摘要 初中階段的教育是一個(gè)人教育生涯的轉(zhuǎn)折點(diǎn),初中階段的教育在全面的總結(jié)小學(xué)階段所學(xué)的知識(shí)的基礎(chǔ)之上的進(jìn)一步學(xué)習(xí),同時(shí)它也是一個(gè)人進(jìn)入高中教育的一個(gè)基礎(chǔ)和鋪墊,所以一個(gè)良好的初中教育對(duì)學(xué)生學(xué)習(xí)生涯的良好發(fā)展有著至關(guān)重要的影響。
關(guān)鍵詞 初中數(shù)學(xué)教育;數(shù)學(xué)思想;數(shù)學(xué)教育;教育方法
初中階段的教育尤其是數(shù)學(xué)教育的重點(diǎn)和難點(diǎn)在于數(shù)學(xué)思想方法和數(shù)學(xué)思維方式的培養(yǎng),良好的數(shù)學(xué)思想和數(shù)學(xué)思維對(duì)于初中階段數(shù)學(xué)的學(xué)習(xí)可以說是至關(guān)重要的。隨著社會(huì)的發(fā)展,初中階段的教育也越來越受到廣大家長以及教師的重視,同時(shí)初中數(shù)學(xué)的教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法等一系列的問題也都在隨之不斷的變革。在這樣的社會(huì)大背景之下,我們更有責(zé)任和義務(wù)去深入的研究初中數(shù)學(xué)常用思想方法,不斷的深思其重要性,從而為我們社會(huì)的初中數(shù)學(xué)教育貢獻(xiàn)自己的一份力量。
一、數(shù)學(xué)思想方法和數(shù)學(xué)思維
數(shù)學(xué)思想和方法,其實(shí)就是我們平時(shí)所說的數(shù)學(xué)學(xué)科本身的一些客觀存在的“公式、定理、原理、數(shù)學(xué)符號(hào)”等,這些都是我們用來解決實(shí)際數(shù)學(xué)問題的最基本的工具。而數(shù)學(xué)思維則更多的是一種主觀性的存在,是一種思考的方式的,當(dāng)我們看到眼前的事物時(shí),能將看到的現(xiàn)象,用數(shù)字、符號(hào)等數(shù)學(xué)語言描述出來,然后運(yùn)用理性的思考方式找出各個(gè)事物之間存在的關(guān)系和規(guī)律,最終使問題得到解決。
雖然在數(shù)學(xué)教學(xué)理論上各種數(shù)學(xué)思想方式有著各自明確的定義和概念,但是在實(shí)際的初中數(shù)學(xué)教學(xué)中,教師的教學(xué)中一般是各種數(shù)學(xué)思想方法和思維方式相互的融合貫通,不再去刻意的追求某一種具體的數(shù)學(xué)思維或是數(shù)學(xué)思想方法,從而加強(qiáng)了學(xué)生在解決實(shí)際數(shù)學(xué)問題時(shí)的各種綜合能力,使得學(xué)生能夠獨(dú)立的運(yùn)用已經(jīng)掌握的各種數(shù)學(xué)思想方法來看待問題,用獨(dú)特的數(shù)學(xué)思維去解構(gòu)數(shù)學(xué)問題,全面增強(qiáng)解決問題的實(shí)際能力。筆者以為,這也是初中數(shù)學(xué)教育的本質(zhì)所在。
二、常用數(shù)學(xué)思想方法的研究
就我國現(xiàn)階段初中數(shù)學(xué)教育來說,在當(dāng)下的初中數(shù)學(xué)教學(xué)中采用最多的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想方法、分類討論的思想方法、化歸思想方法、整體思考的思想方法等等。這幾種數(shù)學(xué)思想方法也是初中數(shù)學(xué)教學(xué)中運(yùn)用最多的,因此我們有必要對(duì)其進(jìn)行深入的研究。
1.數(shù)形結(jié)合的思想方法
所謂的“數(shù)形結(jié)合”的思想方法就是在解決一些數(shù)學(xué)問題時(shí),對(duì)待用文字?jǐn)?shù)學(xué)語言描述的數(shù)學(xué)問題,我們可以用圖形語言將它翻譯過來。由此一個(gè)“數(shù)學(xué)問題”在一定程度上就變成了一個(gè)“幾何問題”,從而完成了由抽象的思維方式到直觀可視的思維方式的轉(zhuǎn)變,在相當(dāng)?shù)某潭壬蠝p小了解決數(shù)學(xué)問題的難度。對(duì)于初中階段抽象思維還不是很完善的學(xué)生來說,“數(shù)形結(jié)合”的思想方法應(yīng)當(dāng)是最好的解題方法。
“數(shù)形結(jié)合”的思想方法中最常用的數(shù)學(xué)符號(hào)語言其中有數(shù)軸、平面直角坐標(biāo)系等?!皵?shù)形結(jié)合”思想方法就是數(shù)字和圖形相結(jié)合的解題方式,它同時(shí)包含了抽象數(shù)學(xué)數(shù)據(jù)和直觀的圖形,成功的完成了抽象思維向形象思維的過渡轉(zhuǎn)化,減小了解題的難度。
在解決實(shí)際的數(shù)學(xué)題目時(shí),學(xué)生應(yīng)該注意數(shù)量與圖形的轉(zhuǎn)化,在看待數(shù)字的同時(shí)在圖像上找到與之相稱的圖像信息,在分析具體的數(shù)學(xué)圖形時(shí)要做到見形思數(shù),數(shù)形結(jié)合,最終完成問題的解答。
2.分類討論的思想方法
分類討論的思想方法也是初中數(shù)學(xué)教學(xué)中比較常用的一種思想方法,主要在有一定解題數(shù)量的基礎(chǔ)之上,對(duì)遇到的數(shù)學(xué)題目進(jìn)行歸類、分析、總結(jié),從而的出一套能夠運(yùn)用在一系列相同或者相似的數(shù)學(xué)問題之上的解題理論方法,減少分析已有問題的思考量。
分類討論思想方法中的分類方式不是隨意分類的,而是具有一定嚴(yán)格的分類原則的:被分類問題的標(biāo)準(zhǔn)時(shí)統(tǒng)一一致的,被分類問題的解題原理是相同或是相近的,被分類題目不能重復(fù)但是也不能遺漏。正確的分類是分類討論思想方法的重點(diǎn)所在,因此在實(shí)際教學(xué)中,在必要的時(shí)候,教師應(yīng)該進(jìn)行適當(dāng)?shù)囊龑?dǎo)以保證教學(xué)方向的正確。
分類討論思想方法的一般過程是,找到明確的數(shù)學(xué)問題個(gè)體,由該數(shù)學(xué)問題個(gè)體找到能夠涵括此類問題的問題總體,完成問題的分類,在此基礎(chǔ)之上,深入的研究解決此類問題共同的理論依據(jù),總結(jié)出解決此類問題的實(shí)際方法,推廣運(yùn)用。
3.化歸思想方法
化歸思想方法的就是用已有的數(shù)學(xué)思想方法和數(shù)學(xué)技能把全新的數(shù)學(xué)問題轉(zhuǎn)化為已經(jīng)熟悉的數(shù)學(xué)問題的過程。其實(shí)這個(gè)過程就是一種知識(shí)的解構(gòu)過程,把全新的數(shù)學(xué)問題“化成”幾部分,然后運(yùn)用熟知的數(shù)學(xué)思想方法重新組合、重新思考這個(gè)問題,完成看由全新到熟知的轉(zhuǎn)化。
化歸思想方法也是一種“由繁化簡”的過程,例如在方程式問題方面,運(yùn)用化歸思想方法就能完成高次方程到低次方程的轉(zhuǎn)化,多元方程向二次方程甚至是一元方程等轉(zhuǎn)化。當(dāng)完成了從復(fù)雜到簡單的轉(zhuǎn)化之后,數(shù)學(xué)問題就變的簡單明了,學(xué)生就能很好的處理好初中階段相對(duì)復(fù)雜相對(duì)困難題目的解答,對(duì)于學(xué)生數(shù)學(xué)能力的提升有很大的幫助。
4.整體思考的思想方法
古詩有“不知廬山真面目,只緣身在此山中”,告誡我們看待問題是不能局限于一個(gè)點(diǎn)或者是一個(gè)面,應(yīng)該用一個(gè)整體的角度全面的去看待問題,只有這樣才不會(huì)迷惑,不會(huì)陷于其中。
同樣在解決數(shù)學(xué)問題時(shí),我們應(yīng)該汲取古人的經(jīng)驗(yàn),全面的看待問題。在實(shí)際教學(xué)中,經(jīng)常出現(xiàn)學(xué)生因看不懂題目的一個(gè)方面,死鉆牛角尖,最終無法完成問題解答的情況。每每遇到這種情況,我總是感慨,當(dāng)我們在教學(xué)中不斷的給學(xué)生灌輸各種解題技巧各種數(shù)學(xué)思想方法的時(shí)候,我們忘記了告訴學(xué)生這樣去思考,怎么全面的去看待問題。
三、總結(jié)
通過對(duì)初中階段數(shù)學(xué)教育中常用的集中數(shù)學(xué)思想方法的介紹和深入的研究,我們對(duì)各種數(shù)學(xué)思想方法有了更加深入的了解和認(rèn)識(shí)。在明了各種數(shù)學(xué)思想方法的基礎(chǔ)之上,進(jìn)一步明確了各種數(shù)學(xué)思想方法的作用方式,從宏觀上更加深入的認(rèn)識(shí)到各種數(shù)學(xué)思想方法在初中階段數(shù)學(xué)教育中的重要性,各種數(shù)學(xué)思想方法相互作用,相互滲透,共同構(gòu)成了數(shù)學(xué)教學(xué)的理論基礎(chǔ)。
參考文獻(xiàn):
[1]高瑞.淺談當(dāng)前環(huán)境初中數(shù)學(xué)課堂中探究性學(xué)習(xí)探討[J].中國教育.2010.(6)
[2]王薇.初中數(shù)學(xué)課堂中素質(zhì)教育的思考[J].新疆農(nóng)墾經(jīng)濟(jì).2008.(11)
[3]劉玉祥.新形勢下初中數(shù)學(xué)教學(xué)方式發(fā)展[J].內(nèi)蒙古科技與經(jīng)濟(jì).2009.(10)
[4]劉元?jiǎng)?初中數(shù)學(xué)課堂中探究性學(xué)習(xí)方式發(fā)展[J].山東煤炭科技.2009.(8)