一区二区| 国产免费av片在线观看野外av| 亚洲人成伊人成综合网2020| 12—13女人毛片做爰片一| 欧美在线一区亚洲| 欧美日本视频| 久久精品影院6| 蜜桃久久精品国产亚洲av| 欧美一区二区精品小视频在线| 啪啪无遮挡十八禁网站| 亚洲无线观看免费| 丰满的人妻完整版| 97超级碰碰碰精品色视频在线观看| 国产熟女欧美一区二区| 女人十人毛片免费观看3o分钟| 成人欧美大片| 亚洲自偷自拍三级| 欧洲精品卡2卡3卡4卡5卡区| 精华霜和精华液先用哪个| 人妻少妇偷人精品九色| 亚洲精品一卡2卡三卡4卡5卡| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 神马国产精品三级电影在线观看| 高清毛片免费观看视频网站| 国产伦一二天堂av在线观看| 久久久久久大精品| 成人欧美大片| 波多野结衣高清作品| 欧美成人免费av一区二区三区| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区久久| a级毛片a级免费在线| 国产真实乱freesex| 国产成人a区在线观看| 日韩,欧美,国产一区二区三区 | 99在线人妻在线中文字幕| 亚洲精品久久国产高清桃花| 亚洲国产精品久久男人天堂| av福利片在线观看| 久久久久久伊人网av| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 中国美女看黄片| 尾随美女入室| 国产精品日韩av在线免费观看| 在线播放国产精品三级| eeuss影院久久| 一级黄片播放器| 色综合色国产| 一区二区三区四区激情视频 | 天堂网av新在线| 国产精品av视频在线免费观看| 美女高潮的动态| 欧美一区二区精品小视频在线| 日韩欧美精品免费久久| 国产精品1区2区在线观看.| 欧美一区二区亚洲| 亚洲无线观看免费| 欧美性猛交黑人性爽| 国产成人a区在线观看| 久久婷婷人人爽人人干人人爱| 久久99热6这里只有精品| 成人毛片a级毛片在线播放| 久久天躁狠狠躁夜夜2o2o| 不卡视频在线观看欧美| 99九九线精品视频在线观看视频| 在线播放无遮挡| 亚洲熟妇熟女久久| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 国产在视频线在精品| 黄片wwwwww| 最新在线观看一区二区三区| 久久欧美精品欧美久久欧美| 午夜爱爱视频在线播放| 欧美一区二区精品小视频在线| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| a级毛片a级免费在线| 内地一区二区视频在线| 欧美三级亚洲精品| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久久久免| 在线观看舔阴道视频| 91午夜精品亚洲一区二区三区 | 黄色日韩在线| 男人舔奶头视频| 搡老妇女老女人老熟妇| 欧美国产日韩亚洲一区| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 此物有八面人人有两片| 欧美一区二区亚洲| 久久久久久久久久久丰满 | 88av欧美| 在线看三级毛片| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| 97热精品久久久久久| 国产激情偷乱视频一区二区| 欧美日韩精品成人综合77777| 简卡轻食公司| 精品人妻偷拍中文字幕| 无人区码免费观看不卡| 午夜福利在线在线| 成年免费大片在线观看| 深夜a级毛片| 亚洲人成伊人成综合网2020| av天堂在线播放| 午夜激情欧美在线| 嫩草影视91久久| 精品人妻熟女av久视频| 97碰自拍视频| 99热这里只有是精品在线观看| 一区二区三区高清视频在线| 国产真实乱freesex| 色哟哟哟哟哟哟| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 精品人妻熟女av久视频| 91久久精品电影网| 少妇人妻精品综合一区二区 | 国产探花在线观看一区二区| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 淫秽高清视频在线观看| 中文资源天堂在线| 超碰av人人做人人爽久久| 国产成人一区二区在线| 日日干狠狠操夜夜爽| 亚洲欧美日韩东京热| 日本a在线网址| 尾随美女入室| 日本a在线网址| 免费看光身美女| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 欧美日韩乱码在线| 欧美精品啪啪一区二区三区| 天天躁日日操中文字幕| 国产熟女欧美一区二区| 最近在线观看免费完整版| 日本-黄色视频高清免费观看| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 久久天躁狠狠躁夜夜2o2o| 免费av不卡在线播放| videossex国产| 精品不卡国产一区二区三区| 久久久久九九精品影院| av在线蜜桃| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 老熟妇仑乱视频hdxx| bbb黄色大片| 此物有八面人人有两片| 欧美中文日本在线观看视频| avwww免费| 老司机福利观看| 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 我要搜黄色片| 老女人水多毛片| 日本黄大片高清| 狠狠狠狠99中文字幕| 国产色爽女视频免费观看| www.色视频.com| 成熟少妇高潮喷水视频| 成人av一区二区三区在线看| а√天堂www在线а√下载| 小蜜桃在线观看免费完整版高清| 色吧在线观看| 干丝袜人妻中文字幕| 看免费成人av毛片| 九色成人免费人妻av| 桃色一区二区三区在线观看| 永久网站在线| 岛国在线免费视频观看| 久久国产精品人妻蜜桃| 日本与韩国留学比较| 成人午夜高清在线视频| 精品久久久噜噜| 老熟妇乱子伦视频在线观看| 乱人视频在线观看| 免费在线观看日本一区| 精品乱码久久久久久99久播| 国产精品久久久久久久久免| 亚洲自拍偷在线| 亚洲人与动物交配视频| 日本成人三级电影网站| 岛国在线免费视频观看| 免费看光身美女| 欧美日韩乱码在线| 国产精品亚洲美女久久久| 国内毛片毛片毛片毛片毛片| 看片在线看免费视频| 亚洲一级一片aⅴ在线观看| 高清在线国产一区| 自拍偷自拍亚洲精品老妇| 99久久精品国产国产毛片| 中文亚洲av片在线观看爽| 国模一区二区三区四区视频| 成人高潮视频无遮挡免费网站| 在线观看美女被高潮喷水网站| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 久久国产乱子免费精品| 三级毛片av免费| 不卡一级毛片| 国产欧美日韩一区二区精品| 免费观看在线日韩| 久久6这里有精品| 中文资源天堂在线| 18禁在线播放成人免费| 国产精品亚洲美女久久久| 偷拍熟女少妇极品色| 欧美+日韩+精品| 亚洲av第一区精品v没综合| 看片在线看免费视频| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 亚洲一级一片aⅴ在线观看| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久,| 搡老熟女国产l中国老女人| 99国产精品一区二区蜜桃av| 国产午夜福利久久久久久| 无人区码免费观看不卡| 欧美bdsm另类| 99热这里只有是精品50| 亚洲无线在线观看| 婷婷亚洲欧美| 亚洲欧美日韩高清专用| 欧美+亚洲+日韩+国产| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 看免费成人av毛片| 亚洲最大成人手机在线| 国产精品福利在线免费观看| 亚洲avbb在线观看| 天堂√8在线中文| 国产午夜精品论理片| 欧美成人a在线观看| 我的老师免费观看完整版| 久久99热6这里只有精品| 搡女人真爽免费视频火全软件 | 久99久视频精品免费| 深夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 色哟哟·www| 亚洲va日本ⅴa欧美va伊人久久| 毛片一级片免费看久久久久 | 久久午夜福利片| 三级国产精品欧美在线观看| 成人鲁丝片一二三区免费| 久久久久久伊人网av| 真人做人爱边吃奶动态| 69av精品久久久久久| 身体一侧抽搐| 免费看日本二区| 国产精品,欧美在线| 国产伦精品一区二区三区四那| 超碰av人人做人人爽久久| 日本成人三级电影网站| x7x7x7水蜜桃| 他把我摸到了高潮在线观看| 中文字幕av在线有码专区| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 很黄的视频免费| 在线观看一区二区三区| 国产精品电影一区二区三区| 成人午夜高清在线视频| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 一进一出好大好爽视频| 赤兔流量卡办理| 夜夜爽天天搞| 成人国产一区最新在线观看| 亚洲图色成人| 国产一区二区亚洲精品在线观看| 日本熟妇午夜| 久久久国产成人免费| 亚洲自拍偷在线| 别揉我奶头 嗯啊视频| АⅤ资源中文在线天堂| 久久久久国产精品人妻aⅴ院| 日韩亚洲欧美综合| 久久国产乱子免费精品| 黄色欧美视频在线观看| 91在线精品国自产拍蜜月| 欧美日韩黄片免| 久久草成人影院| 欧美精品国产亚洲| 黄色配什么色好看| 1024手机看黄色片| 久久精品国产自在天天线| 国产探花在线观看一区二区| 久久6这里有精品| 91久久精品电影网| 欧美高清性xxxxhd video| 99在线人妻在线中文字幕| 亚洲欧美日韩东京热| 精品一区二区三区视频在线| 搡老岳熟女国产| 久久久久久久亚洲中文字幕| 亚洲av第一区精品v没综合| av在线蜜桃| 欧美日韩亚洲国产一区二区在线观看| 九色成人免费人妻av| 亚洲av五月六月丁香网| 成人av在线播放网站| 成人国产麻豆网| 小蜜桃在线观看免费完整版高清| 中国美女看黄片| 免费看a级黄色片| 男女那种视频在线观看| 一夜夜www| 一区二区三区高清视频在线| 精品99又大又爽又粗少妇毛片 | 黄色一级大片看看| 国产美女午夜福利| 国产精品久久久久久精品电影| 成人精品一区二区免费| 99riav亚洲国产免费| 亚洲自拍偷在线| 国产色婷婷99| 男女视频在线观看网站免费| 日日啪夜夜撸| 级片在线观看| av在线天堂中文字幕| 日本-黄色视频高清免费观看| 成人鲁丝片一二三区免费| 亚洲av成人av| 国产黄片美女视频| xxxwww97欧美| 天堂动漫精品| 网址你懂的国产日韩在线| 久久精品国产亚洲网站| 亚洲自偷自拍三级| 国产精品乱码一区二三区的特点| 在线观看午夜福利视频| 日韩中文字幕欧美一区二区| 精品一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 中文字幕av成人在线电影| 如何舔出高潮| 久久久久久久久久黄片| 午夜视频国产福利| 国产高清有码在线观看视频| 国产视频一区二区在线看| 午夜精品久久久久久毛片777| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app | 国产人妻一区二区三区在| 2021天堂中文幕一二区在线观| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 黄色欧美视频在线观看| 欧美一区二区亚洲| 亚洲成人免费电影在线观看| 精品无人区乱码1区二区| 黄片wwwwww| 精品久久久久久久久久免费视频| 女生性感内裤真人,穿戴方法视频| 欧美+日韩+精品| 欧美成人一区二区免费高清观看| 不卡一级毛片| 亚洲成a人片在线一区二区|