• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal decision thresholdfor soft decision cooperative spectrum sensing

    2013-01-02 01:22:56SunDafeiSongTiechengWuMingHuJingGuoJieGuBin

    Sun Dafei Song Tiecheng Wu Ming Hu Jing Guo Jie Gu Bin

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2College of Science, Nanjing University of Technology, Nanjing 210009, China)

    The inflexible and fixed spectrum allocation in conventional wireless networks has been shown to encourage under-utilization of the spectrum. The cognitive radio (CR) has emerged as a promising technology to solve this problem through opportunistic access of the spectrum by unlicensed CR users, if non-harmful interference to the licensed primary user (PU) is guaranteed[1]. To ensure that the PUs are sufficiently protected against interference from the CR users, CR users should periodically perform spectrum sensing to obtain reliable results of the PUs’ activities[1-2].

    Generally, spectrum sensing strategies are categorized into four basic kinds: energy detection, coherent detection, cyclostationary feature detection and eigenvalue-based detection. Due to its simplicity and efficiency, energy detection is recognized as a preferred scheme for practical implementation. To enhance the overall sensing accuracy, cooperation between multiple users is also suggested. Cooperation among CR users is usually cooperated by a fusion center (FC) through two types of fusion rules: hard decision fusion rules[3-4]and soft decision fusion rules[5-6]. In this paper, soft decision fusion rules are investigated, in which accurate energy values observed by different CR users are combined to make a satisfactory decision.

    Generally, the performance of spectrum sensing depends greatly on the setting of the decision threshold. Threshold selection can be viewed as an optimization problem. Some research work has been done for this problem based on different objectives in Refs. [7-10]. In the Neyman-Pearson framework, the decision threshold is determined by a given target false alarm probability[4,6]. However, detectors under this scheme cannot achieve the minimum total error probability. In Ref. [7], based on the minimum total error rate criterion, the authors discussed the optimal decision threshold for hard decision cooperative spectrum sensing and the optimal decision threshold can be evaluated numerically. The main contribution of this paper is the derivation of a closed-form expression of the optimal decision threshold for soft decision cooperative spectrum sensing, which is based on the minimum total error probability criterion. The impact of different sensing parameters on the optimal decision threshold value is analyzed.

    1 System Model

    In this section we investigate cooperative spectrum sensing in a centralized CR network which consists of a FC and several CR users. Within the cognitive radio network, each CR user sends its sensing data to the FC periodically through common control channel. Then the FC combines the sensing data from different CR users and makes a decision on the presence or absence of the PU. For simplicity, we assume that the sensing data are sent from the CR user to the FC without any communication channel loss.

    Here we consider a CR network withKCR users. Suppose thatNsamples are utilized for energy detection at each CR user. The spectrum sensing problem at thek-th CR user can be modeled as a binary hypothesis test problem, which is given by

    wheres(n) denotes the primary signal;wk(n) denotes the additive white Gaussian noise (AWGN); andhkdenotes the channel gain between the PU and thek-th CR user. The channel gain is assumed to be constant during each sensing period. H0and H1denote the hypotheses corresponding to the absence and presence of the primary signal, respectively.

    The energy detector measures the primary signal energy within a specified duration. Each CR user calculates a summary statisticYkover a detection interval ofNsamples, which is denoted as

    (2)

    Then cooperation diversity of multiple CR users is carried out in order to achieve better spectrum sensing performance.

    We first consider local spectrum sensing at the individual CR user. The test statistic of thek-th CR user using energy detection is given by Eq.(2). For simplicity, assuming thatNis large enough, local test statisticYkapproximates the Gaussian distribution according to the central limit theorem, i.e.,

    (3)

    where N(μ,σ2) denotes the Gaussian distribution with the mean valueμand varianceσ2.

    We setλkas the local decision threshold for thek-th CR user; the local false alarm probabilityPf,kand the detection probabilityPd,kcan be defined as

    (4)

    (5)

    whereQ(·) denotes the complementary distribution function of the standard Gaussian. Based on the above definitions in Eqs.(4) and (5), the local missed probabilityPm,kcan be defined as

    Pm,k=Pr(Yk<λk|H1)=1-Pd,k

    (6)

    2 Soft Combination

    Cooperation among CR users is usually cooperated by a FC through two types of fusion rules: hard decision fusion rules and soft decision fusion rules. When hard decision fusion rules are used, CR users exchange only one bit of information regarding whether their observed energy value is above a certain threshold or not. In this paper, soft decision fusion rules are investigated in which accurate energy values observed by different CR users are combined to make a better decision. It is demonstrated that soft combination schemes have significant performance improvement over conventional hard combination[5].

    For soft combination schemes, sensing data from different CR users is linearly combined with weight coefficients and decisions based on the weighted summation. To allow multiple CR users to collaborate, we transmit the test statistic {Yk} directly to the FC through the common control channel. Once the FC receives {Yk}, the global test statisticycis linearly calculated as[6]

    (7)

    wherewkdenotes the weight coefficient corresponding to thek-th CR user. The combining weight for the particular user represents its contribution to the global decision. For example, if a CR generates a high SNR signal which may lead to a correct detection on its own, it should be assigned by a larger weight coefficient. For those CR users which experience deep fading or shadowing, their weights should be decreased in order to reduce their negative contribution to the FC.

    Assuming that {Yk} and {wk} are independent for differentk, then, according to Eq.(7),ycis under the Gaussian distribution. Then the global test statistic has means and variances which are given by

    (8)

    whereE[·] and var[·] denote the statistical expectation and variance, respectively.

    The global test statistic is compared with a global decision thresholdλin order to make a global detection result. Ifyc>λ, the FC decides hypothesis H1is true; otherwise, the frequency band of interest is assumed not to be used by the PU, so the FC decides hypothesis H0is true.

    (9)

    (10)

    (11)

    3 Optimal Decision Threshold Analysis

    The essential problem of energy detector design is to determine the decision threshold in order to achieve ideal detection performance. Suppose that we choose a lower decision threshold, so that we will have a higher false alarm probability. On the contrary, if we choose a higher decision threshold, a larger missed detection probability will be achieved. Therefore, there exists a fundamental tradeoff between the probability of false alarm and the probability of missed detection.

    Considering the tradeoff between the two error probability, we can know that minimizing the total error probability of spectrum sensing is significant for achieving the better performance of CR systems. For a given frequency band of interest, we defineP(H1) as the probability for which the primary user is present, andP(H0) as the probability for which the primary user is absent. Obviously, we can obtainP(H0)+P(H1)=1. The total error probabilityPeis defined as

    Pe=αQf+βQm

    (12)

    whereα=P(H0) andβ=P(H1). We assume that the prior probabilityαis known for all the CR users based on long-term spectrum measurement. By minimizing the total error probability criterion,QfandQmare weighted and simplified as a measurement of the total error probability. For a special case in whichα=β, the total error probability is calculated as

    (13)

    SubstitutingQfin Eq.(9) andQmin Eq.(11) into Eq.(12), the total error probability is given by

    (14)

    Therefore, our core goal is to determine the optimal decision threshold which can minimize the total error probability.

    Proposition1If the decision thresholdλ∈(1,1+η), then both the false alarm probabilityQfand the missed detection probabilityQmare less than 0.5. Furthermore, letNapproach infinity, the false alarm probabilityQf→0, and the missed detection probabilityQm→0.

    ProofIf the decision thresholdλ∈(1,1+η), then

    (15)

    From Eqs.(9) and (10), according to the monotonicity of theQfunction, the detector performance can be derived as

    (16)

    (17)

    Therefore, we can also have

    Qm=1-Qd<0.5

    (18)

    Furthermore, whenNapproaches infinity, we can obtain

    (19)

    Thus, we can also see thatQf→0, andQm→0 whenNapproaches infinity.

    In the field of spectrum sensing, a detection probability of 90% and a false alarm probability of 10% are regarded as the target requirements for all the sensing algorithms[4]. From Proposition 1, it follows that the constraintsQd>0.5 andQm<0.5 are equivalent to 1<λ<1+η.

    Proposition2The total error probabilityPeis a convex function of the decision thresholdλ, when 1<λ<1+η.

    ProofAccording to Eq.(14), differentiatingPewith respect toλgives

    (20)

    Then, the second-order derivative ofPewith respect toλis given by

    (21)

    If 1<λ<1+η, we can see thatλ-1>0, andλ-(1+η)<0. Then the second-order derivative ofPeis greater than 0, that is

    (22)

    Thus, the total error probabilityPeis convex inλwhen 1<λ<1+η.

    (23)

    Solvingλby Eq.(23), the optimal decision threshold is taken to be the largest root. Hence, the optimal decision threshold can be determined by

    (24)

    (25)

    4 Simulation Results

    In this section, simulation results are given to illustrate the impact of system parameters on the optimal threshold value for soft decision cooperative spectrum sensing. Under the Rayleigh fading environment, it is reasonable to assume that we have independent and identically distributed (i.i.d.) Rayleigh fading with the instantaneous SNRsγ1,γ2,…,γKbeing i.i.d. exponentially distributed random variables with the meanγ(i.e., the average SNR). The simulation results are obtained from 104realizations for the given constant channel gains.

    First, we present the optimal decision threshold for different average SNRs when the equal gain combining (EGC), the maximal ratio combining (MRC), and the modified deflection coefficient (MDC) schemes[6]are adopted. The weight coefficients of the three soft combination schemes can be given as

    (26)

    (27)

    (28)

    Here, we consider a system scenario with the number of CR usersK=4, the number of samplesN=100, and the prior probabilityα=0.5. Fig.1 describes the optimal decision threshold vs. the average SNRγfor three different soft combination schemes according to Eqs.(26), (27) and (28). Fig.1 shows that the optimal decision threshold is between 1 (lower bound) and 1+γ(upper bound). It can be also seen that the MRC and MDC schemes have almost the same optimal decision threshold in the low SNR region. Within the high SNR region, the optimal decision threshold for the MRC scheme is greater than that of the MDC scheme. Furthermore, in the low SNR region, the average SNRγ≈ηand then the optimal decision threshold for the EGC schemeλopt≈1+γ/2. In addition, Fig.2 depicts the minimum the total error probability for the corresponding three different soft combination schemes in Fig.1. From Fig.2, we can see that both the MRC and MDC schemes have nearly the same performance which outperforms that of the EGC scheme.

    Secondly, we consider the impact of the prior probabilityαon the detector design of the optimal decision threshold. Here, we considerK=4,N=100, and the average

    Fig.1 Optimal decision threshold vs. average SNR with three different soft combination schemes (K=4, N=100, and α=0.5)

    Fig.2 Minimum total error probability vs. average SNR with three different soft combination schemes (K=4, N=100, and α=0.5)

    SNRγ=-6 dB and -10 dB. Fig.3 illustrates the relationship between the optimal decision threshold value and the prior probabilityα. It can be seen from Fig.3 that the optimal decision threshold increases with the increase in the prior probabilityα, which means that the activity of the PU has effects on the design of the detector, which is reasonable. Since the PU is seldom present (i.e., the prior probabilityαis large), the optimal decision threshold value should be increased in order to obtain the target minimum the total error probability.

    Thirdly, we consider the influence of the number of samples on the optimal decision threshold. We chooseK=4,α=0.5, and the average SNRγ=-6, -10 dB. Fig.4 describes the optimal decision threshold vs. the number of samples for three different soft combination schemes. It is verified that the number of samples has almost no influence on the optimal decision threshold. It can also be proved that the optimal threshold of the MRC scheme is greater than that of the MDC scheme. Furthermore, the MRC and MDC schemes have almost the same optimal decision threshold value with the average SNRγ=-10 dB.

    Fig.3 Optimal decision threshold vs. prior probability with three different soft combination schemes (K=4, N=100, and the average SNR=-6, -10 dB)

    Fig.4 Optimal decision threshold versus number of samples with three different soft combination schemes with K=4, α=0.5, and the average SNR=-6 dB, -10 dB

    Finally, we analyze the impact of the number of CR users on the optimal decision threshold. Here we setN=100,α=0.5, and the average SNRγ=-6, -10 dB. Fig.5 plots the optimal decision threshold vs. the number of CR users for three different soft combination schemes. As the number of the CR user increases, the EGC scheme has almost the same optimal decision threshold, showing that the number of CR users has a weak influence on the optimal decision threshold for the EGC scheme. However, the optimal decision threshold values of MRC and MDC schemes increase as the number of the CR users increases, and the optimal decision thresholds for the two soft combination schemes approach a corresponding individual limit value while the number of CR users increases.

    Fig.5 Optimal decision threshold vs. number of CR users with three different soft combination schemes (N=100, α=0.5, and the average SNR=-6, -10 dB)

    5 Conclusion

    In this paper, a closed-form expression of the optimal decision threshold is derived under the soft decision cooperative spectrum sensing scheme, including several parameters such as the weight coefficients, the prior probability of absence of the PU, the number of samples and the number of CR users. The impacts of these parameters on the optimal decision threshold are verified by detailed simulation results. It is demonstrated that the average SNR of soft combination schemes has a great effect on the value of the optimal decision threshold, whereas the number of samples has a weak influence on the value of the optimal threshold.

    [1]Liang Y, Chen K, Li G, et al. Cognitive radio network-ing and communications: an overview [J].IEEETransVehTechnol, 2011,60(7): 3386-3407.

    [2]Lu L, Zhou X, Onunkwo U, et al. Ten years of research in spectrum sensing and sharing in cognitive radio [J].EURASIPJWirelessCommunNetw, 2012,28(1): 1-16.

    [3]Ghasemi A, Sousa E. Collaborative spectrum sensing for opportunistic access in fading environments [C]//ProcIEEEIntSymponNewFrontiersinDynamicSpectrumAccessNetworks. Baltimore, USA, 2005: 131-136.

    [4]Liang Y, Zeng Y, Peh E, et al. Sensing-throughput tradeoff for cognitive radio networks [J].IEEETransWirelessCommun, 2008,7(4): 1326-1337.

    [5]Ma J, Zhao G, Li G. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks [J].IEEETransWirelessCommun, 2008,7(11): 4502-4507.

    [6]Quan Z, Cui S, Sayed A. Optimal linear cooperation for spectrum sensing in cognitive radio networks [J].IEEEJSelTopicsSignalProcess, 2008,2(1): 28-40.

    [7]Zhang W, Mallik R, Letaief K. Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks [J].IEEETransWirelessCommun, 2009,8(12): 5761-5766.

    [8]Fan R, Jiang H, Guo Q, et al. Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks [J].IEEETransVehTechnol, 2011,60(2): 722-729.

    [9]Luo L, Roy S. Efficient spectrum sensing for cognitive radio networks via joint optimization of sensing threshold and duration [J].IEEETransCommun, 2012,60(10): 2851-2860.

    [10]Gong S, Wang P, Huang J. Robust performance of spectrum sensing in cognitive radio networks [J].IEEETransWirelessCommun, 2013,12(5): 2217-2227.

    免费黄色在线免费观看| 极品少妇高潮喷水抽搐| 一本一本综合久久| 久久6这里有精品| 成人无遮挡网站| 我要看黄色一级片免费的| 亚洲国产色片| 成年免费大片在线观看| 久久99热6这里只有精品| 日韩一区二区三区影片| 99热这里只有是精品在线观看| 麻豆成人午夜福利视频| 麻豆乱淫一区二区| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 大片电影免费在线观看免费| av女优亚洲男人天堂| av在线老鸭窝| 国产精品一区二区性色av| 在线观看免费日韩欧美大片 | 青青草视频在线视频观看| 国产高清国产精品国产三级 | 久久精品国产亚洲av涩爱| 欧美最新免费一区二区三区| 久久女婷五月综合色啪小说| 精品国产三级普通话版| 嫩草影院入口| 国产亚洲av片在线观看秒播厂| 亚洲国产日韩一区二区| 又大又黄又爽视频免费| 国产av国产精品国产| 妹子高潮喷水视频| www.av在线官网国产| 亚洲欧美日韩无卡精品| 国精品久久久久久国模美| 亚洲精品中文字幕在线视频 | 亚洲欧美日韩东京热| 国产真实伦视频高清在线观看| 久久影院123| 51国产日韩欧美| 日韩一区二区视频免费看| 国产免费一级a男人的天堂| 黑人高潮一二区| 18禁裸乳无遮挡免费网站照片| 日日啪夜夜爽| 午夜福利在线观看免费完整高清在| 久久久久久久久大av| 最近中文字幕高清免费大全6| 麻豆成人午夜福利视频| 美女高潮的动态| 伊人久久国产一区二区| 国产大屁股一区二区在线视频| 久久精品国产鲁丝片午夜精品| 精品人妻一区二区三区麻豆| 精品亚洲成a人片在线观看 | 少妇猛男粗大的猛烈进出视频| 99热全是精品| 观看免费一级毛片| 欧美97在线视频| 少妇的逼水好多| 美女中出高潮动态图| 亚洲精华国产精华液的使用体验| 亚洲三级黄色毛片| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 亚洲va在线va天堂va国产| 尤物成人国产欧美一区二区三区| 日本黄大片高清| 亚洲国产欧美在线一区| 一级黄片播放器| 国产精品国产av在线观看| 日韩一本色道免费dvd| 一级a做视频免费观看| 男人爽女人下面视频在线观看| 中文字幕久久专区| 高清黄色对白视频在线免费看 | 中文乱码字字幕精品一区二区三区| 一级爰片在线观看| 亚洲精品亚洲一区二区| 国产av国产精品国产| 熟妇人妻不卡中文字幕| 永久网站在线| 国产精品爽爽va在线观看网站| 麻豆乱淫一区二区| 亚洲av二区三区四区| www.色视频.com| videossex国产| 新久久久久国产一级毛片| 全区人妻精品视频| 精品一区在线观看国产| 18禁动态无遮挡网站| 亚洲中文av在线| 99久久精品热视频| 在线免费十八禁| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| av在线播放精品| 亚洲人成网站在线播| .国产精品久久| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 亚洲丝袜综合中文字幕| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 欧美日韩综合久久久久久| 亚洲国产av新网站| 国产 精品1| 91精品一卡2卡3卡4卡| 精品人妻视频免费看| 久久97久久精品| 亚洲精品一区蜜桃| 亚洲欧美一区二区三区黑人 | 欧美xxxx性猛交bbbb| 91精品一卡2卡3卡4卡| 日本午夜av视频| av卡一久久| 老师上课跳d突然被开到最大视频| 欧美xxⅹ黑人| 国产高清国产精品国产三级 | 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 狂野欧美白嫩少妇大欣赏| 国产毛片在线视频| 亚洲伊人久久精品综合| 男人和女人高潮做爰伦理| 人妻 亚洲 视频| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月| 老熟女久久久| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 中文在线观看免费www的网站| 国产免费一级a男人的天堂| 激情 狠狠 欧美| 如何舔出高潮| 熟女电影av网| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| 亚洲成人av在线免费| 欧美精品一区二区大全| 直男gayav资源| 国产一区有黄有色的免费视频| 不卡视频在线观看欧美| 精品久久久噜噜| 五月开心婷婷网| 2022亚洲国产成人精品| 亚州av有码| 最近中文字幕高清免费大全6| 亚洲国产色片| 亚洲精品国产av蜜桃| 国产成人a区在线观看| 岛国毛片在线播放| 亚洲一区二区三区欧美精品| xxx大片免费视频| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 国产一区二区三区av在线| 毛片一级片免费看久久久久| 午夜视频国产福利| www.色视频.com| 国产精品一区www在线观看| 国产精品国产av在线观看| 在线观看av片永久免费下载| 黑人高潮一二区| 亚洲aⅴ乱码一区二区在线播放| 性色av一级| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 成年美女黄网站色视频大全免费 | 麻豆乱淫一区二区| 精品视频人人做人人爽| 欧美日韩一区二区视频在线观看视频在线| 日韩不卡一区二区三区视频在线| 久久精品夜色国产| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 亚洲国产成人一精品久久久| 国内少妇人妻偷人精品xxx网站| 视频中文字幕在线观看| 联通29元200g的流量卡| 久久99热这里只有精品18| av女优亚洲男人天堂| 一个人看视频在线观看www免费| 成人国产av品久久久| 中国国产av一级| 亚洲精品一区蜜桃| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 国产欧美亚洲国产| 激情五月婷婷亚洲| videos熟女内射| 国产极品天堂在线| 欧美成人一区二区免费高清观看| 99国产精品免费福利视频| 亚洲av.av天堂| 最近的中文字幕免费完整| 精品酒店卫生间| 少妇的逼好多水| 国产精品久久久久久久久免| 亚洲精品乱码久久久久久按摩| 日本爱情动作片www.在线观看| 一级爰片在线观看| 亚洲国产av新网站| 嘟嘟电影网在线观看| 成年美女黄网站色视频大全免费 | 国产亚洲午夜精品一区二区久久| av在线app专区| 日产精品乱码卡一卡2卡三| 一区二区三区乱码不卡18| 91精品一卡2卡3卡4卡| av免费在线看不卡| 亚洲精品国产av蜜桃| 久久久久久九九精品二区国产| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看 | 六月丁香七月| 国产成人一区二区在线| 国产亚洲欧美精品永久| 免费看日本二区| 人妻夜夜爽99麻豆av| 高清不卡的av网站| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产成人久久av| 高清在线视频一区二区三区| 亚洲精品日韩av片在线观看| av女优亚洲男人天堂| 亚洲色图av天堂| 多毛熟女@视频| 精品亚洲乱码少妇综合久久| av在线观看视频网站免费| 春色校园在线视频观看| 亚洲成色77777| 一级毛片电影观看| 免费看日本二区| 性高湖久久久久久久久免费观看| 久久国产乱子免费精品| 久久人人爽av亚洲精品天堂 | 国产高潮美女av| 色吧在线观看| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 免费观看在线日韩| 亚洲精品乱久久久久久| 女性被躁到高潮视频| 夜夜爽夜夜爽视频| 精品熟女少妇av免费看| 草草在线视频免费看| 久久青草综合色| 美女高潮的动态| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| 国产在线男女| 国产男人的电影天堂91| 久久久久久久久久久丰满| 亚洲av中文av极速乱| 免费观看的影片在线观看| 久久鲁丝午夜福利片| 丰满乱子伦码专区| 在线观看免费视频网站a站| 午夜福利在线观看免费完整高清在| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 一个人免费看片子| 你懂的网址亚洲精品在线观看| 99热网站在线观看| 午夜老司机福利剧场| 伊人久久国产一区二区| 国产精品久久久久久久电影| 久久久久视频综合| 国产亚洲精品久久久com| 久久精品人妻少妇| 国模一区二区三区四区视频| 亚洲经典国产精华液单| 免费观看性生交大片5| 国产av一区二区精品久久 | 99热6这里只有精品| 国产免费福利视频在线观看| 六月丁香七月| 久久久久久久久久久免费av| 日日摸夜夜添夜夜爱| 中文资源天堂在线| 久久久久人妻精品一区果冻| 少妇的逼水好多| 在线观看三级黄色| 99热这里只有是精品50| 美女主播在线视频| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品| 欧美日韩一区二区视频在线观看视频在线| 中文精品一卡2卡3卡4更新| 亚洲av免费高清在线观看| 人妻 亚洲 视频| 边亲边吃奶的免费视频| 在线观看美女被高潮喷水网站| 中文字幕久久专区| 国产成人精品婷婷| 亚洲av成人精品一区久久| 国产精品偷伦视频观看了| 一区二区三区免费毛片| 免费少妇av软件| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 久久久国产一区二区| 国产无遮挡羞羞视频在线观看| 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| 男女无遮挡免费网站观看| 久久久久久久久大av| 热re99久久精品国产66热6| 熟女电影av网| 亚洲精品国产成人久久av| 嘟嘟电影网在线观看| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 热re99久久精品国产66热6| 亚洲av二区三区四区| 97超视频在线观看视频| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 国内揄拍国产精品人妻在线| 久久久久网色| 女人久久www免费人成看片| 少妇的逼好多水| 欧美 日韩 精品 国产| 男女免费视频国产| 久久热精品热| 亚洲av中文av极速乱| 在线观看国产h片| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 一级a做视频免费观看| av不卡在线播放| h视频一区二区三区| 日韩伦理黄色片| 国产淫片久久久久久久久| 欧美激情国产日韩精品一区| 亚洲欧美日韩无卡精品| 男人舔奶头视频| 亚洲色图综合在线观看| 免费在线观看成人毛片| 黄色日韩在线| 欧美国产精品一级二级三级 | 天美传媒精品一区二区| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 欧美zozozo另类| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 国产成人精品久久久久久| 午夜免费鲁丝| 观看免费一级毛片| 中文字幕av成人在线电影| 一级毛片久久久久久久久女| 精品人妻一区二区三区麻豆| 国产精品成人在线| 五月天丁香电影| 黄色配什么色好看| 777米奇影视久久| 中文字幕制服av| 久久热精品热| 欧美成人a在线观看| 成人午夜精彩视频在线观看| 五月玫瑰六月丁香| 日韩欧美一区视频在线观看 | 下体分泌物呈黄色| 亚洲av国产av综合av卡| 日韩亚洲欧美综合| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 成人综合一区亚洲| 日本av免费视频播放| 色婷婷久久久亚洲欧美| h日本视频在线播放| 亚洲精品国产成人久久av| 中文字幕亚洲精品专区| 1000部很黄的大片| 免费观看无遮挡的男女| 国产日韩欧美在线精品| 亚洲国产av新网站| 久久99热6这里只有精品| 国产亚洲5aaaaa淫片| 人妻系列 视频| 在线观看免费日韩欧美大片 | 国产精品一区www在线观看| 久久久亚洲精品成人影院| 99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 精品人妻视频免费看| 亚洲av不卡在线观看| 少妇人妻 视频| 日日啪夜夜爽| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩一本色道免费dvd| 久久人人爽人人片av| 欧美亚洲 丝袜 人妻 在线| a级毛色黄片| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 精品国产三级普通话版| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 久热这里只有精品99| 少妇人妻久久综合中文| 在线 av 中文字幕| 国产片特级美女逼逼视频| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| 狠狠精品人妻久久久久久综合| 国产极品天堂在线| 亚洲av不卡在线观看| 亚洲精品第二区| 日韩av在线免费看完整版不卡| 男人爽女人下面视频在线观看| 成人亚洲精品一区在线观看 | 国产在视频线精品| 久久久久国产网址| 久久午夜福利片| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 中文欧美无线码| 晚上一个人看的免费电影| 少妇人妻 视频| 国产色爽女视频免费观看| 有码 亚洲区| 日韩成人伦理影院| 男男h啪啪无遮挡| 欧美区成人在线视频| 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 香蕉精品网在线| 少妇人妻久久综合中文| 精品一品国产午夜福利视频| 在线观看美女被高潮喷水网站| 久久久久久久久久久免费av| 五月天丁香电影| 日产精品乱码卡一卡2卡三| 欧美日韩亚洲高清精品| 一本色道久久久久久精品综合| 亚洲丝袜综合中文字幕| 人人妻人人添人人爽欧美一区卜 | 视频中文字幕在线观看| 久久久久久久久久人人人人人人| 亚洲精品日本国产第一区| 国产精品国产三级专区第一集| 亚洲国产成人一精品久久久| 国产一区亚洲一区在线观看| 在线播放无遮挡| 91久久精品国产一区二区成人| 夜夜看夜夜爽夜夜摸| 97精品久久久久久久久久精品| 一区在线观看完整版| 日日啪夜夜爽| 丰满乱子伦码专区| 国产精品一区二区三区四区免费观看| 国内精品宾馆在线| 国产精品福利在线免费观看| 国产乱人偷精品视频| 一边亲一边摸免费视频| 国产探花极品一区二区| 人妻少妇偷人精品九色| 亚洲一区二区三区欧美精品| 狠狠精品人妻久久久久久综合| 一本色道久久久久久精品综合| 亚洲人成网站在线观看播放| av在线播放精品| 肉色欧美久久久久久久蜜桃| a级毛色黄片| 亚洲怡红院男人天堂| 美女中出高潮动态图| 一级毛片久久久久久久久女| 精品国产一区二区三区久久久樱花 | 晚上一个人看的免费电影| 十分钟在线观看高清视频www | 看免费成人av毛片| 日本欧美国产在线视频| 免费人妻精品一区二区三区视频| 国产在线一区二区三区精| 国产精品免费大片| 黄色配什么色好看| 国产淫片久久久久久久久| 国产一区二区三区av在线| 国产日韩欧美亚洲二区| 国产亚洲最大av| 看十八女毛片水多多多| 国产 精品1| 国产一区二区在线观看日韩| 中文字幕久久专区| 久久青草综合色| 午夜福利在线观看免费完整高清在| 麻豆精品久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区视频免费看| 久久97久久精品| 男女免费视频国产| 国产精品久久久久久久久免| 欧美精品国产亚洲| 亚洲国产日韩一区二区| 老司机影院成人| 亚洲精品日韩av片在线观看| 日本欧美视频一区| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 久久人人爽人人片av| 日韩制服骚丝袜av| 国产精品国产av在线观看| 欧美成人a在线观看| 久久热精品热| 丝瓜视频免费看黄片| 97在线视频观看| 看十八女毛片水多多多| 51国产日韩欧美| 亚洲美女视频黄频| 国产在线男女| 18禁在线无遮挡免费观看视频| 男女边摸边吃奶| 国产爽快片一区二区三区| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品| 老师上课跳d突然被开到最大视频| 我要看日韩黄色一级片| 高清午夜精品一区二区三区| 欧美3d第一页| 亚洲国产欧美在线一区| 九草在线视频观看| 精品人妻熟女av久视频| 搡女人真爽免费视频火全软件| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 91久久精品电影网| 亚洲国产成人一精品久久久| 夫妻午夜视频| 一二三四中文在线观看免费高清| 久久热精品热| 久久久久久久久久久丰满| 噜噜噜噜噜久久久久久91| 插逼视频在线观看| 久久99热6这里只有精品| 各种免费的搞黄视频| 伊人久久精品亚洲午夜| 亚洲欧美中文字幕日韩二区| 欧美bdsm另类| 国产午夜精品一二区理论片| 性色avwww在线观看| 国产精品成人在线| 日韩视频在线欧美| 一区二区三区四区激情视频| 国内少妇人妻偷人精品xxx网站| 国产久久久一区二区三区| 久久ye,这里只有精品| 国产有黄有色有爽视频| 亚洲精品456在线播放app| 九色成人免费人妻av| 久久久久久久久久久免费av| 韩国av在线不卡| 亚洲精品乱久久久久久| 看免费成人av毛片| 51国产日韩欧美| av免费在线看不卡| 精品少妇黑人巨大在线播放| 简卡轻食公司| 亚洲av成人精品一二三区| 日韩在线高清观看一区二区三区| 我要看黄色一级片免费的| 五月伊人婷婷丁香| 久久久精品免费免费高清| 美女内射精品一级片tv| 汤姆久久久久久久影院中文字幕| 国产精品麻豆人妻色哟哟久久| 国产av国产精品国产| 男女边摸边吃奶| av黄色大香蕉| 综合色丁香网| 我的老师免费观看完整版| 熟妇人妻不卡中文字幕| 在线观看国产h片| 大话2 男鬼变身卡| 国产久久久一区二区三区| 18禁在线播放成人免费| 亚洲欧美精品自产自拍| 亚洲精品国产av蜜桃| 国产精品一区二区在线不卡| 日本黄大片高清| 国产久久久一区二区三区| 丰满迷人的少妇在线观看| 亚洲欧美精品自产自拍| 亚洲美女搞黄在线观看| 久久人人爽av亚洲精品天堂 | 国产精品伦人一区二区| 亚洲国产欧美人成| 国产av精品麻豆| 婷婷色av中文字幕| 亚洲欧洲日产国产| 色网站视频免费| 国产精品久久久久久精品古装| 午夜激情久久久久久久| 夫妻性生交免费视频一级片| 亚洲成人一二三区av| 五月玫瑰六月丁香|