• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computing Numerical Singular Points of Plane Algebraic Curves?

    2012-12-27 07:06:14LUOZHONGXUANFENGERBAOANDHUWENYU

    LUO ZHONG-XUAN,FENG ER-BAOAND HU WEN-YU

    (1.School of Mathematical Sciences,Dalian University of Technology,

    Dalian,Liaoning,116024)

    (2.School of Software,Dalian University of Technology,Dalian, Liaoning,116620)

    Computing Numerical Singular Points of Plane Algebraic Curves?

    LUO ZHONG-XUAN1,2,FENG ER-BAO1AND HU WEN-YU1

    (1.School of Mathematical Sciences,Dalian University of Technology,

    Dalian,Liaoning,116024)

    (2.School of Software,Dalian University of Technology,Dalian, Liaoning,116620)

    Given an irreducible plane algebraic curve of degree d≥3,we compute its numerical singular points,determine their multiplicities,and count the number of distinct tangents at each to decide whether the singular points are ordinary.The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision.It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out.Without using multiprecision arithmetic,extensive numerical experiments show that our numerical procedures are accurate,efficient and robust,even if the coefficients of plane algebraic curves are inexact.

    numerical singular point,multiplicity,ordinary,homotopy continuation

    1 Introduction

    Singular points and their related properties play an important role in the theory of plane algebraic curves(see[1–2]),such as the computation of the genus of an algebraic curve. Practically,singular points present some shape features,such as nodes,self-intersections or cusps of real curves arising from computer aided geometry design,robot motion planning and machine vision.And computing singular points helps to determine the geometric shape and topology of the real curves.

    Some of the existing research in CAGD on computing singular points considers rational parametric curves.The computation of singular points of a rational parametric curve is studied in[3].Chenet al.[3]surveyed other methods brie fl y therein.

    Singular points of the plane algebraic curve f(x,y)=0 can be computed by solving the polynomial system

    where fx(x,y)and fy(x,y)are the partial derivatives of f(x,y)with respect to x and y respectively.Most of the existing methods in[4–8]solved this polynomial system either by resultant computation,which required the exact input of coefficients of algebraic curves,or by the Grbner basis method described in[9].For singular points of high multiplicity or algebraic curves with complex structures,the resultants may become difficult to compute. Furthermore,coefficients of algebraic curves obtained by fi tting or interpolating the experimental data can seldom be exact.On the other hand,the reliance on symbolic manipulation of the Grbner basis method makes the induced method seem somewhat limited to relatively small problem.

    An algorithm can determine singular points of algebraic curves with rational coefficients, compute their multiplicities and count the number of distinct tangents at each using polynomial procedures(substitutions,resultants,greatest common divisors,etc.)in[10].However, this algorithm gave only a real isolating interval or an isolating rectangle in the complex plane where every singular point lies,and no exact coordinates for every singular point.

    For locating the singular points,Bajajet al.[11]pointed out that a problem for their tracing curves algorithm is how to determine the singular points accurately.Our numerical procedures including the application of homotopy continuation method,provide the singular points quickly and accurately.

    In this article,we compute the singular points indirectly by homotopy continuation method(see[12]),which is an efficient and reliable numerical algorithm for approximating all isolated zeros of polynomial systems.different from[11]which solves the intersections of (1.1)using the Newton iteration,the homotopy continuation method provides all the isolated solutions of the polynomial systems globally.As we obtain the numerical solutions of the polynomial systems,we say numerical singular points corresponding to the singular points with exact coordinates obtained by resultant computations or the Grbner basis method.

    Singular points at in fi nity are computed by solving a univariate polynomial.It is different from the methods given in[5–6],as they all homogenized plane algebraic curves to the projective plane algebraic curves and solved other two overdetermined polynomial systems similar to(1.1)for computing singular points at in fi nity.

    After all the numerical singular points are obtained,we calculate their multiplicities by examining derivatives of f(x,y).The singular point is non-ordinary if there are multiple roots of the corresponding univariate polynomial.Recently,a reliable method that calculates multiple roots of the univariate polynomials accurately by using standard machine precision was developed by Zeng[13].With the aid of this method,singular points at in fi nity and the related properties of all the singular points can be determined accurately.

    In the next section we recall some preliminaries about the algebraic curves and singular points.Section 3 is devoted to how to obtain the solutions of an overdetermined system from a related square system.Remarks for the e ff ect of tiny perturbations on the singular points and their related properties are provided.We also give detailed steps and some numerical issues regarding the computation of singular points,their multiplicities and characters. Section 4 presents the numerical results.We conclude the paper with a remark about the computation of the genus of algebraic curves and the efficiency of our numerical procedures in Section 5.

    2 Preliminaries

    For the convenience of readers,we review some preliminaries about algebraic curves and singular points first(see[2,6]).Let C be an irreducible plane algebraic curve with equation f(x,y)=0.Sometimes we use f(x,y)=0 to represent“an irreducible plane algebraic curve with equation f(x,y)=0”.Let P be a point of f(x,y)=0.

    If all derivatives of f(x,y)up to and including the(r?1)-th vanish at P,but at least one r-th derivative does not vanish at P,then P is said to be a point of f(x,y)=0 of multiplicity r.

    Let the tangents of f(x,y)=0 at P=(a,b)be(x(t),y(t))=(a+λt,b+μt).The tangents to f(x,y)=0 at P of multiplicity r are determined by the ratio λ:μand correspond to the roots of

    and are counted with multiplicities equal to the multiplicities of the corresponding roots of this equation(see[2]).

    A point of multiplicity two or more is said to be singular,and especially,the point of multiplicity two is called a double point.It is evident that a necessary and sufficient condition that a point(a,b)is singular is that

    A point P of multiplicity r is ordinary if the r tangents at the point P are distinct. Otherwise P is called non-ordinary.The property of the singular point P of being ordinary or non-ordinary is called the character of P.

    By a non-singular curve we mean a curve with no singular points.

    We denote f(x,y)in the form

    where fk(x,y),0≤k≤d,is a homogeneous polynomial of degree k,fd(x,y)is nonzero and d is called the degree of the plane algebraic curve f(x,y)=0.

    Associated with f(x,y)there exists a homogeneous polynomial F(x,y,z)of degree d, the homogenization of f(x,y),

    The projective plane algebraic curve D corresponding to C is de fi ned as the set

    where P2denotes the projective plane.

    Every point(a,b)on C corresponds to a point(a,b,1)on D.Every additional point (a,b,0)on D is a point at in fi nity.In other words,the first two coordinates of points at in fi nity are the nontrivial solutions of fd(x,y).So the curve f(x,y)=0 has only finitely many points at in fi nity.We call the points of f(x,y)=0 affine points.

    In terms of projective coordinate,the criteria for singular points can be put in a more convenience form.

    Proposition 2.1[2]The multiplicity of a pointQofF(x,y,z)=0isrif and only if all the(r?1)-th derivatives ofF(x,y,z),but not all ther-th derivatives,vanish atQ.

    As a corollary of this proposition we see that a point Q of F(x,y,z)=0 is singular if and only if

    3 Numerical Procedures and Issues

    3.1 Solving the Overdetermined Polynomial Systems

    The following proposition shows how to reduce an overdetermined polynomial system to a square system that most of the papers and softwares on continuation method deal with.All the solutions of an overdetermined system appear among the solutions of the corresponding square system,but the converse is not true.

    Let n and N be the number of equations and unknown respectively,and n>N.

    Proposition 3.1[14?15]There are nonempty Zariski open dense sets of parametersλi,j∈CN(n?N)orλi,j∈RN(n?N)such that every isolated solution of

    This is just a part of the original proposition and the rest presents the relation between the k≥1 dimensional solution components of the above two systems,however,a theorem in [2]about singular points is that if an irreducible algebraic curve of degree d has multiplicities riat points Pi,then

    This inequality implies that an irreducible algebraic curve has only finitely many singular points,so the singular point is isolated and the Proposition 3.1 is enough for our demands.

    Another technique to deal with the overdetermined polynomial system is to introduce the slack variables.For example,denote X=(x1,x2,x3)and let us consider f(X)= (f1(X),···,f5(X))=0 consisting of fi ve equations in three variables.This technique introduces two new variables y1and y2(so called slack variables)and adds random multiples of these variables to every equation:

    The former technique is more attractive for our problem,because fewer equations are left and the dimension of working space is smaller.These two advantages make it more e ff ective than adding the slack variables when solving polynomial systems by homotopy continuation method.

    3.2 Remarks for the E ff ect of Tiny Perturbations on the Singular Points

    The singular points of algebraic curves are unstable with respect to random perturbations, in other words,tiny perturbations might destroy singular points and their related properties (see[16]).

    If we perturb x3?y2=0 with double non-ordinarysingular point(0,0)to x3?y2+?x2=0 where ?>0 and is sufficiently small,the singular point is double ordinary singular point (0,0).

    The traditional symbolic manipulation may not give the satisfying results for the perturbed algebraic curve.When we give a perturbation 1/1000000 to a monomial coefficient of the algebraic curve with six singular points in Example 4.1 of this paper,the symbolic computation software,Maple,computes only one point by its command“singularities”.

    3.3 Computing the Numerical Singular Points,Their Multiplicities and Characters

    Given an irreducible plane algebraic curve f(x,y)=0,let its form and homogenous form be as(2.1)and(2.2)respectively,and d be its degree.The numerical procedures to compute the numerical singular points,their multiplicities and characters are as follows.

    Step 1.Randomization

    By Proposition 3.1,choosing the random complex numbers α and β,we add random multiples of the last equation to the first two equations of(1.1),

    Step 2.Computing the numerical affine singular points

    We solve(3.1)using the polyhedral homotopy continuation method first,and then select the numerical affine singular points from the solutions of(3.1)by evaluating these solutions to f(x,y)respectively.If the value is less than or equal to the given threshold,the corresponding solution is ascertained as a numerical affine singular point.

    Step 3.Computing the numerical singular points at in fi nity

    The first two coordinates of points at in fi nity are the nontrivial solutions of fd(x,y). Since fd(x,y)is a bivariate homogeneous polynomial of degree d,we can obtain all the numerical points at in fi nity by solving the corresponding univariate polynomial using the method in[13].By Proposition 2.1,we check whether these points at in fi nity are singular by evaluating them to Fx,Fyand Fz,respectively.If all three values are less than or equal to the given threshold,the corresponding point is judged as a numerical singular point at in fi nity.

    In the next two steps when we deal with a numerical singular point at in fi nity,the point is transferred to be an affine point by simple linear transformation.

    Step 4.Determining the multiplicity

    Evaluating the derivatives at a numerical singular point from order equal to 2,if the values of all derivatives of f(x,y)up to and including the(r?1)-th are less than or equal to the given threshold and at least one r-th derivative is greater than the given threshold, the multiplicity of this point will be determined as r.

    Step 5.Determining the character

    The tangents of f(x,y)=0 at a singular point P of multiplicity r correspond to the roots of

    Without a doubt,the coefficients of this polynomial are inexact.The character of the singular point will be determined by if there are multiple roots of this polynomial.

    3.4 Numerical Issues about the Procedures of Subsection 3.3

    In Step 1,since f is irreducible,f and fxhave no common factors and it holds also for f and fy.So f(x,y)+α·fy(x,y)and fx(x,y)+β·fy(x,y)have no common factors for a probability one set of the coefficients(α,β)of random multiples.All the solutions of(3.1) are isolated and the presented Proposition 3.1 is enough for our demands.

    In Step 2,the Jacobian of(3.1)is

    This matrix is singular at a singular point of multiplicity greater than two or almost singular at a numerical singular point of multiplicity greater than two.The numerical techniques of homotopy continuation method could deal with this well.

    Homotopy continuation method is a reliable and efficient numerical approach to solving the polynomial systems inCnwhereCis the complex field and is proposed by Garcia and Zangwill[17]in 1979 and Drexler[18]in 1977 independently.The employment of linear homotopies is standard in the early stage.In 1995 Huber and Sturmfels[19]present the polyhedral homotopies based on Bernshtein’s[20]combinatorial root count.For sparse polynomial systems,polyhedral homotopy produces amazing improvements over the classical linear homotopy.The related theories and state of the art techniques can be found in[12, 19,21–22].

    Since f(x,y)is not identically zero and has finite degree d,some derivative of order less than or equal to d must be less than or equal to the given threshold at a numerical singular point.Hence Step 4 ends for finitely many numerical singular points.

    Univariate polynimials need to be solved in Step 3 and Step 5.Finding the roots of univariate polynomials is one of the fundamental mathematical problems and arises in many scienti fi c and engineering applications.Several methods have been proposed,such as Laguerre’s method,Jenkins-Traub method and the QR algorithm with the companion matrix. However,no one can overcome a barrier of attainable accuracy on an m multiple root(see [23–24]).If there are k1digits machine precision and k2digits coefficients accuracy,the attainable accuracy is min{k1,k2}/m digits.For example,if we use the standard double precision of 16 decimal digits and the accuracy of the polynomial coefficients is 15 digits, only 3 correct digits can be obtained for a root of multiplicity 5.The above standard methods may not compute the multiple roots accurately for univariate polynomials with inexact coefficients,even if the multiprecision is used.A numerical algorithm was presented to calculate multiple roots of univariate polynomials with coefficients possibly being inexact in [13]without extending hardware precision.It is not subject to the accuracy barrier and a lot of numerical experiments have shown its efficiency and robustness.Using this method, we can compute the singular points at in fi nity accurately in Step 3 and the characters of all the singular points can be determined correctly in Step 5.

    4 Numerical Results

    It is impossible to find exact coefficients of algebraic curves obtained by fi tting or interpolating the experimental data in many fields of science and engineering.As mentioned above, the singular points and their related properties are unstable for the tiny perturbations.In this section some examples are presented to show the efficiency and robustness of numerical procedures in the last section,even if the coefficients of algebraic curves are inexact or perturbed.We also compare some results with those computed by symbolic software Maple. The numerical procedures are implemented in Matlab.

    For an irreducible plane algebraic curve with form(2.1)and homogeneous form(2.2),we choose the z=0 as the line at in fi nity,and let(x,y,z)denote a point of F(x,y,z)=0 in the projective plane.(x,y,1)is the point corresponding to a point in the affine plane and (x,y,0)is the point at in fi nity in the following.

    For convenience,we use the abbreviations“mult”and“ord”to represent the multiplicity and ordinary in the following tables,respectively.

    Example 4.1[25]

    There are six double ordinary affine singular points for this curve,i.e.,(?1,?1/2,1), (0,?1,1),(0,0,1),(1,?1/2,1),(?1/2,1,1),(1/2,1,1).Table 4.1 gives the results output by our numerical procedures.Table 4.2 provides the numerical singular points when the coefficient of 51344y5is perturbed to 51344+1/1000000;however,the command“singularities”of Maple gives only one singular point(0,0,1)for the perturbed curve.

    Table 4.1 Singular points,their multiplicities and characters of the curve in Example 4.1

    Table 4.2 Singular points,their multiplicities and characters of the curve in Example 4.1 when the coefficient of 51344y5is perturbed to 51344+1/1000000

    Example 4.2[10]

    There are four double ordinary affine singular points

    where αi,i=1,2,and βj,j=1,2,are roots of the univariate polynomials

    respectively.

    Table 4.3 lists the results obtained in our numerical procedures.The singular points are accurate and their multiplicities and characters are correct.

    Table 4.3 Singular points,their multiplicities and characters of the curve in Example 4.2

    We perturbed the coefficient of 3x5y to 3+1/10000000,3+1/1000000,3+1/100000,3+ 1/10000,3+1/1000 respectively.Tables 4.4–4.8 present our results.Since the multiplicities and characters are all correct,we provide only the numerical singular points and the correct digits are underlined in these fi ve tables.

    Table 4.4 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/10000000

    Table 4.5 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/1000000

    Table 4.6 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/100000

    Table 4.7 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/10000

    Table 4.8 Singular points in Example 4.2 when the coefficient of 3x5y is perturbed to 3+1/1000

    The command“singularities”in Maple provides nothing when the algebraic curve is perturbed in the above fi ve situations.The CPU time of our numerical procedures is almost neglected on the same Lenovo PC with Pentium Dual Core,CPU of 2.5GHZ,memory of 1.99GB.

    We usually choose 10?6as the three thresholds in the Step 2,Step 3 and Step 4 of the numerical procedures in Subsection 3.3.When we perturb some coefficients of algebraic curves,the three thresholds may be larger than 10?6.The larger the perturbations are,the larger the thresholds we choose.

    Example 4.3[2]

    There are no singular points for this algebraic curve.Our numerical procedures output nothing,even if the coefficient of y2x is perturbed to 1+1/100000.

    Example 4.4

    This is a curve with one double non-ordinary affine singular point(0,0,1)and one double ordinary singular point at in fi nity(0,1,0).Table 4.9 presents the results for f(x,y)=0 and Table 4.10 shows the results for the perturbed curve(1+1/1000000)x4+x2y2?y2=0.

    Table 4.9 Singular points,their multiplicities and characters of the curve in Example 4.4

    Table 4.10 Singular points,their multiplicities and characters of the curve in Example 4.4 when the coefficient of x4is perturbed to 1+1/1000000

    Example 4.5[6]

    This curve has one ordinary affine singular point(0,0,1)of multiplicity 4,three double ordinary affine singular points(1,1,1),(3/2,1/2,1),(?1/3,1/3,1),one ordinary singular point at in fi nity(0,1,0)of multiplicity 3 and one non-ordinary singular point at in fi nity (1,0,0)of multiplicity 3.

    The fractions are truncated in Matlab,so the coefficients of this curve are inexact when we input them,but we still obtain satisfactory results in Table 4.11.

    Table 4.11 Singular points,their multiplicities and characters of the curve in Example 4.5

    Although non-ordinary is the unstable property for tiny perturbations,the results of Examples 4.4 and 4.5 show that our numerical procedures overcame this barrier and gave the correct character.

    5 Concluding Remarks

    In cases where the singular points of algebraic curves are all ordinary,the numerical procedures of Section 3 can also determine the genus g of algebraic curves,since

    where the summation is over all singular points of multiplicities ri.However,if there exist non-ordinary singular points,the contribution of non-ordinary singular point of multiplicity m to the summation in(5.1)is not simple m(m?1)/2 and in general we need quadratic transformations in[2]to reduce the non-ordinary singular points.

    In this paper we present numerical procedures to compute the numerical singular points of irreducible plane algebraic curves and determine their multiplicities and characters.The numerical procedures contain the combined application of homotopy continuation method to solve polynomial systems and calculating the multiple roots of univariate polynomials. The polyhedral homotopy continuation method is the most efficient method to solve the polynomial systems.The method in[13]seems to be the first blackbox to find the roots of univariate polynomials with inexact coefficients using the standard precision arithmetic.

    Our numerical procedures can obtain the results accurately and also provide enough correct digits,even if the coefficients of algebraic curves are perturbed.Thus our numerical procedures are not only efficient,but also robust.

    AcknowledgementWe thank Li Tien-yien and Zeng Zhong-gang for providing the software packages(HOM4PS-2.0 and MULROOT)on their homepages respectively.

    [1]Coolidge J L.A Treatise on Algebraic Plane Curves.New York:Dover,1959.

    [2]Walker R J.Algebraic Curves.New York:Springer-Verlag,1978.

    [3]Chen F,Wang W,Liu Y.Computing sigular points of plane rational curves.J.Symbolic. Comput.,2008,43:92–117.

    [4]Sederberg T W,Anderson D C,Goldman R N.Implicit representation of parametric curves and surfaces.Comput.Vis.Graph.Image Process.,1984,28:72–84.

    [5]Abhyankar S S,Bajaj C L.Automatic parameterization of rational curves and surfaces III: Algebraic plane curves.Comput.Aided Geom.Design.,1988,5:309–321.

    [6]Sendra J R,Winkler F.Symbolic parametrization of curves.J.Symbolic.Comput.,1991,12: 607–631.

    [7]Cox D.Curves,surfaces,and syzygies,topics in algebraic geometry and geometric modeling.Contemp.Math.,2003,334:131–149.

    [8]Sun Y,Yu J.Implicitization of parametric curves via Lagrange interpolation.Computing,2006, 77:379–386.

    [9]Cox D,Little J,O’Shea D.Ideals,Varieties,and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra.2nd ed.New York:Springer-Verlag, 1997.

    [10]Sakkalis T,Farouki R T.Singular points of algebraic curves.J.Symbolic.Comput.,1990,9: 405–421.

    [11]Bajaj C L,Ho ff mann C M,Lynch R E,Hopcroft J E H.Tracing surface intersecitons.Comput. Aided Geom.Design.,1988,5:285–307.

    [12]Li T Y.Solving Polynomial Systems by the Homotopy Continuation Method.In:Ciarlet P G. Handbook of Numerical Analysis.vol.XI.Amsterdam:North-Holland,2003.

    [13]Zeng Z.Computing multiple roots of inexact polynomials.Math.Comput.,2005,74:869–903.

    [14]Sommese A J,Wampler C W.Numerical Algebraic Geometry.In:Renegar J,Shub M,Smale S.The Mathematics of Numerical Analysis:Lectures in Appl.Math.vol.32.Utah:AMS, 1996.

    [15]Morgan A P,Sommese A J.Coefficient-parameter polynomial continuation.Appl.Math.Comput.,1989,29:123–160.

    [16]Farouki R T,Rajan V T.On the numerical conditions of algebraic curves and surfaces I: implicit equations.Comput.Aided Geom.Design.,1988,5:215–252.

    [17]Garcia C B,Zangwill W I.Finding all solutions to polynomial systems and other systems of equations.Math.Program.,1979,16:159–176.

    [18]Drexler F J.Eine Methode zur Berechnung samtlicher Losungen von Polynongleichungssystemen.Numer.Math.,1977,29:45–58.

    [19]Huber B,Sturmfels B.A Polyhedral method for solving sparse polynomial systems.Math. Comput.,1995,64:1541–1555.

    [20]Bernshtein D N.The number of roots of a system of equations.Funct.Anal.Appl.,1975,9: 183–185.

    [21]Lee T L,Li T Y,Tsai C H.HOM4PS-2.0:A software package for solving polynomial systems by the polyhedral homotopy continuation method.Computing,2008,83:109–133.

    [22]Li T Y,Wang X.The BKK root count in Cn.Math.Comp.,1996,65:161–181.

    [23]Pan V Y.Solving polynomial equations:some history and recent progress.SIAM Rev.,1997, 39:187–220.

    [24]Igarashi M,Ypma T.Relationships between order and efficiency of a class of methods for multiple zeros of polynomials.J.Comput.Appl.Math.,1984,60:101–113.

    [25]Florida State Univ.Department of Math.http://www.math.fsu.edu/hoeij/algcurves.html.

    Communicated by Ma Fu-ming

    65D99,13D15,14Q05

    A

    1674-5647(2012)02-0146-13

    date:Oct.22,2010.

    The NSF(61033012,10801023,11171052,10771028)of China.

    国产黄片美女视频| 午夜激情欧美在线| 插阴视频在线观看视频| 18禁在线无遮挡免费观看视频| 色播亚洲综合网| 18禁在线无遮挡免费观看视频| 老司机影院成人| 成人av在线播放网站| 青春草国产在线视频| 亚洲人成网站在线播| 日韩 亚洲 欧美在线| 最后的刺客免费高清国语| 能在线免费观看的黄片| 人妻少妇偷人精品九色| 最近手机中文字幕大全| 精品久久久久久久末码| 国内精品宾馆在线| 午夜激情欧美在线| 精品人妻熟女av久视频| 国产单亲对白刺激| av在线老鸭窝| 天天一区二区日本电影三级| 99久久九九国产精品国产免费| 身体一侧抽搐| 黄色日韩在线| 边亲边吃奶的免费视频| 欧美又色又爽又黄视频| 久久婷婷人人爽人人干人人爱| 日韩三级伦理在线观看| 激情 狠狠 欧美| 69av精品久久久久久| 午夜福利视频1000在线观看| 国产单亲对白刺激| 国产av一区在线观看免费| 亚洲国产精品久久男人天堂| 久久人人爽人人片av| 91精品伊人久久大香线蕉| 欧美性猛交黑人性爽| 我要搜黄色片| 最近中文字幕高清免费大全6| 午夜亚洲福利在线播放| 国产一区二区在线av高清观看| 成人特级av手机在线观看| 国产 一区 欧美 日韩| 国产午夜精品一二区理论片| 国产伦理片在线播放av一区| 国产精品国产高清国产av| 日本黄色视频三级网站网址| 亚洲精品乱码久久久久久按摩| 国产真实伦视频高清在线观看| av免费在线看不卡| 日韩强制内射视频| 黑人高潮一二区| 99在线人妻在线中文字幕| 69人妻影院| 国模一区二区三区四区视频| 精品人妻熟女av久视频| 午夜福利成人在线免费观看| 亚洲在线自拍视频| 内射极品少妇av片p| 日韩一区二区视频免费看| 乱码一卡2卡4卡精品| 建设人人有责人人尽责人人享有的 | 国产精品av视频在线免费观看| 91aial.com中文字幕在线观看| 两个人的视频大全免费| 日日啪夜夜撸| 久久久久久久久久黄片| 国国产精品蜜臀av免费| 国国产精品蜜臀av免费| 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 久久精品国产99精品国产亚洲性色| 免费观看精品视频网站| 看十八女毛片水多多多| 汤姆久久久久久久影院中文字幕 | 国产91av在线免费观看| 精品久久久噜噜| av福利片在线观看| av免费观看日本| 亚洲av电影在线观看一区二区三区 | 97超碰精品成人国产| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 中国国产av一级| 久久久久网色| 免费观看的影片在线观看| 亚洲va在线va天堂va国产| 丰满少妇做爰视频| 欧美成人a在线观看| 青青草视频在线视频观看| 毛片一级片免费看久久久久| 免费看日本二区| 久久这里有精品视频免费| 国产熟女欧美一区二区| 国产精品av视频在线免费观看| 成人漫画全彩无遮挡| 精品欧美国产一区二区三| 久久99热6这里只有精品| 成人欧美大片| 亚洲中文字幕一区二区三区有码在线看| 日韩精品有码人妻一区| 国产成年人精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 春色校园在线视频观看| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| 精品久久久久久久人妻蜜臀av| 特级一级黄色大片| 国产精品国产高清国产av| 国产毛片a区久久久久| 边亲边吃奶的免费视频| 久久99热这里只有精品18| 欧美一区二区亚洲| 能在线免费看毛片的网站| 97热精品久久久久久| 欧美性感艳星| 国产黄a三级三级三级人| 美女黄网站色视频| 日韩三级伦理在线观看| 亚洲国产欧洲综合997久久,| 久久婷婷人人爽人人干人人爱| 欧美日韩精品成人综合77777| 波多野结衣高清无吗| 寂寞人妻少妇视频99o| 人体艺术视频欧美日本| 老司机影院毛片| .国产精品久久| 国产精品国产高清国产av| 午夜福利在线观看免费完整高清在| 日韩中字成人| 亚洲av中文av极速乱| 22中文网久久字幕| 国产午夜福利久久久久久| 国产极品精品免费视频能看的| 国产精品国产高清国产av| 人妻制服诱惑在线中文字幕| www.av在线官网国产| h日本视频在线播放| 夜夜看夜夜爽夜夜摸| 亚洲av日韩在线播放| 我的老师免费观看完整版| 国产伦在线观看视频一区| 亚洲国产精品合色在线| 波野结衣二区三区在线| 全区人妻精品视频| 天堂中文最新版在线下载 | 国产成人精品婷婷| 丰满乱子伦码专区| 美女xxoo啪啪120秒动态图| 亚洲五月天丁香| 嘟嘟电影网在线观看| 看黄色毛片网站| 身体一侧抽搐| 精品午夜福利在线看| 国产精品精品国产色婷婷| 亚洲欧美清纯卡通| 国产91av在线免费观看| 国产伦在线观看视频一区| 国产高潮美女av| 中文欧美无线码| 色噜噜av男人的天堂激情| 亚洲国产欧洲综合997久久,| 一区二区三区四区激情视频| 免费在线观看成人毛片| av专区在线播放| 亚洲第一区二区三区不卡| 26uuu在线亚洲综合色| 性插视频无遮挡在线免费观看| 亚洲精品乱码久久久v下载方式| 亚洲精华国产精华液的使用体验| 国产成人精品久久久久久| 日韩欧美 国产精品| 亚洲中文字幕一区二区三区有码在线看| 久久久久久九九精品二区国产| 村上凉子中文字幕在线| 中文欧美无线码| 精品一区二区三区人妻视频| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载 | 久久久久久久午夜电影| 久久鲁丝午夜福利片| 免费人成在线观看视频色| 国产在线男女| 国产午夜精品一二区理论片| 亚洲av日韩在线播放| 精品国产三级普通话版| 在线观看美女被高潮喷水网站| 少妇熟女欧美另类| 国产探花在线观看一区二区| 两个人的视频大全免费| 日韩欧美三级三区| 亚洲欧美精品综合久久99| 全区人妻精品视频| 女人十人毛片免费观看3o分钟| 国产色爽女视频免费观看| 欧美又色又爽又黄视频| 国产精华一区二区三区| 日韩成人伦理影院| 九色成人免费人妻av| 蜜桃亚洲精品一区二区三区| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 亚洲成av人片在线播放无| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的 | 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 日日摸夜夜添夜夜添av毛片| 亚洲18禁久久av| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 青春草视频在线免费观看| 亚洲精品日韩av片在线观看| 一级黄片播放器| 欧美最新免费一区二区三区| 一级毛片久久久久久久久女| 午夜视频国产福利| 97超视频在线观看视频| 精品久久久久久成人av| 亚洲精品,欧美精品| 性色avwww在线观看| 日韩在线高清观看一区二区三区| 国产成人免费观看mmmm| 嘟嘟电影网在线观看| 国产高潮美女av| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 日韩欧美国产在线观看| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| 欧美日韩综合久久久久久| 成人漫画全彩无遮挡| 日本一本二区三区精品| 少妇被粗大猛烈的视频| 麻豆精品久久久久久蜜桃| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看| 欧美潮喷喷水| 国产成年人精品一区二区| 中文字幕亚洲精品专区| 国产亚洲5aaaaa淫片| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 18禁在线播放成人免费| 免费一级毛片在线播放高清视频| 在线免费观看的www视频| 如何舔出高潮| 国产亚洲5aaaaa淫片| 大香蕉97超碰在线| 国产高清不卡午夜福利| 成人午夜高清在线视频| 久久久久免费精品人妻一区二区| 男女国产视频网站| 国产欧美日韩精品一区二区| 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说 | www.av在线官网国产| 成人特级av手机在线观看| av在线老鸭窝| 国产私拍福利视频在线观看| 亚洲久久久久久中文字幕| 日日啪夜夜撸| 最近的中文字幕免费完整| 国产精品久久久久久久电影| 好男人视频免费观看在线| 中文资源天堂在线| 亚洲精品国产成人久久av| 观看免费一级毛片| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 久久99蜜桃精品久久| 国产精品一区www在线观看| 精品国产露脸久久av麻豆 | 国产不卡一卡二| 水蜜桃什么品种好| 亚洲av日韩在线播放| 亚洲高清免费不卡视频| 一个人看视频在线观看www免费| 亚洲伊人久久精品综合 | 我要看日韩黄色一级片| 成人特级av手机在线观看| 国产精品蜜桃在线观看| 插逼视频在线观看| 五月玫瑰六月丁香| 亚洲精品456在线播放app| 免费观看在线日韩| 中文字幕熟女人妻在线| 晚上一个人看的免费电影| 日韩成人伦理影院| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 国产精品电影一区二区三区| 中文欧美无线码| 一区二区三区免费毛片| 国产欧美日韩精品一区二区| eeuss影院久久| 免费黄色在线免费观看| 亚洲精品自拍成人| 精品人妻熟女av久视频| 天天躁夜夜躁狠狠久久av| 美女cb高潮喷水在线观看| 亚洲av二区三区四区| 日本av手机在线免费观看| 亚洲成av人片在线播放无| 九色成人免费人妻av| 男女那种视频在线观看| 美女黄网站色视频| 又黄又爽又刺激的免费视频.| 亚洲美女视频黄频| av线在线观看网站| 搡女人真爽免费视频火全软件| 美女高潮的动态| 波多野结衣高清无吗| 成人av在线播放网站| 国产午夜福利久久久久久| av卡一久久| 日韩,欧美,国产一区二区三区 | 18+在线观看网站| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 精品久久久久久电影网 | 亚洲18禁久久av| 级片在线观看| 亚洲一级一片aⅴ在线观看| 欧美高清性xxxxhd video| 国产真实伦视频高清在线观看| 99热全是精品| 久久99蜜桃精品久久| 久久人人爽人人片av| 日韩欧美 国产精品| 精品欧美国产一区二区三| 免费观看在线日韩| 插阴视频在线观看视频| 天堂中文最新版在线下载 | 欧美精品国产亚洲| 日韩视频在线欧美| 久久精品影院6| 国产高清三级在线| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久亚洲中文字幕| 亚洲18禁久久av| 亚洲av成人精品一区久久| 美女黄网站色视频| 啦啦啦观看免费观看视频高清| av免费在线看不卡| 丝袜喷水一区| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 亚洲丝袜综合中文字幕| 久久精品综合一区二区三区| 中文字幕av在线有码专区| 亚洲国产欧美人成| 少妇的逼水好多| 丰满乱子伦码专区| 国产精品人妻久久久久久| 国产成人免费观看mmmm| 一级二级三级毛片免费看| 国产成年人精品一区二区| 一区二区三区四区激情视频| 超碰97精品在线观看| 伦理电影大哥的女人| 亚洲精品乱久久久久久| 国产美女午夜福利| 女人久久www免费人成看片 | 免费看av在线观看网站| 夜夜看夜夜爽夜夜摸| 综合色丁香网| 久久久欧美国产精品| 男女国产视频网站| 高清视频免费观看一区二区 | 久热久热在线精品观看| 精品久久久久久久久亚洲| 国产精品久久久久久久久免| 草草在线视频免费看| 国产在线一区二区三区精 | 国产91av在线免费观看| 国产成人免费观看mmmm| 国产成人精品一,二区| 国产成人精品婷婷| 欧美变态另类bdsm刘玥| 久久久精品欧美日韩精品| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 中文字幕av在线有码专区| 激情 狠狠 欧美| 久久亚洲国产成人精品v| 观看美女的网站| 国产探花极品一区二区| av卡一久久| 国产老妇女一区| 久久国内精品自在自线图片| 国产爱豆传媒在线观看| 成年免费大片在线观看| 五月伊人婷婷丁香| 亚洲国产精品久久男人天堂| 久久久久久久久久黄片| 麻豆一二三区av精品| 男女国产视频网站| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 白带黄色成豆腐渣| 99久久精品国产国产毛片| 国产女主播在线喷水免费视频网站 | 久久人人爽人人片av| av播播在线观看一区| 晚上一个人看的免费电影| 热99在线观看视频| 最近最新中文字幕大全电影3| 亚洲18禁久久av| 免费一级毛片在线播放高清视频| 超碰av人人做人人爽久久| 亚洲国产精品合色在线| 亚洲综合精品二区| 午夜福利高清视频| 亚洲一区高清亚洲精品| 亚洲美女视频黄频| 午夜精品一区二区三区免费看| 变态另类丝袜制服| 国产伦理片在线播放av一区| 99久久无色码亚洲精品果冻| 亚洲电影在线观看av| 午夜爱爱视频在线播放| 欧美日韩在线观看h| 老司机福利观看| 久久99热这里只有精品18| 国产精品麻豆人妻色哟哟久久 | 在线免费观看不下载黄p国产| av播播在线观看一区| 一卡2卡三卡四卡精品乱码亚洲| 国产成人91sexporn| 一级爰片在线观看| 国产亚洲最大av| 亚洲无线观看免费| 亚洲精品影视一区二区三区av| 亚洲中文字幕日韩| 午夜激情欧美在线| 日韩精品青青久久久久久| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 天天躁日日操中文字幕| 伦精品一区二区三区| 激情 狠狠 欧美| 赤兔流量卡办理| 久久久精品94久久精品| 一级爰片在线观看| 在线免费观看的www视频| 老师上课跳d突然被开到最大视频| 欧美bdsm另类| 男人狂女人下面高潮的视频| 久久99蜜桃精品久久| 中文字幕精品亚洲无线码一区| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 九九在线视频观看精品| 欧美成人一区二区免费高清观看| 白带黄色成豆腐渣| 69av精品久久久久久| 中国美白少妇内射xxxbb| 丰满乱子伦码专区| 国产精品野战在线观看| av又黄又爽大尺度在线免费看 | 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| 国产黄片美女视频| 久久6这里有精品| 久久精品国产亚洲av涩爱| 久久综合国产亚洲精品| 国产伦一二天堂av在线观看| 激情 狠狠 欧美| 久久久欧美国产精品| 九九热线精品视视频播放| 真实男女啪啪啪动态图| 我的女老师完整版在线观看| 日本三级黄在线观看| 久久这里只有精品中国| 蜜桃久久精品国产亚洲av| 成人国产麻豆网| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久亚洲| 亚洲av不卡在线观看| eeuss影院久久| 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 女人被狂操c到高潮| 久久精品人妻少妇| 国产精品一区www在线观看| 91久久精品电影网| 麻豆成人午夜福利视频| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 午夜福利视频1000在线观看| 久久精品91蜜桃| 男人的好看免费观看在线视频| 女人久久www免费人成看片 | 国产精品不卡视频一区二区| 国产亚洲最大av| 最近最新中文字幕大全电影3| 亚洲一级一片aⅴ在线观看| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 男女那种视频在线观看| 久久久久久久久久黄片| 中文字幕久久专区| 国产精品av视频在线免费观看| 欧美成人午夜免费资源| 久久这里只有精品中国| 国产乱人偷精品视频| 国产精品,欧美在线| 直男gayav资源| 日日撸夜夜添| 国产成人a区在线观看| 国产男人的电影天堂91| 青春草视频在线免费观看| 色哟哟·www| 波多野结衣巨乳人妻| 18禁在线播放成人免费| 赤兔流量卡办理| 我要看日韩黄色一级片| 内射极品少妇av片p| 亚洲aⅴ乱码一区二区在线播放| 白带黄色成豆腐渣| 成人无遮挡网站| 你懂的网址亚洲精品在线观看 | 国产成人精品久久久久久| 99在线视频只有这里精品首页| 中文天堂在线官网| 久久精品国产亚洲网站| av免费观看日本| 国产人妻一区二区三区在| 成人毛片60女人毛片免费| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 日本五十路高清| 成人二区视频| 亚洲欧美成人综合另类久久久 | 日韩欧美三级三区| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 亚洲国产最新在线播放| 人人妻人人澡人人爽人人夜夜 | 中文字幕熟女人妻在线| 免费av观看视频| 日本免费a在线| 亚洲成色77777| 亚洲最大成人手机在线| 亚洲av日韩在线播放| 在线免费观看不下载黄p国产| 亚洲国产精品sss在线观看| 欧美成人午夜免费资源| 日韩大片免费观看网站 | 日本黄大片高清| 简卡轻食公司| 午夜福利在线在线| 午夜福利成人在线免费观看| 九九久久精品国产亚洲av麻豆| 亚洲在线观看片| 久久久精品94久久精品| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 22中文网久久字幕| 国产精品久久久久久精品电影小说 | 亚洲精品久久久久久婷婷小说 | 精品不卡国产一区二区三区| 欧美色视频一区免费| 汤姆久久久久久久影院中文字幕 | 国产真实乱freesex| 亚洲乱码一区二区免费版| 老司机福利观看| 婷婷六月久久综合丁香| 天堂网av新在线| 中国国产av一级| 三级经典国产精品| 午夜福利视频1000在线观看| 亚洲精品亚洲一区二区| 精品99又大又爽又粗少妇毛片| 国产欧美另类精品又又久久亚洲欧美| 成人午夜精彩视频在线观看| or卡值多少钱| 黄色日韩在线| 麻豆成人午夜福利视频| 国产精品无大码| 国产亚洲av片在线观看秒播厂 | 91午夜精品亚洲一区二区三区| 成人二区视频| 免费av毛片视频| 一级毛片aaaaaa免费看小| 成年女人永久免费观看视频| 亚洲欧美日韩东京热| 最近手机中文字幕大全| 22中文网久久字幕| 国产精品久久久久久久久免| 日韩欧美三级三区| 亚洲欧美成人精品一区二区| 六月丁香七月| 日韩av不卡免费在线播放| 人妻系列 视频| 国产伦精品一区二区三区视频9| 亚洲三级黄色毛片| 超碰av人人做人人爽久久| 九草在线视频观看| 久久午夜福利片| 国产成人91sexporn|