• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal decision thresholdfor soft decision cooperative spectrum sensing

    2013-01-02 01:22:56SunDafeiSongTiechengWuMingHuJingGuoJieGuBin

    Sun Dafei Song Tiecheng Wu Ming Hu Jing Guo Jie Gu Bin

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2College of Science, Nanjing University of Technology, Nanjing 210009, China)

    The inflexible and fixed spectrum allocation in conventional wireless networks has been shown to encourage under-utilization of the spectrum. The cognitive radio (CR) has emerged as a promising technology to solve this problem through opportunistic access of the spectrum by unlicensed CR users, if non-harmful interference to the licensed primary user (PU) is guaranteed[1]. To ensure that the PUs are sufficiently protected against interference from the CR users, CR users should periodically perform spectrum sensing to obtain reliable results of the PUs’ activities[1-2].

    Generally, spectrum sensing strategies are categorized into four basic kinds: energy detection, coherent detection, cyclostationary feature detection and eigenvalue-based detection. Due to its simplicity and efficiency, energy detection is recognized as a preferred scheme for practical implementation. To enhance the overall sensing accuracy, cooperation between multiple users is also suggested. Cooperation among CR users is usually cooperated by a fusion center (FC) through two types of fusion rules: hard decision fusion rules[3-4]and soft decision fusion rules[5-6]. In this paper, soft decision fusion rules are investigated, in which accurate energy values observed by different CR users are combined to make a satisfactory decision.

    Generally, the performance of spectrum sensing depends greatly on the setting of the decision threshold. Threshold selection can be viewed as an optimization problem. Some research work has been done for this problem based on different objectives in Refs. [7-10]. In the Neyman-Pearson framework, the decision threshold is determined by a given target false alarm probability[4,6]. However, detectors under this scheme cannot achieve the minimum total error probability. In Ref. [7], based on the minimum total error rate criterion, the authors discussed the optimal decision threshold for hard decision cooperative spectrum sensing and the optimal decision threshold can be evaluated numerically. The main contribution of this paper is the derivation of a closed-form expression of the optimal decision threshold for soft decision cooperative spectrum sensing, which is based on the minimum total error probability criterion. The impact of different sensing parameters on the optimal decision threshold value is analyzed.

    1 System Model

    In this section we investigate cooperative spectrum sensing in a centralized CR network which consists of a FC and several CR users. Within the cognitive radio network, each CR user sends its sensing data to the FC periodically through common control channel. Then the FC combines the sensing data from different CR users and makes a decision on the presence or absence of the PU. For simplicity, we assume that the sensing data are sent from the CR user to the FC without any communication channel loss.

    Here we consider a CR network withKCR users. Suppose thatNsamples are utilized for energy detection at each CR user. The spectrum sensing problem at thek-th CR user can be modeled as a binary hypothesis test problem, which is given by

    wheres(n) denotes the primary signal;wk(n) denotes the additive white Gaussian noise (AWGN); andhkdenotes the channel gain between the PU and thek-th CR user. The channel gain is assumed to be constant during each sensing period. H0and H1denote the hypotheses corresponding to the absence and presence of the primary signal, respectively.

    The energy detector measures the primary signal energy within a specified duration. Each CR user calculates a summary statisticYkover a detection interval ofNsamples, which is denoted as

    (2)

    Then cooperation diversity of multiple CR users is carried out in order to achieve better spectrum sensing performance.

    We first consider local spectrum sensing at the individual CR user. The test statistic of thek-th CR user using energy detection is given by Eq.(2). For simplicity, assuming thatNis large enough, local test statisticYkapproximates the Gaussian distribution according to the central limit theorem, i.e.,

    (3)

    where N(μ,σ2) denotes the Gaussian distribution with the mean valueμand varianceσ2.

    We setλkas the local decision threshold for thek-th CR user; the local false alarm probabilityPf,kand the detection probabilityPd,kcan be defined as

    (4)

    (5)

    whereQ(·) denotes the complementary distribution function of the standard Gaussian. Based on the above definitions in Eqs.(4) and (5), the local missed probabilityPm,kcan be defined as

    Pm,k=Pr(Yk<λk|H1)=1-Pd,k

    (6)

    2 Soft Combination

    Cooperation among CR users is usually cooperated by a FC through two types of fusion rules: hard decision fusion rules and soft decision fusion rules. When hard decision fusion rules are used, CR users exchange only one bit of information regarding whether their observed energy value is above a certain threshold or not. In this paper, soft decision fusion rules are investigated in which accurate energy values observed by different CR users are combined to make a better decision. It is demonstrated that soft combination schemes have significant performance improvement over conventional hard combination[5].

    For soft combination schemes, sensing data from different CR users is linearly combined with weight coefficients and decisions based on the weighted summation. To allow multiple CR users to collaborate, we transmit the test statistic {Yk} directly to the FC through the common control channel. Once the FC receives {Yk}, the global test statisticycis linearly calculated as[6]

    (7)

    wherewkdenotes the weight coefficient corresponding to thek-th CR user. The combining weight for the particular user represents its contribution to the global decision. For example, if a CR generates a high SNR signal which may lead to a correct detection on its own, it should be assigned by a larger weight coefficient. For those CR users which experience deep fading or shadowing, their weights should be decreased in order to reduce their negative contribution to the FC.

    Assuming that {Yk} and {wk} are independent for differentk, then, according to Eq.(7),ycis under the Gaussian distribution. Then the global test statistic has means and variances which are given by

    (8)

    whereE[·] and var[·] denote the statistical expectation and variance, respectively.

    The global test statistic is compared with a global decision thresholdλin order to make a global detection result. Ifyc>λ, the FC decides hypothesis H1is true; otherwise, the frequency band of interest is assumed not to be used by the PU, so the FC decides hypothesis H0is true.

    (9)

    (10)

    (11)

    3 Optimal Decision Threshold Analysis

    The essential problem of energy detector design is to determine the decision threshold in order to achieve ideal detection performance. Suppose that we choose a lower decision threshold, so that we will have a higher false alarm probability. On the contrary, if we choose a higher decision threshold, a larger missed detection probability will be achieved. Therefore, there exists a fundamental tradeoff between the probability of false alarm and the probability of missed detection.

    Considering the tradeoff between the two error probability, we can know that minimizing the total error probability of spectrum sensing is significant for achieving the better performance of CR systems. For a given frequency band of interest, we defineP(H1) as the probability for which the primary user is present, andP(H0) as the probability for which the primary user is absent. Obviously, we can obtainP(H0)+P(H1)=1. The total error probabilityPeis defined as

    Pe=αQf+βQm

    (12)

    whereα=P(H0) andβ=P(H1). We assume that the prior probabilityαis known for all the CR users based on long-term spectrum measurement. By minimizing the total error probability criterion,QfandQmare weighted and simplified as a measurement of the total error probability. For a special case in whichα=β, the total error probability is calculated as

    (13)

    SubstitutingQfin Eq.(9) andQmin Eq.(11) into Eq.(12), the total error probability is given by

    (14)

    Therefore, our core goal is to determine the optimal decision threshold which can minimize the total error probability.

    Proposition1If the decision thresholdλ∈(1,1+η), then both the false alarm probabilityQfand the missed detection probabilityQmare less than 0.5. Furthermore, letNapproach infinity, the false alarm probabilityQf→0, and the missed detection probabilityQm→0.

    ProofIf the decision thresholdλ∈(1,1+η), then

    (15)

    From Eqs.(9) and (10), according to the monotonicity of theQfunction, the detector performance can be derived as

    (16)

    (17)

    Therefore, we can also have

    Qm=1-Qd<0.5

    (18)

    Furthermore, whenNapproaches infinity, we can obtain

    (19)

    Thus, we can also see thatQf→0, andQm→0 whenNapproaches infinity.

    In the field of spectrum sensing, a detection probability of 90% and a false alarm probability of 10% are regarded as the target requirements for all the sensing algorithms[4]. From Proposition 1, it follows that the constraintsQd>0.5 andQm<0.5 are equivalent to 1<λ<1+η.

    Proposition2The total error probabilityPeis a convex function of the decision thresholdλ, when 1<λ<1+η.

    ProofAccording to Eq.(14), differentiatingPewith respect toλgives

    (20)

    Then, the second-order derivative ofPewith respect toλis given by

    (21)

    If 1<λ<1+η, we can see thatλ-1>0, andλ-(1+η)<0. Then the second-order derivative ofPeis greater than 0, that is

    (22)

    Thus, the total error probabilityPeis convex inλwhen 1<λ<1+η.

    (23)

    Solvingλby Eq.(23), the optimal decision threshold is taken to be the largest root. Hence, the optimal decision threshold can be determined by

    (24)

    (25)

    4 Simulation Results

    In this section, simulation results are given to illustrate the impact of system parameters on the optimal threshold value for soft decision cooperative spectrum sensing. Under the Rayleigh fading environment, it is reasonable to assume that we have independent and identically distributed (i.i.d.) Rayleigh fading with the instantaneous SNRsγ1,γ2,…,γKbeing i.i.d. exponentially distributed random variables with the meanγ(i.e., the average SNR). The simulation results are obtained from 104realizations for the given constant channel gains.

    First, we present the optimal decision threshold for different average SNRs when the equal gain combining (EGC), the maximal ratio combining (MRC), and the modified deflection coefficient (MDC) schemes[6]are adopted. The weight coefficients of the three soft combination schemes can be given as

    (26)

    (27)

    (28)

    Here, we consider a system scenario with the number of CR usersK=4, the number of samplesN=100, and the prior probabilityα=0.5. Fig.1 describes the optimal decision threshold vs. the average SNRγfor three different soft combination schemes according to Eqs.(26), (27) and (28). Fig.1 shows that the optimal decision threshold is between 1 (lower bound) and 1+γ(upper bound). It can be also seen that the MRC and MDC schemes have almost the same optimal decision threshold in the low SNR region. Within the high SNR region, the optimal decision threshold for the MRC scheme is greater than that of the MDC scheme. Furthermore, in the low SNR region, the average SNRγ≈ηand then the optimal decision threshold for the EGC schemeλopt≈1+γ/2. In addition, Fig.2 depicts the minimum the total error probability for the corresponding three different soft combination schemes in Fig.1. From Fig.2, we can see that both the MRC and MDC schemes have nearly the same performance which outperforms that of the EGC scheme.

    Secondly, we consider the impact of the prior probabilityαon the detector design of the optimal decision threshold. Here, we considerK=4,N=100, and the average

    Fig.1 Optimal decision threshold vs. average SNR with three different soft combination schemes (K=4, N=100, and α=0.5)

    Fig.2 Minimum total error probability vs. average SNR with three different soft combination schemes (K=4, N=100, and α=0.5)

    SNRγ=-6 dB and -10 dB. Fig.3 illustrates the relationship between the optimal decision threshold value and the prior probabilityα. It can be seen from Fig.3 that the optimal decision threshold increases with the increase in the prior probabilityα, which means that the activity of the PU has effects on the design of the detector, which is reasonable. Since the PU is seldom present (i.e., the prior probabilityαis large), the optimal decision threshold value should be increased in order to obtain the target minimum the total error probability.

    Thirdly, we consider the influence of the number of samples on the optimal decision threshold. We chooseK=4,α=0.5, and the average SNRγ=-6, -10 dB. Fig.4 describes the optimal decision threshold vs. the number of samples for three different soft combination schemes. It is verified that the number of samples has almost no influence on the optimal decision threshold. It can also be proved that the optimal threshold of the MRC scheme is greater than that of the MDC scheme. Furthermore, the MRC and MDC schemes have almost the same optimal decision threshold value with the average SNRγ=-10 dB.

    Fig.3 Optimal decision threshold vs. prior probability with three different soft combination schemes (K=4, N=100, and the average SNR=-6, -10 dB)

    Fig.4 Optimal decision threshold versus number of samples with three different soft combination schemes with K=4, α=0.5, and the average SNR=-6 dB, -10 dB

    Finally, we analyze the impact of the number of CR users on the optimal decision threshold. Here we setN=100,α=0.5, and the average SNRγ=-6, -10 dB. Fig.5 plots the optimal decision threshold vs. the number of CR users for three different soft combination schemes. As the number of the CR user increases, the EGC scheme has almost the same optimal decision threshold, showing that the number of CR users has a weak influence on the optimal decision threshold for the EGC scheme. However, the optimal decision threshold values of MRC and MDC schemes increase as the number of the CR users increases, and the optimal decision thresholds for the two soft combination schemes approach a corresponding individual limit value while the number of CR users increases.

    Fig.5 Optimal decision threshold vs. number of CR users with three different soft combination schemes (N=100, α=0.5, and the average SNR=-6, -10 dB)

    5 Conclusion

    In this paper, a closed-form expression of the optimal decision threshold is derived under the soft decision cooperative spectrum sensing scheme, including several parameters such as the weight coefficients, the prior probability of absence of the PU, the number of samples and the number of CR users. The impacts of these parameters on the optimal decision threshold are verified by detailed simulation results. It is demonstrated that the average SNR of soft combination schemes has a great effect on the value of the optimal decision threshold, whereas the number of samples has a weak influence on the value of the optimal threshold.

    [1]Liang Y, Chen K, Li G, et al. Cognitive radio network-ing and communications: an overview [J].IEEETransVehTechnol, 2011,60(7): 3386-3407.

    [2]Lu L, Zhou X, Onunkwo U, et al. Ten years of research in spectrum sensing and sharing in cognitive radio [J].EURASIPJWirelessCommunNetw, 2012,28(1): 1-16.

    [3]Ghasemi A, Sousa E. Collaborative spectrum sensing for opportunistic access in fading environments [C]//ProcIEEEIntSymponNewFrontiersinDynamicSpectrumAccessNetworks. Baltimore, USA, 2005: 131-136.

    [4]Liang Y, Zeng Y, Peh E, et al. Sensing-throughput tradeoff for cognitive radio networks [J].IEEETransWirelessCommun, 2008,7(4): 1326-1337.

    [5]Ma J, Zhao G, Li G. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks [J].IEEETransWirelessCommun, 2008,7(11): 4502-4507.

    [6]Quan Z, Cui S, Sayed A. Optimal linear cooperation for spectrum sensing in cognitive radio networks [J].IEEEJSelTopicsSignalProcess, 2008,2(1): 28-40.

    [7]Zhang W, Mallik R, Letaief K. Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks [J].IEEETransWirelessCommun, 2009,8(12): 5761-5766.

    [8]Fan R, Jiang H, Guo Q, et al. Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks [J].IEEETransVehTechnol, 2011,60(2): 722-729.

    [9]Luo L, Roy S. Efficient spectrum sensing for cognitive radio networks via joint optimization of sensing threshold and duration [J].IEEETransCommun, 2012,60(10): 2851-2860.

    [10]Gong S, Wang P, Huang J. Robust performance of spectrum sensing in cognitive radio networks [J].IEEETransWirelessCommun, 2013,12(5): 2217-2227.

    不卡视频在线观看欧美| 国产成人一区二区在线| 国产精品久久久久成人av| 少妇人妻精品综合一区二区| 在线观看免费视频网站a站| 亚洲成色77777| 亚洲精品,欧美精品| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 亚洲三区欧美一区| 亚洲视频免费观看视频| 超色免费av| √禁漫天堂资源中文www| 最近手机中文字幕大全| 男女午夜视频在线观看| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲 | 又黄又粗又硬又大视频| 久久精品国产a三级三级三级| 天天躁狠狠躁夜夜躁狠狠躁| 国产av码专区亚洲av| 日韩不卡一区二区三区视频在线| 欧美精品国产亚洲| 久久久久久久久久久久大奶| 久久韩国三级中文字幕| 午夜91福利影院| 亚洲国产色片| 亚洲欧美一区二区三区久久| 满18在线观看网站| 亚洲av电影在线进入| 国产成人精品一,二区| 成年动漫av网址| 精品视频人人做人人爽| 久久久精品免费免费高清| 1024香蕉在线观看| 人妻 亚洲 视频| 亚洲,欧美,日韩| 国产欧美亚洲国产| 最近中文字幕2019免费版| 成人毛片a级毛片在线播放| 日韩熟女老妇一区二区性免费视频| 国产免费福利视频在线观看| 精品人妻偷拍中文字幕| 中文欧美无线码| 日韩不卡一区二区三区视频在线| 欧美少妇被猛烈插入视频| 日本av手机在线免费观看| 秋霞在线观看毛片| 免费大片黄手机在线观看| 男人操女人黄网站| 国产免费视频播放在线视频| 在线观看人妻少妇| 满18在线观看网站| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 一区二区三区激情视频| 午夜福利乱码中文字幕| 美女大奶头黄色视频| 爱豆传媒免费全集在线观看| 最近手机中文字幕大全| h视频一区二区三区| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| 国产在视频线精品| 亚洲欧美色中文字幕在线| 制服丝袜香蕉在线| 日韩av免费高清视频| 国产老妇伦熟女老妇高清| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 国产有黄有色有爽视频| 有码 亚洲区| 水蜜桃什么品种好| 亚洲在久久综合| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 99久久中文字幕三级久久日本| 高清欧美精品videossex| 丝袜喷水一区| 久久99一区二区三区| 欧美精品国产亚洲| 婷婷成人精品国产| 大陆偷拍与自拍| 99久久中文字幕三级久久日本| 老司机影院成人| 成年动漫av网址| 亚洲av中文av极速乱| 国产一区二区 视频在线| 性色av一级| 成年人免费黄色播放视频| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 丝袜喷水一区| 一区二区三区精品91| 久久热在线av| 韩国精品一区二区三区| 肉色欧美久久久久久久蜜桃| 久久ye,这里只有精品| 久久精品夜色国产| 亚洲三区欧美一区| 麻豆av在线久日| 视频在线观看一区二区三区| 国产精品 国内视频| 久久99精品国语久久久| 99香蕉大伊视频| 亚洲美女视频黄频| 一级片'在线观看视频| 免费观看性生交大片5| 在线 av 中文字幕| 国产精品久久久久久久久免| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av涩爱| 在线看a的网站| 欧美日韩视频精品一区| 亚洲av福利一区| 丰满乱子伦码专区| av电影中文网址| 婷婷色av中文字幕| 18+在线观看网站| 成人毛片60女人毛片免费| 欧美精品av麻豆av| 亚洲av在线观看美女高潮| 天堂中文最新版在线下载| 夫妻午夜视频| 伊人久久大香线蕉亚洲五| 丝袜美足系列| 热re99久久精品国产66热6| 亚洲av在线观看美女高潮| 丝袜美腿诱惑在线| 亚洲国产av影院在线观看| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 亚洲av综合色区一区| 午夜福利在线免费观看网站| 麻豆av在线久日| 久久精品亚洲av国产电影网| 婷婷色综合大香蕉| 美女中出高潮动态图| 国产淫语在线视频| 亚洲成av片中文字幕在线观看 | 亚洲av中文av极速乱| 国产麻豆69| 久久精品国产综合久久久| 三级国产精品片| 韩国精品一区二区三区| 久久av网站| 欧美精品人与动牲交sv欧美| 极品人妻少妇av视频| 亚洲国产精品一区三区| 中文乱码字字幕精品一区二区三区| 18禁观看日本| 十八禁网站网址无遮挡| 91aial.com中文字幕在线观看| 国产男女内射视频| 色婷婷久久久亚洲欧美| h视频一区二区三区| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 香蕉国产在线看| 午夜福利影视在线免费观看| 国产淫语在线视频| 一区在线观看完整版| 久久午夜福利片| 美女午夜性视频免费| 中文欧美无线码| 性色avwww在线观看| 国产av一区二区精品久久| 69精品国产乱码久久久| 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 婷婷色综合大香蕉| 久久精品夜色国产| 天堂中文最新版在线下载| 9色porny在线观看| 国产免费又黄又爽又色| 精品久久久久久电影网| 美女视频免费永久观看网站| 精品国产露脸久久av麻豆| 久久ye,这里只有精品| 亚洲图色成人| 久久久亚洲精品成人影院| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| 少妇被粗大猛烈的视频| 欧美日韩精品网址| 国产av精品麻豆| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 91aial.com中文字幕在线观看| 亚洲综合精品二区| 久久狼人影院| 91午夜精品亚洲一区二区三区| 国产男女超爽视频在线观看| 亚洲精华国产精华液的使用体验| 色网站视频免费| 永久免费av网站大全| 少妇被粗大猛烈的视频| 青青草视频在线视频观看| 一本久久精品| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 999久久久国产精品视频| 成人免费观看视频高清| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 日日啪夜夜爽| 黄频高清免费视频| 国产亚洲午夜精品一区二区久久| a 毛片基地| 少妇被粗大的猛进出69影院| 免费高清在线观看视频在线观看| 亚洲情色 制服丝袜| 久热久热在线精品观看| 国产成人一区二区在线| 久久精品国产自在天天线| 91精品伊人久久大香线蕉| av在线老鸭窝| 久久人妻熟女aⅴ| 久久热在线av| 天天影视国产精品| 男人操女人黄网站| 9热在线视频观看99| 国产成人精品福利久久| 国产精品一区二区在线不卡| 男女无遮挡免费网站观看| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| 在线看a的网站| 美女福利国产在线| 久久久久精品人妻al黑| 成人影院久久| 国产精品久久久av美女十八| 搡女人真爽免费视频火全软件| 一级黄片播放器| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 精品人妻在线不人妻| av片东京热男人的天堂| 亚洲精品国产av蜜桃| 精品人妻偷拍中文字幕| 成年人午夜在线观看视频| av有码第一页| 免费观看性生交大片5| 精品人妻在线不人妻| 桃花免费在线播放| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 成人二区视频| 久久99蜜桃精品久久| 亚洲av免费高清在线观看| 成人免费观看视频高清| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲精品国产av蜜桃| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频 | 日韩一卡2卡3卡4卡2021年| 成人二区视频| 街头女战士在线观看网站| 日韩免费高清中文字幕av| 国产探花极品一区二区| 久久影院123| av福利片在线| 九色亚洲精品在线播放| 欧美xxⅹ黑人| 一本大道久久a久久精品| 国产一区二区激情短视频 | 久久久久久久久久久免费av| 国产av国产精品国产| 国产午夜精品一二区理论片| 欧美国产精品一级二级三级| 午夜免费观看性视频| 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 黄色视频在线播放观看不卡| 春色校园在线视频观看| 乱人伦中国视频| 狠狠婷婷综合久久久久久88av| 美女大奶头黄色视频| 搡老乐熟女国产| 国产爽快片一区二区三区| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级| 久久精品久久久久久久性| 最近中文字幕2019免费版| 欧美中文综合在线视频| 青春草国产在线视频| 国产精品一区二区在线观看99| 中文字幕色久视频| 亚洲欧美精品综合一区二区三区 | 满18在线观看网站| 国产精品一区二区在线不卡| 免费黄网站久久成人精品| 高清黄色对白视频在线免费看| 我的亚洲天堂| 丝袜在线中文字幕| 久久精品亚洲av国产电影网| 人妻系列 视频| 人成视频在线观看免费观看| 国产精品熟女久久久久浪| 波野结衣二区三区在线| 精品国产国语对白av| 精品酒店卫生间| 亚洲精品久久午夜乱码| 久久久久精品人妻al黑| 亚洲,一卡二卡三卡| 亚洲,欧美,日韩| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站在线观看播放| 中文字幕最新亚洲高清| 国产伦理片在线播放av一区| 两个人看的免费小视频| 尾随美女入室| 国产一区二区 视频在线| 久久毛片免费看一区二区三区| 亚洲内射少妇av| 欧美在线黄色| 亚洲精品国产一区二区精华液| 丝袜喷水一区| xxx大片免费视频| 免费黄频网站在线观看国产| 色吧在线观看| 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 巨乳人妻的诱惑在线观看| 成人国产av品久久久| 免费看不卡的av| 亚洲精品国产一区二区精华液| 在线观看一区二区三区激情| 大码成人一级视频| 成年动漫av网址| 亚洲内射少妇av| 成年女人在线观看亚洲视频| 国产男女内射视频| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区| 国产成人午夜福利电影在线观看| 中文字幕最新亚洲高清| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕高清免费大全6| 伦精品一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲成av片中文字幕在线观看 | 久久这里有精品视频免费| 亚洲精品国产一区二区精华液| 欧美97在线视频| 在线观看三级黄色| 青春草视频在线免费观看| 99热网站在线观看| 如何舔出高潮| 国产色婷婷99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜av观看不卡| 一区二区三区乱码不卡18| 国产毛片在线视频| 99久久中文字幕三级久久日本| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀 | 伊人久久国产一区二区| 母亲3免费完整高清在线观看 | 女人高潮潮喷娇喘18禁视频| 亚洲激情五月婷婷啪啪| 午夜91福利影院| 国产毛片在线视频| av又黄又爽大尺度在线免费看| 如何舔出高潮| 亚洲精品视频女| 日韩免费高清中文字幕av| 国产欧美亚洲国产| 一级毛片电影观看| 少妇精品久久久久久久| 日本av免费视频播放| 大片电影免费在线观看免费| 999精品在线视频| 婷婷色综合大香蕉| av线在线观看网站| 桃花免费在线播放| 国产精品香港三级国产av潘金莲 | 少妇的丰满在线观看| 国产亚洲精品第一综合不卡| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品| 又粗又硬又长又爽又黄的视频| 日韩精品免费视频一区二区三区| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 精品少妇内射三级| 欧美xxⅹ黑人| 侵犯人妻中文字幕一二三四区| 男女啪啪激烈高潮av片| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 国产精品久久久久久精品古装| 欧美bdsm另类| 久久久国产欧美日韩av| 国产精品三级大全| 国产精品二区激情视频| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩另类电影网站| 婷婷色综合大香蕉| 国产野战对白在线观看| 一级片'在线观看视频| 午夜福利一区二区在线看| 亚洲av电影在线观看一区二区三区| 91精品三级在线观看| 卡戴珊不雅视频在线播放| 亚洲成色77777| 亚洲欧美清纯卡通| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 巨乳人妻的诱惑在线观看| 欧美另类一区| 日韩,欧美,国产一区二区三区| 黄色毛片三级朝国网站| 国产av码专区亚洲av| 国产片特级美女逼逼视频| 亚洲精品日韩在线中文字幕| 18禁动态无遮挡网站| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| www.精华液| 国产毛片在线视频| 色播在线永久视频| 寂寞人妻少妇视频99o| 亚洲欧美一区二区三区国产| 美女大奶头黄色视频| 韩国av在线不卡| 观看av在线不卡| 高清在线视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 高清不卡的av网站| 天堂中文最新版在线下载| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 欧美亚洲日本最大视频资源| 一级毛片 在线播放| 亚洲第一av免费看| 精品第一国产精品| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 永久免费av网站大全| 黄色毛片三级朝国网站| 国产成人一区二区在线| 色哟哟·www| 国产野战对白在线观看| 在线观看一区二区三区激情| 五月伊人婷婷丁香| 香蕉精品网在线| 如日韩欧美国产精品一区二区三区| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 国产一区二区三区av在线| 性色av一级| 中文欧美无线码| 韩国精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 亚洲成av片中文字幕在线观看 | 欧美av亚洲av综合av国产av | 日韩中文字幕欧美一区二区 | 一区在线观看完整版| 亚洲少妇的诱惑av| av一本久久久久| 国产探花极品一区二区| 国产精品久久久久成人av| freevideosex欧美| 日韩制服丝袜自拍偷拍| 亚洲欧洲日产国产| www.av在线官网国产| 一级毛片我不卡| 男女啪啪激烈高潮av片| 伊人久久大香线蕉亚洲五| 啦啦啦在线观看免费高清www| 欧美老熟妇乱子伦牲交| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 国产不卡av网站在线观看| 日韩成人av中文字幕在线观看| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲 | 久久午夜综合久久蜜桃| 女性生殖器流出的白浆| 曰老女人黄片| 26uuu在线亚洲综合色| 美女午夜性视频免费| 色视频在线一区二区三区| 精品国产乱码久久久久久男人| 亚洲精品成人av观看孕妇| 国产欧美日韩综合在线一区二区| 少妇精品久久久久久久| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 亚洲三区欧美一区| 成人国产av品久久久| 狠狠婷婷综合久久久久久88av| 人妻系列 视频| 少妇人妻久久综合中文| 亚洲精品一二三| 日韩欧美精品免费久久| 成人毛片a级毛片在线播放| 晚上一个人看的免费电影| 少妇的丰满在线观看| 深夜精品福利| 美国免费a级毛片| 久久99精品国语久久久| 丝袜喷水一区| 观看美女的网站| 国产av码专区亚洲av| 建设人人有责人人尽责人人享有的| 少妇人妻 视频| 日韩视频在线欧美| 亚洲,一卡二卡三卡| 永久免费av网站大全| 纯流量卡能插随身wifi吗| 免费久久久久久久精品成人欧美视频| 国产一区二区激情短视频 | 26uuu在线亚洲综合色| 成年动漫av网址| 久久综合国产亚洲精品| 99国产精品免费福利视频| 免费观看性生交大片5| 99久久精品国产国产毛片| 91精品三级在线观看| 高清不卡的av网站| 亚洲成人av在线免费| 精品国产国语对白av| 久久久久久久久久人人人人人人| 日韩欧美精品免费久久| 波野结衣二区三区在线| 日韩欧美精品免费久久| 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 这个男人来自地球电影免费观看 | 色吧在线观看| 国产精品三级大全| 久久精品国产亚洲av涩爱| 精品卡一卡二卡四卡免费| 香蕉丝袜av| 国产精品99久久99久久久不卡 | 免费播放大片免费观看视频在线观看| 另类精品久久| 亚洲国产av新网站| 天天影视国产精品| 在线观看国产h片| 在线精品无人区一区二区三| 日日爽夜夜爽网站| 色94色欧美一区二区| 一级毛片我不卡| 最近最新中文字幕大全免费视频 | 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 国产亚洲最大av| 99国产精品免费福利视频| 一二三四中文在线观看免费高清| 国产成人精品在线电影| 老司机亚洲免费影院| 丝袜人妻中文字幕| 女人被躁到高潮嗷嗷叫费观| 精品一区二区免费观看| 国产成人精品一,二区| 国产人伦9x9x在线观看 | 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 国产 精品1| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| 777米奇影视久久| 赤兔流量卡办理| 免费观看性生交大片5| 99国产综合亚洲精品| 777久久人妻少妇嫩草av网站| 91aial.com中文字幕在线观看| 国产在线一区二区三区精| xxx大片免费视频| 宅男免费午夜| 卡戴珊不雅视频在线播放| 午夜福利在线观看免费完整高清在| 亚洲欧美精品综合一区二区三区 | videossex国产| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 精品午夜福利在线看| 色94色欧美一区二区| 免费看av在线观看网站| 熟女少妇亚洲综合色aaa.| 大陆偷拍与自拍| 晚上一个人看的免费电影| 国产高清国产精品国产三级| 在线看a的网站|