• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    層狀釩青銅納米片的制備及其鋰離子電池陽(yáng)極材料性能

    2021-02-26 13:44:32馬錄芳譚超良
    關(guān)鍵詞:電機(jī)工程香港城市大學(xué)化工學(xué)院

    周 戰(zhàn),馬錄芳,譚超良

    (1.洛陽(yáng)師范學(xué)院化學(xué)化工學(xué)院,河南省功能多孔材料重點(diǎn)實(shí)驗(yàn)室,洛陽(yáng)471934;2.香港城市大學(xué)電機(jī)工程系,香港九龍)

    1 Introduction

    Layered two-dimensional(2D)materials,such as graphene,transition metal dichalcogenides and layered metal oxides,have been proven to be promising in a wide range of applications,including electronics,optoelectronics,sensors,energy storage and conversion,biomedicine,etc.,owing to their unique physical,chemical and electronic properties[1—15].Among these 2D materials,layered 2D metal oxides have been widely explored as electrode materials for various rechargeable batteries,especially Li-ion batteries(LIBs)[16—20].Previous study[21]has demonstrated that layered 2D nanosheets normally have large surface area and short diffusion path as compared to other kinds of nanomaterials,making them promising electrode materials for high-performance LIBs.As one of the typical layered metal oxides,2D V2O5nanosheets have been extensively investigated as an electrode material due to its reasonable price and high theoretical specific capacity[22—26].For example,Xuet al.[24]reported the synthesis of 2D V2O5network by an one-step polymer-assisted chemical method and the synthesized V2O5delivered a high capacity(e.g.165 mA·h/g at 3 C)and excellent stability when used as a cathode for LIBs.Wanget al.[25]also reported the preparation of 2D V2O5@C nanosheets used as anode for LIBs,exhibiting a large discharge capacity(e.g.802 mA·h/g at 1 A/g),good cycling perfor?mance and high rate capability.In addition,Zhanget al.[26]reported that liquid-phase exfoliated 2D V2O5nanosheets exhibited a high discharge capacity of 370 mA·h/g at 0.05 C when used as the cathode for LIBs.However,previous reports still suffer from unsatisfied performance or relatively complicated synthetic processes.

    It is known that adjacent layers of layered 2D materials are stacking together through weak van der Waals interactions.Therefore,it is feasible to exfoliate the bulk powders into nanosheets through the exfoliation techniques including mechanical exfoliation,liquid-phase exfoliation,intercalation-assisted liquid exfolia?tion,and so on[27—31].Importantly,the layered structure makes them ideal hosts to be intercalated with various intercalants,such as Li+,Na+,K+,Zn2+,Ca2+,Mg2+,Mn2+,polyaniline,polypyrrole and polythiophene[32—35].More importantly,the intercalation of layered materials by various intercalants can enlarge their interlayer spacing,making them promising in energy storage with enhanced capacity and long-term cycling stability,including LIBs,sodium-ion batteries(SIBs),Zn-ion batteries(ZIBs)and supercapacitors[35—44].For example,Xiaet al.[43]reported that the calcium vanadium oxide bronze can deliver a high capacity(340 mA·h/g at 0.2 C),good rate capability and very long cycling life when used as the cathode material for ZIBs.Genget al.[44]also reported that the interlayer Mn2+-doped layered vanadium oxide(Mn0.15V2O5·nH2O)exhibited enhanced electrochemical performance than that of the V2O5When used as the cathode for ZIBs.

    In this paper,we report the preparation of layered 2D(NH4)2V6O16·H2O nanosheets by simply reacting commercial V2O5nanoparticles with ammonium persulfates in aqueous solution at room temperature.The com?mercial V2O5nanoparticles can be transformed into(NH4)2V6O16·H2O nanosheets with a size of 2—10μm and thickness of 50—250 nm due to the co-intercalation with ammonium ions and water molecules.Importantly,when used as an anode material for LIBs,the(NH4)2V6O16·H2O nanosheets exhibit much enhanced capacity,rate performance and cycling performance in comparison with commercial V2O5nanoparticles.Our study demonstrates that the(NH4)2V6O16·H2O nanosheets can be used as an excellent anode material for LIBs,which may be also promising for other rechargeable batteries,such as SIBs and ZIBs.

    2 Experimental

    2.1 Chemicals

    Vanadium pentoxides(V2O5,99%)and ammonium persulfates(98%)were purchased from Aladdin.Polyvinylidenefluoride(PVDF,99.9%)andN-methyl-2-pyrrolidinone(NMP,A.R.)were obtained from Sigma-Aldrich.Acetylene black was purchased from Lion Corporation(Japan).The lithium ion battery elec?trolyte(LiPF6,1 mol/L),lithium foil,Separator(polypropylene film),and copper foil were obtained from Dongguan Shanshan Battery Materials Co.,Ltd.(China).

    2.2 Synthesis of(NH4)2V6O16·H2O Nanosheets

    The(NH4)2V6O16·H2O nanosheets were synthesized by a facile approach in aqueous solution at room temperature according to the method reported in literature[45].Typically,1.5 g of commercial V2O5powders and 18.3 g of ammonium persulfate[(NH4)2S2O6]were dissolved in 150 mL of DI water.After stirring the dark yellow solution at room temperature for 48 h,the golden-yellow product was collected by centrifuge,washed thoroughly with DI water,and drying at 80°C overnight to obtain the(NH4)2V6O16·H2O nanosheets.

    2.3 Characterization

    The morphology and structure characterization of the samples was performed by a scanning electron mi?croscopy(SEM,Sigma 500)and an H-8100 transmission electron microscopy(TEM).The crystal structure of the samples was analyzed by wide-angle powder X-ray diffraction(XRD,Bruker D8)with CuKαradiation.The valence state of the products was determined by X-ray photoelectron spectroscopy(XPS,EscaLab 250Xi).Thermogravimetric analysis(TGA)was collected on a DTG-60AH instrument from 30°C to 700°C at a heating rate of 5°C/min in the air flow.The Raman spectra were recorded on an Invia Raman spectrometer.

    2.4 Electrochemical Measurements

    The working electrodes are prepared by following procedure.70%(mass fraction)active materials,20%(mass fraction)acetylene black and 10%(mass fraction)PVDF binder were mixed in N-methyl-2-pyrrolidone(NMP)and ground in a mortar to prepare a homogeneous slurry.The resulting slurry was spread on a Cu foil current collector,which was then dried in a vacuum oven at 120 °C for 12 h.After that,the coin-type cells were assembled in an argon-filled glovebox.The Neware CT-3008W was carried out to record the chargedischarge profiles of the electrodes in the potential range of 0.01—3 V at different current rates(0.1,0.4 and 1 A/g).It is worth pointing out that the current rate of 0.1 A/g was used for the first 4 cycles to activate the materials before testing at 1 A/g.A Parstat 4000+workstation(Princeton Applied Research,USA)was used to measure the cyclic voltammetry(CV)curves and electrochemical impedance spectroscopy(EIS).CV curves in the potential range from 0.01 V to 3.0 VversusLi/Li+were measured at a scanning rate of 0.1 mV/s.EIS were measured from 0.01 Hz to 100 kHz with an AC amplitude of 5 mV.

    3 Results and Discussion

    The layered(NH4)2V6O16·H2O nanosheets were synthesized by reacting of commercial V2O5nanoparticles with(NH4)2S2O6in solution at room temperature for 48 h.Note that ammonium ions and water molecules are interacted into the layered V2O5to stable(NH4)2V6O16·H2O compound,thus the compound can be considered as an intercalated compound.The SEM image shows that the commercial V2O5samples are aggregated nanopar?ticles with a size of several hundred nanometers(Fig.S1,see the Supporting Information of this paper).After the reaction,the commercial V2O5nanoparticles are transformed into micro-sized(NH4)2V6O16·H2O nanosheets.As shown in Fig.1(A),the obtained(NH4)2V6O16·H2O nanosheets show a plate-like morpho-logy with a size of 2—10μm.The thickness of the(NH4)2V6O16·H2O nanosheets measured from its atomic force(AFM)height images is ranging from 50 nm to 250 nm[Fig.1(B)and Fig.S2,see the Supporting Information of this paper].The TEM image further confirms the sheet-like morphology of the(NH4)2V6O16·H2O sample with a micrometer lateral size[Fig.1(C)].Moreover,the associated selected area electron diffraction(SAED)pattern reveals the crystalline structure of the(NH4)2V6O16·H2O nanosheets[Fig.1(D)].Both of the samples are then characterized by powder X-ray diffraction(XRD).As shown in Fig.2(A),all the XRD peaks of the commercial V2O5nanoparticles match well with the standard PDF card of V2O5(JCPDS:41-1426),confirming its crystal phase.Note that the diffraction peak located at 15.349° corresponded to the(200)plane of V2O5,indicating the interlayer distance of layered V2O5.After intercalation,the XRD pattern of the obtained nanosheets is assignable to the standard PDF of(NH4)2V6O16·H2O(JCPDS:41-0492),confirming that the obtained nanosheets are(NH4)2V6O16·H2O.It is worth pointing out that the(200)peak of(NH4)2V6O16·H2O shifts to the lower degree(11.200°)as compared to that of the V2O5sample.Such shift can be considered asd-spacing expansion induced by the co-intercalation of ammonium ions and water molecules into layered V2O5.It is worth noting that the obtained(NH4)2V6O16·H2O nanosheets still keep the layered structure,similar to the layered V2O5[45].

    Fig.1 SEM image of the(NH4)2V6O16·H2O nanosheets(A),AFM height image of a typical(NH4)2V6O16·H2O nanosheet(B),TEM image(C)and its corresponding SAED pattern(D)of the(NH4)2V6O16·H2O nanosheets

    Fig.2 XRD patterns(A),Raman spectra(B),FTIR spectra(C)and TGA curves(D)of the commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets

    The commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets were further characterized by Raman spectroscopy[Fig.2(B)].The Raman spectrum of the commercial V2O5nanoparticles shows its charac?teristic peaks at 146,198,286,404,706 and 994 cm—1,which are corresponded to the OA—V—OBbond bending vibration modeB3g,the OA—V—OBbond bending vibration modeAg,V—OCbond bending vibration modeB2g,V—OB—V bond bending vibration modeAg,V—OCbond stretching vibration modeB2gand V—OAbond stretching vibration modeAg,respectively[46].The Raman spectrum of(NH4)2V6O16·H2O nanosheets shows similar peaks as the V2O5,but with more peaks at low frequency region,which might be originated from the vibration of NH4+in the(NH4)2V6O16·H2O nanosheets.

    To further confirm the intercalation of ammonium ions and water molecules,the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets were characterized by Fourier transform infrared(FTIR)spectroscopy.As displayed in Fig.2(C),the FTIR spectrum of(NH4)2V6O16·H2O nanosheets exhibits a few additional peaks as compared to that of the commercial V2O5nanoparticles.The two bands at 735 and 527 cm—1are assignable to the asymmetric and symmetric stretching vibrations of V—O—V bonds[47].The peaks at 1006 and 969 cm—1are attributed to the stretching vibration of V4+=O and V5+=O groups,corresponding to the distorted VO6octahedra and VO5square pyramids,respectively[47].The peaks at around 3230 and 1407 cm—1are assigned to the asymmetric stretching vibration and symmetric bending of N—H bonds,indicating the presence of NH4+ions.FTIR results demonstrate the existence of NH4+in the framework of the as-synthesized(NH4)2V6O16·H2O nanosheets.X-Ray photoelectron spectroscopy(XPS)measurements were performed to characterize the electronic state of commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets.As shown in Fig.S3(A)(see the Supporting Information of this paper),the XPS survey spectrum of the(NH4)2V6O16·H2O nanosheets shows same peaks except an additional N1speak,which is further evident by the high-resolution XPS N1sspectra[Fig.S3(B),see the Supporting Information of this paper].The additional N1ssignal in the(NH4)2V6O16·H2O nanosheets can be attributed to NH4+.Both the XPS V2pand O1sspectra of the(NH4)2V6O16·H2O nanosheets are almost the same as compared to that of commercial V2O5nanoparticles,suggesting that the intercalation of ammonium ions and water molecules does not change the electronic structure of the oxide.In addition,thermogravimetric analysis(TGA)was performed in air atmosphere to investigate the two samples.As the temperature increases from 30 to 700 °C,the commercial V2O5powder remains stable over the entire temperature range[Fig.2(D)].While the(NH4)2V6O16·H2O nanosheets were found to lose weight suddenly byca.11.7% around 270—330 °C[Fig.2(D)].The weight change could be attributed to the thermal decomposition of NH4+and lose of water molecules,which is close to calculated weigh percentage of interacted NH4+and H2O(11.4%).All the aforementioned analysis suggests the preparation of(NH4)2V6O16·H2O nanosheets by co-intercalation of commercial V2O5nanoparticles with NH4+and H2O.

    2D V2O5nanosheets have been widely used as electrodes in various rechargeable batteries,specially LIBs[48,49].Therefore,the electrochemical lithium-ion storage properties of the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets as anode materials for LIBs are evaluated in detail.Fig.3(A)presents the CV curves of the two electrodes at a scan rate of 0.1 mV/s in a voltage range from 0.01 V to 3.0 V.Two pairs of redox peaks of(NH4)2V6O16·H2O nanosheets located at 2.40/1.98 V and 1.23/0.72 V can be identified,which indicate the reversible intercalation process of Li+and the phase transformation during cycling.In con?trast,the potential gap of redox peaks of the commercial V2O5electrode is worse than(NH4)2V6O16·H2O nanosheets in the first CV since the larger activation polarization for(NH4)2V6O16·H2O nanosheets.In addi?tion,the first five charge and discharge voltage curves of the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets at a current density of 0.1,0.4,and 1 A/g are shown in Fig.3(B,C)and Fig.S4(see the Supporting Information of this paper)respectively.It can be observed that both of them have the multiple dis?charge/charge voltage plateaus,corresponding to different redox reactions related to Li+insertion/extraction.The(NH4)2V6O16·H2O nanosheets exhibit higher capacity in comparison with that of the bulk commercial V2O5nanoparticles.Thereafter,the rate performance of the 2D(NH4)2V6O16·H2O nanosheets was investigated.Fig.3(D)clearly shows that the(NH4)2V6O16·H2O nanosheets has an excellent rate capability.The(NH4)2V6O16·H2O nanosheets delivers the discharge capacities of 1070 mA·h/g when the current density is 0.1 A/g.Even at the high current densities of 1.0 A/g,the discharge capacity remains approximately 355 mA·h/g.By comparison,the capacities of commercial V2O5is much less than that of(NH4)2V6O16·H2O nanosheets,especially at low current densities[Fig.3(D)].For example,the commercial V2O5delivers charge/discharge capacities of 584 and 316 mA·h/g at the current densities of 0.1 and 1 A/g,respectively.

    Fig.3 CV curves of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets(A),Galvanostatic charge?discharge profiles of commercial V2O5 nanoparticles(B)and(NH4)2V6O16·H2O nanosheets(C)for the first five cycles at 0.1 A/g,rate capabilities of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets at varying current rates(D)

    The cycling performance of commercial V2O5and(NH4)2V6O16·H2O nanosheets were also investigated at different current densities of 0.1,0.4 and 1 A/g in a voltage range of 0.01—3 V.The capacity was calculated based on the mass of electrode materials.As shown in Fig.4(A)—(C),the(NH4)2V6O16·H2O nanosheets exhibited excellent cycle capacity retention.At a current density of 0.1 Ah/g,(NH4)2V6O16·H2O nanosheets delivers an average capacity of 1002 mA·h/g at the end of 70 cycles[Fig.4(A)],while the commercial V2O5nanoparticles gave an inferior capacity only around 349 mA·h/g at the same cycles.Although the discharge capacity of(NH4)2V6O16·H2O nanosheets decreased from 522 mA·h/g for the first cycle to 334 mA·h/g for the 50th cycle at 0.4 A/g due to the slow lithium ion diffusion and high charge-discharge resistance,its performance was surprisingly increased to 742 mA·h/g for the 450th cycle because the lithium intercalation and deintercalation during the cycling process could activate the materials to provide more active sties for lithi?um storage[Fig.4(B)].For the comparison,the commercial V2O5nanoparticles also presented good cycling performance at 0.4 A/g during the whole 450 cycles but with a much lower capacity.At the high current densi?ties of 1.0 A/g,the discharge capacity of(NH4)2V6O16·H2O nanosheets remains approximately 390 mA·h/g at the 450th cycle,while the commercial V2O5nanoparticles displayed lower discharge capacity(221 mA·h/g at the 450th cycle)than that of(NH4)2V6O16·H2O nanosheets[Fig.4(C)].All the aforementioned results suggest that the(NH4)2V6O16·H2O nanosheets have excellent cycling performance when used as a LIB electrode.

    Fig.4 Cycling performance of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets at 0.1 A/g(A),0.4 A/g(B)and 1 A/g(C),nyquist-diagram of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets(Inset is the equivalent circuit diagram)(D)

    EIS measurements were performed to reveal different electrochemical behaviors between the commercial V2O5and the(NH4)2V6O16·H2O nanosheets[Fig.4(D)].The Nyquist plots of the commercial V2O5and(NH4)2V6O16·H2O nanosheets are composed of the intercept at Z′-axis at the high frequency region,a semicir?cle in high to medium frequency regions and an inclined line in low frequency regions,corresponding to the re?sistance of electrolyte and cell components(Rs)and the charge transfer resistance(Rct).As listed in Table S1(see the Supporting Information of this paper),the value ofRctfor the(NH4)2V6O16·H2O nanosheets was 299.95Ω,which was significantly lower than that of the commercial V2O5counterpart(878.6Ω).This reduc?tion in charge transfer resistance results from the unique mesoporous nanosheet structure with larger surface area,which can shorten the pathways for Li+ion diffusion,thus leads to a higher rate capability.Based on the aforementioned results,we believed that the enhanced LIB performance of the(NH4)2V6O16·H2O nanosheets could be attributed to the following two reasons:(1)The 2D nanosheet structure endows the(NH4)2V6O16·H2O with faster transfer path for both lithium ions and electrons as compared to the commercial V2O5;(2)The expanded interlayer distance of the(NH4)2V6O16·H2O induced by co-intercalation of NH4+and H2O makes Li ions easier diffusion during the charge and discharge processes and more space for Li ion storages.

    4 Conclusions

    We have reported the preparation of layered 2D layered(NH4)2V6O16·H2O nanosheets by co-intercalation of NH4+and H2O into commercial V2O5nanoparticles.The ultrathin layered nanosheet structure provides short Li+diffusion pathways,large exposed surface and high electronic/ionic conductivity.Therefore,when used as anode material for LIBs,the as-synthesized(NH4)2V6O16·H2O nanosheets exhibited excellent electrochemical performances.Importantly,the discharge capacity is 390 mA·h/g under a current density as high as 1 A/g af?ter 450 cycles.We have demonstrated that the(NH4)2V6O16·H2O nanosheets can be a promising anode for LIBs.It is believed that this intercalated(NH4)2V6O16·H2O nanosheets could be also a promising electrode ma?terial in other rechargeable batteries,such as SIBs and ZIBs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200609.

    This work is supported by the Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province,China(No.204200510001),and the Funding Support from the Start-Up Grant from City University of Hong Kong,China(No.9610495).

    猜你喜歡
    電機(jī)工程香港城市大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    香港城市大學(xué)“重探索、求創(chuàng)新”課程教學(xué)改革的路徑探索與啟示
    廣西師大社與香港城市大學(xué)出版社達(dá)成戰(zhàn)略合作
    出版人(2017年8期)2017-08-16 11:05:27
    香港城市大學(xué)今年擬在內(nèi)地招生211名
    高校招生(2017年1期)2017-06-30 08:38:38
    《化工學(xué)報(bào)》贊助單位
    名校校訓(xùn)
    中國(guó)電機(jī)工程學(xué)會(huì)第十屆理事會(huì)第二次理事長(zhǎng)會(huì)議召開(kāi)
    《江蘇電機(jī)工程》2014年總目次
    a在线观看视频网站| 男人舔女人的私密视频| 十八禁网站免费在线| 免费在线观看视频国产中文字幕亚洲| 国产亚洲欧美精品永久| 麻豆国产av国片精品| 亚洲成人精品中文字幕电影 | 亚洲第一欧美日韩一区二区三区| 欧美成人性av电影在线观看| 香蕉久久夜色| 亚洲av第一区精品v没综合| 一区二区三区激情视频| 国产精品久久久久成人av| 欧美大码av| 欧美日韩乱码在线| 欧美激情 高清一区二区三区| 一级a爱视频在线免费观看| 黄片播放在线免费| 熟女少妇亚洲综合色aaa.| 日韩高清综合在线| 亚洲伊人色综图| av网站在线播放免费| 一个人观看的视频www高清免费观看 | 午夜成年电影在线免费观看| 啪啪无遮挡十八禁网站| 女性生殖器流出的白浆| 韩国精品一区二区三区| 又黄又爽又免费观看的视频| av网站免费在线观看视频| 午夜免费观看网址| 国产av在哪里看| 曰老女人黄片| 国产激情欧美一区二区| 久热这里只有精品99| 亚洲五月色婷婷综合| 国产精品免费视频内射| 色尼玛亚洲综合影院| 男人操女人黄网站| а√天堂www在线а√下载| 亚洲,欧美精品.| 婷婷精品国产亚洲av在线| 一二三四在线观看免费中文在| 日韩大尺度精品在线看网址 | 黄片大片在线免费观看| 一夜夜www| 精品人妻1区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲午夜理论影院| 日日爽夜夜爽网站| 后天国语完整版免费观看| 天堂中文最新版在线下载| 久久精品国产亚洲av香蕉五月| 国产又爽黄色视频| 亚洲精品一区av在线观看| 亚洲国产欧美日韩在线播放| 精品久久久精品久久久| 人人妻人人添人人爽欧美一区卜| 9色porny在线观看| 正在播放国产对白刺激| 午夜免费激情av| 80岁老熟妇乱子伦牲交| 热99国产精品久久久久久7| www.熟女人妻精品国产| 极品人妻少妇av视频| 日韩高清综合在线| 国产精品爽爽va在线观看网站 | 91麻豆精品激情在线观看国产 | 久久久久国内视频| 一区二区日韩欧美中文字幕| 50天的宝宝边吃奶边哭怎么回事| 老司机午夜福利在线观看视频| 日本vs欧美在线观看视频| www.999成人在线观看| 日韩成人在线观看一区二区三区| 成人av一区二区三区在线看| 一二三四在线观看免费中文在| 欧美乱色亚洲激情| 看黄色毛片网站| 精品国内亚洲2022精品成人| 一级片'在线观看视频| 久久天躁狠狠躁夜夜2o2o| 69av精品久久久久久| 久久精品aⅴ一区二区三区四区| 女人被躁到高潮嗷嗷叫费观| 国产精品国产高清国产av| 精品高清国产在线一区| 国产aⅴ精品一区二区三区波| 最新在线观看一区二区三区| 91国产中文字幕| 久久久久久久精品吃奶| av有码第一页| 亚洲av美国av| 99re在线观看精品视频| 韩国精品一区二区三区| 丰满饥渴人妻一区二区三| 又黄又爽又免费观看的视频| 亚洲国产欧美网| 亚洲 欧美一区二区三区| 夫妻午夜视频| 久久久国产成人精品二区 | 午夜激情av网站| 久久精品亚洲熟妇少妇任你| 一级毛片女人18水好多| 精品午夜福利视频在线观看一区| 成年女人毛片免费观看观看9| 少妇的丰满在线观看| 午夜免费激情av| 欧美激情高清一区二区三区| 99热只有精品国产| 18禁国产床啪视频网站| 在线免费观看的www视频| 欧美黄色片欧美黄色片| 国产高清激情床上av| 日韩欧美一区二区三区在线观看| 在线观看免费视频网站a站| 国产精品香港三级国产av潘金莲| 久久久久亚洲av毛片大全| 黄色a级毛片大全视频| 中文字幕色久视频| 免费在线观看黄色视频的| 很黄的视频免费| 精品无人区乱码1区二区| 免费在线观看亚洲国产| 性少妇av在线| 99香蕉大伊视频| 国产成人一区二区三区免费视频网站| 欧美丝袜亚洲另类 | 国产黄a三级三级三级人| 悠悠久久av| 欧美精品亚洲一区二区| 777久久人妻少妇嫩草av网站| 国产精品一区二区精品视频观看| 女性被躁到高潮视频| 精品高清国产在线一区| 一级毛片精品| 一级片'在线观看视频| 99香蕉大伊视频| 国产精品秋霞免费鲁丝片| www.熟女人妻精品国产| 丝袜人妻中文字幕| 电影成人av| 交换朋友夫妻互换小说| 久久精品国产亚洲av高清一级| 国产一区二区三区在线臀色熟女 | 中出人妻视频一区二区| 狂野欧美激情性xxxx| 国产亚洲欧美98| 色婷婷av一区二区三区视频| 视频区图区小说| 三级毛片av免费| 久久久精品国产亚洲av高清涩受| 视频区图区小说| 三级毛片av免费| 精品无人区乱码1区二区| 黄色片一级片一级黄色片| 人人妻人人澡人人看| 女警被强在线播放| 在线观看免费午夜福利视频| 日本vs欧美在线观看视频| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区精品| 一级作爱视频免费观看| 欧美人与性动交α欧美精品济南到| 精品免费久久久久久久清纯| 成在线人永久免费视频| 精品国产乱码久久久久久男人| 亚洲五月天丁香| 欧美日韩一级在线毛片| 免费在线观看黄色视频的| av福利片在线| 操美女的视频在线观看| 一级片'在线观看视频| 久久人妻av系列| 日本三级黄在线观看| 欧美日韩福利视频一区二区| 麻豆av在线久日| 18禁裸乳无遮挡免费网站照片 | 成年女人毛片免费观看观看9| 亚洲欧美精品综合久久99| 制服人妻中文乱码| 黄片播放在线免费| 国产1区2区3区精品| 亚洲国产精品合色在线| 久热爱精品视频在线9| 亚洲精品中文字幕在线视频| 精品高清国产在线一区| 亚洲 欧美一区二区三区| 色播在线永久视频| 激情在线观看视频在线高清| 免费一级毛片在线播放高清视频 | 成年女人毛片免费观看观看9| 国产精品 欧美亚洲| 免费在线观看日本一区| 国产成+人综合+亚洲专区| 变态另类成人亚洲欧美熟女 | 黄网站色视频无遮挡免费观看| 又紧又爽又黄一区二区| 国产乱人伦免费视频| 精品国产亚洲在线| 成年版毛片免费区| 97人妻天天添夜夜摸| 亚洲 欧美 日韩 在线 免费| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人色综图| 在线观看一区二区三区| 18禁国产床啪视频网站| 成年人免费黄色播放视频| 久久精品人人爽人人爽视色| 男女下面插进去视频免费观看| 大香蕉久久成人网| 美女 人体艺术 gogo| 久久青草综合色| 可以在线观看毛片的网站| 黑人操中国人逼视频| 欧美日韩瑟瑟在线播放| 久久香蕉精品热| 午夜精品国产一区二区电影| 欧美日本亚洲视频在线播放| 午夜a级毛片| 一进一出好大好爽视频| 国产一区二区激情短视频| 国内毛片毛片毛片毛片毛片| 欧美在线一区亚洲| 香蕉国产在线看| 两人在一起打扑克的视频| 亚洲精品国产一区二区精华液| 在线播放国产精品三级| 中文字幕av电影在线播放| 美女国产高潮福利片在线看| 日韩欧美国产一区二区入口| 国产精品久久久人人做人人爽| 男人舔女人下体高潮全视频| 久久精品国产清高在天天线| 亚洲狠狠婷婷综合久久图片| 又大又爽又粗| 少妇的丰满在线观看| 欧美大码av| 亚洲专区字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩亚洲高清精品| 日韩精品免费视频一区二区三区| 色综合站精品国产| 波多野结衣一区麻豆| x7x7x7水蜜桃| 精品熟女少妇八av免费久了| 操美女的视频在线观看| 久久草成人影院| 久久久久久久久中文| 天堂俺去俺来也www色官网| 在线观看一区二区三区| 成在线人永久免费视频| 亚洲av电影在线进入| 日韩人妻精品一区2区三区| 精品熟女少妇八av免费久了| 免费在线观看亚洲国产| 久久久国产一区二区| 香蕉久久夜色| 超碰97精品在线观看| 亚洲国产看品久久| 十八禁网站免费在线| 女人高潮潮喷娇喘18禁视频| 久久精品aⅴ一区二区三区四区| 国产免费现黄频在线看| 如日韩欧美国产精品一区二区三区| 欧美丝袜亚洲另类 | 麻豆国产av国片精品| 午夜久久久在线观看| 亚洲精品在线美女| 日韩视频一区二区在线观看| 精品久久久久久电影网| 精品久久久久久成人av| 一区二区三区国产精品乱码| 亚洲专区字幕在线| 久久婷婷成人综合色麻豆| av在线播放免费不卡| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 国产成人av教育| av天堂久久9| 国产免费av片在线观看野外av| 亚洲美女黄片视频| 久久久水蜜桃国产精品网| av超薄肉色丝袜交足视频| 午夜精品久久久久久毛片777| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 黄色女人牲交| 狠狠狠狠99中文字幕| 久久这里只有精品19| 成人18禁在线播放| 搡老熟女国产l中国老女人| 超碰97精品在线观看| 另类亚洲欧美激情| 在线观看午夜福利视频| 91大片在线观看| 在线观看免费视频日本深夜| 一a级毛片在线观看| videosex国产| tocl精华| 丰满迷人的少妇在线观看| 午夜两性在线视频| 免费av毛片视频| 一夜夜www| 两人在一起打扑克的视频| 久久久久久亚洲精品国产蜜桃av| 黑人欧美特级aaaaaa片| 欧美国产精品va在线观看不卡| 日韩精品青青久久久久久| 亚洲久久久国产精品| 男人舔女人下体高潮全视频| 在线永久观看黄色视频| 免费人成视频x8x8入口观看| 老司机午夜福利在线观看视频| 水蜜桃什么品种好| 久久久久亚洲av毛片大全| 色综合站精品国产| 免费在线观看黄色视频的| 日韩大尺度精品在线看网址 | 国产精品一区二区在线不卡| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 国产成人欧美| 好男人电影高清在线观看| 久久精品国产亚洲av香蕉五月| 免费高清视频大片| 欧美精品一区二区免费开放| 黄色a级毛片大全视频| 国产欧美日韩一区二区三区在线| 99热只有精品国产| 日韩人妻精品一区2区三区| 中文字幕色久视频| 91九色精品人成在线观看| 嫩草影视91久久| 国产午夜精品久久久久久| 高清毛片免费观看视频网站 | 午夜福利影视在线免费观看| 99久久久亚洲精品蜜臀av| 国产成年人精品一区二区 | 咕卡用的链子| 男女午夜视频在线观看| 久久久久久大精品| 麻豆国产av国片精品| 亚洲情色 制服丝袜| 亚洲精品成人av观看孕妇| 国产精品香港三级国产av潘金莲| 国产有黄有色有爽视频| x7x7x7水蜜桃| 男男h啪啪无遮挡| ponron亚洲| 亚洲精品国产精品久久久不卡| 香蕉国产在线看| 亚洲情色 制服丝袜| 午夜两性在线视频| 一进一出好大好爽视频| 最近最新免费中文字幕在线| 成人亚洲精品av一区二区 | 国产精品九九99| 国产极品粉嫩免费观看在线| 丁香六月欧美| 黑人巨大精品欧美一区二区mp4| 精品国产美女av久久久久小说| 国产色视频综合| 久久 成人 亚洲| 亚洲美女黄片视频| 视频区欧美日本亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区av网在线观看| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 真人一进一出gif抽搐免费| 亚洲av片天天在线观看| 日本欧美视频一区| 久久久久久久久久久久大奶| 高清在线国产一区| 麻豆久久精品国产亚洲av | 搡老乐熟女国产| 大型黄色视频在线免费观看| 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| 亚洲国产欧美网| ponron亚洲| 亚洲精品粉嫩美女一区| 日本一区二区免费在线视频| 美国免费a级毛片| 日韩欧美一区视频在线观看| 午夜精品在线福利| 亚洲国产欧美网| 国产xxxxx性猛交| 一个人观看的视频www高清免费观看 | 中国美女看黄片| xxxhd国产人妻xxx| av中文乱码字幕在线| 国产av精品麻豆| 国产成人一区二区三区免费视频网站| 国产精品永久免费网站| 亚洲精品成人av观看孕妇| 成年人免费黄色播放视频| 免费在线观看亚洲国产| 欧美日韩精品网址| 国产av在哪里看| 日日干狠狠操夜夜爽| 女人精品久久久久毛片| 超碰成人久久| 国产高清激情床上av| 成人手机av| 国产成人精品久久二区二区免费| 日韩成人在线观看一区二区三区| 大型av网站在线播放| 最新美女视频免费是黄的| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 真人一进一出gif抽搐免费| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 黄片大片在线免费观看| 亚洲精品久久午夜乱码| 波多野结衣高清无吗| 欧美日韩乱码在线| 午夜成年电影在线免费观看| 亚洲欧美激情在线| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器 | 日韩免费高清中文字幕av| 精品国产一区二区三区四区第35| 一级,二级,三级黄色视频| 淫妇啪啪啪对白视频| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 黑人猛操日本美女一级片| 国产一区二区三区视频了| 三上悠亚av全集在线观看| 天堂动漫精品| 99久久精品国产亚洲精品| 老汉色∧v一级毛片| 啪啪无遮挡十八禁网站| 精品高清国产在线一区| 天天躁狠狠躁夜夜躁狠狠躁| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 交换朋友夫妻互换小说| 亚洲色图综合在线观看| 日韩精品青青久久久久久| 欧美激情极品国产一区二区三区| 国产色视频综合| 亚洲av成人一区二区三| 纯流量卡能插随身wifi吗| 亚洲九九香蕉| xxx96com| 国产精品综合久久久久久久免费 | 1024香蕉在线观看| 99精国产麻豆久久婷婷| 91大片在线观看| 丁香欧美五月| 久99久视频精品免费| 老司机亚洲免费影院| 亚洲久久久国产精品| 女人被狂操c到高潮| 欧美日韩黄片免| 在线看a的网站| 亚洲欧美日韩高清在线视频| 无遮挡黄片免费观看| 成年人黄色毛片网站| 色老头精品视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 女人被躁到高潮嗷嗷叫费观| cao死你这个sao货| 啦啦啦在线免费观看视频4| 亚洲成人精品中文字幕电影 | 亚洲avbb在线观看| 精品电影一区二区在线| 中国美女看黄片| 看片在线看免费视频| 午夜a级毛片| 热99re8久久精品国产| 精品福利观看| 久久久久久久午夜电影 | 午夜影院日韩av| 亚洲五月婷婷丁香| 超碰成人久久| 成年人免费黄色播放视频| 午夜久久久在线观看| 亚洲av成人不卡在线观看播放网| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 久久中文看片网| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区蜜桃| 麻豆av在线久日| 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 一区福利在线观看| 国产成人一区二区三区免费视频网站| 久热爱精品视频在线9| 国产av精品麻豆| 黄片播放在线免费| 欧美在线黄色| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 黑丝袜美女国产一区| 久久影院123| 国产成人系列免费观看| 午夜精品久久久久久毛片777| 欧美日韩av久久| 久久中文字幕人妻熟女| 夜夜躁狠狠躁天天躁| 国产不卡一卡二| 国产麻豆69| 丰满饥渴人妻一区二区三| 国产伦人伦偷精品视频| 91精品国产国语对白视频| 亚洲成人国产一区在线观看| 亚洲avbb在线观看| 无遮挡黄片免费观看| 久久这里只有精品19| 亚洲专区中文字幕在线| 免费看十八禁软件| 老司机深夜福利视频在线观看| 美女高潮到喷水免费观看| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 午夜老司机福利片| 国产精品综合久久久久久久免费 | 国产高清激情床上av| 夜夜夜夜夜久久久久| 亚洲成人久久性| 亚洲人成电影观看| 欧美日韩精品网址| 男女下面插进去视频免费观看| 精品久久久精品久久久| 成人亚洲精品一区在线观看| 脱女人内裤的视频| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 99久久人妻综合| 一区在线观看完整版| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 麻豆一二三区av精品| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| 亚洲片人在线观看| 校园春色视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 国产精品偷伦视频观看了| 国产精品免费视频内射| 日韩av在线大香蕉| 超碰成人久久| 久久人妻福利社区极品人妻图片| 色播在线永久视频| 久久久久久大精品| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 黄色毛片三级朝国网站| 国产一区二区激情短视频| av国产精品久久久久影院| 99热只有精品国产| 亚洲欧洲精品一区二区精品久久久| 久久狼人影院| 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| e午夜精品久久久久久久| 乱人伦中国视频| x7x7x7水蜜桃| 麻豆久久精品国产亚洲av | 黄色怎么调成土黄色| 美女高潮喷水抽搐中文字幕| 免费观看精品视频网站| 99在线人妻在线中文字幕| 美女福利国产在线| 色综合站精品国产| 热re99久久国产66热| 成人免费观看视频高清| 国产1区2区3区精品| av有码第一页| 男男h啪啪无遮挡| 国产成人精品在线电影| 精品国产国语对白av| 国产精品自产拍在线观看55亚洲| 黑人操中国人逼视频| 欧美日韩亚洲综合一区二区三区_| 韩国av一区二区三区四区| 午夜福利免费观看在线| 亚洲国产欧美网| 91成年电影在线观看| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 老司机深夜福利视频在线观看| 国产一区二区三区在线臀色熟女 | 免费在线观看影片大全网站| 丝袜人妻中文字幕| 一级黄色大片毛片| 国产精品自产拍在线观看55亚洲| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 久久热在线av| 99国产精品免费福利视频| 一级毛片女人18水好多| 国产黄a三级三级三级人| 一级毛片精品| 女性生殖器流出的白浆| 91在线观看av| 一夜夜www| 一级a爱视频在线免费观看| 久久久久九九精品影院| 久久婷婷成人综合色麻豆| 国产精品美女特级片免费视频播放器 | 国产免费av片在线观看野外av| 正在播放国产对白刺激|