• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Likely Limit Sets of a Class of p-order Feigenbaum’s Maps?

    2012-12-27 07:06:10WANGWEIANDLIAOLI

    WANG WEIAND LIAO LI

    (1.Institute of Mathematics,Jilin University,Changchun,130012)

    (2.Institute of Applied Physics and Computational Mathematics,Beijing,100094)

    Likely Limit Sets of a Class of p-order Feigenbaum’s Maps?

    WANG WEI1AND LIAO LI2

    (1.Institute of Mathematics,Jilin University,Changchun,130012)

    (2.Institute of Applied Physics and Computational Mathematics,Beijing,100094)

    A continuous map from a closed interval into itself is called ap-order Feigenbaum’s map if it is a solution of the Feigenbaum’s equation fp(λx)=λf(x). In this paper,we estimate Hausdor ffdimensions of likely limit sets of somep-order Feigenbaum’s maps.As an application,it is proved that for any 0<t<1,there always exists ap-order Feigenbaum’s map which has a likely limit set with Hausdor ff dimension t.This generalizes some known results in the special case of p=2.

    Feigenbaum’s equation,Feigenbaum’s map,likely limit set,Hausdor ff dimension

    1 Introduction

    This paper is concerned with the generalized Feigenbaum’s equation

    where f is a continuous map of the closed interval[0,1]into itself,and fpis the p-fold iteration of f.This equation was first studied in[1],and its original form is

    which was posed by Feigenbaum[2?3]for explaining a universal phenomenon occurring in an interval mapping family with one parameter.

    A continuous map f on the closed interval[a,b]is said to be univallecular,if there exists α∈(a,b)such that f is strictly decreasing on[a,α]and strictly increasing on[α,b].

    In the sequel,we use I to denote the interval[0,1].

    De fi nition 1.1Letfbe a continuous map ofIinto itself.We callfap-order Feigenbaum’s map,if it is a solution of(1.1),such thatf(0)=1andf|[λ,1]is univallecular.We call Feigenbaum’s mapfnon-univallecular,iffitself is not univallecular.

    In the past more than thirty years,the researches on Feigenbaum’s maps have aroused one’s grave concern(see[1–10]).More authors studied the existence of Feigenbaum’s maps, and only a few of them were concerned with likely limit sets of Feigenbaum’s maps.In[9], the Hausdor ffdimension of a likely limit set of an even analytic function which is similar to Feigenbaum’s map was estimated.It was pointed out in[10]that for any t∈(0,1),there is always a 2-order Feigenbaum’s map which has a likely limit set with Hausdor ffdimension t.As an extension of the results in[10],we study the likely limit sets of a class of p-order Feigenbaum’s maps.The main results are given in Theorems 3.1 and 3.2.

    2 Preliminaries

    Milnor[11]introduced the concept of a likely limit set for a continuous map of a compact manifold as follows.

    Let M be a compact manifold(possibly with boundary),and f be a continuous map from M into itself.

    De fi nition 2.1The likely limit set off,denoted by Λ(f),or simply Λ,is the smallest closed invariant subset ofMwith the propertyω(x,f)?Λ for each pointx∈Moutside of a set of Lebesgue’s measure zero,whereω(x,f)denotes theω-limit set of the pointxunderf(see[12]for the de fi nition).

    As indicated in[11],the likely limit set always exists and it is the unique maximal attractor(in the sense of Milnor).Because such an attractor accumulates the asymptotic behaviors of almost all points,it is very necessary to study this type of subsets.

    Recall that a subset E of M is said to be minimal for f,if

    As is well known,the minimal set is closed,non-void and invariant,and no proper subset has these three properties(see[12]).Therefore,if E is a minimal set with ω(x,f)?E for almost all x∈M,then

    Let(X,d)be a compact metric space.Denote by|E|the diameter of a subset E of X, i.e.,

    where the in fi mum is taken over all(countable)δ-cover{Ui}of E.

    The Hausdor ffs-dimensional out measure of E is de fi ned by

    Such an r is uniquely determined,called the Hausdor ffdimension of E and denoted by dimE (see[9]).

    A mapping φ:Rn→Rnis called a contraction,whereRnis the n-dimensional Euclidean space,if there exists a c<1 such that

    We call the in fi mum value of c satisfying(2.1)the ratio of the contraction.

    The following two lemmas are useful.

    Lemma 2.1([9],Theorem 8.3)Letφ1,φ2,···,φmbe contractions onRn.Then there exists a unique non-empty compact setEsuch that

    is a transformation of subsets ofRn.Furthermore,for any non-empty compact subsetFofRn,the iteratesφk(F)converge toEin Hausdor ffmetric ask→∞.

    Lemma 2.2([9],Theorem 8.8)Letφ1,···,φmbe contractions onRfor which the open set condition holds,i.e.,there is a bounded open intervalUsuch that

    3 The Main Results and Their Proofs

    The following lemma comes from Theorem 3.1 in[8],which gives the characteristics of non-univallecular Feigenbaum’s maps.

    Lemma 3.1Letf0be a continuous map on[λ,1]with0<λ<1,andp≥2be an integer.If

    (i)there exists anα∈(λ,1)such thatf0(α)=0andf0is strictly decreasing on[λ,α]and strictly increasing on[α,1];

    then there is a uniquep-order non-univallecular Feigenbaum’s mapfwithf|[λ,1]=f0.

    Conversely,iff0is the restriction on[λ,1]of ap-order non-univallecular Feigenbaum’s map,then(i)–(iii)hold.

    Theorem 3.1Letfbe ap-order non-univallecular Feigenbaum’s map such thatf(α)=0for someα∈(λ,1),andg=f|[α,1].IffisC1on[λ,α]and[α,1],and such that

    wheref′(x)denotes the derivative ifxis in the interior of an interval,and left derivative or right derivative ifxis an endpoint of a closed interval,then Λ(f)is a minimal set offsuch thats≤dimΛ(f)≤t,where

    Since f is a p-order non-univallecular Feigenbaum’s map,it follows from Lemma 3.1 that Ji?[α,1]for 1≤i≤p?1.De fi ne φi:I→I by

    Then φiis a contraction for each i.Set

    We know from Lemma 3.1 that for each i,φi(I)=Jiand J1,J2,···,Jpare pairwise disjoint.Thus φ satis fies the open condition.By Lemmas 2.1 and 2.2,there exists a unique non-empty compact set E such that

    By the de fi nition of φi,we see that this is exactly(3.1).So in order to complete the proof of the theorem,it suffices to show that

    Since φp(x)∈Jp,it follows that f?φp(x)∈[α,1].So,by the de fi nition of φ1,we have

    This gives the first equality of the lemma.

    For each i=1,···,p?1,setting f to act on both sides of the equality

    we immediately get the latter equalities.

    Lemma 3.3For anyk>0,

    is an invariant set off,i.e.,f(φk(I))?φk(I).

    Proof.Let x∈I and 1≤i≤p.By Lemma 3.2,one has

    Using this equality repeatedly we know that

    If for each r=1,2,···,k,we all have

    then from(3.2),it follows that

    Note that f(I)=I.One can see that the lemma holds for this special case.Assume that there exists some r,1≤r≤k,such that iq=jqfor q<r,but irjr.Repeatedly applying (3.2)again,we know that ft·pr?1?φi1···ik(I),0<t<p?1 has the form φl(shuí)1···lrlr+1···lk(I), where lq=jq,1≤q≤r.Continuing this procedure,we must get some n,such that

    The proof of Lemma 3.4 is completed.

    We now proceed to prove Theorem 3.1.In order to get the equality

    we first prove

    (1)For almost all x∈I,ω(x,f)?E.

    To do this,it suffices to show that for almost all x∈I in the sense of Lebesgue the sequence{fm(x)}approaches to E for m→∞.

    Denote

    For each i=1,2,···,p?1,de fi ne ψi:J→J by

    Since h(J)?J and by the hypotheses of the theorem,gi?1?h(J)?J for 1<i≤p?1,it follows that for each i,ψiis well de fi ned.By a simple calculation,we see that ψi(x)<1 for i=1,2,···,p?1 and x∈J.So each ψiis contracted.Also,we easily see that

    satis fies the open set condition.By Lemmas 2.1 and 2.2,there exists a unique non-empty compact set F0such that

    and dimF0≤r,where r is de fi ned by

    By a calculation,we get

    Applying this to(3.3)gives dimF0≤r<1.So L(F0)=0,where L(·)denotes the Lebesgue measure.Set

    We also have

    It is easy to check by induction that f restricted to any closed interval of the form [λn+1,λnα]or[λnα,λn]is monotone.If K is such an interval,then

    This is because we can find real numbers M>δ>0,such that δ<|f′(x)|<M for x∈K. Furthermore,since f has at most countable monotone intervals,it follows that

    By induction,we know that

    always holds true for any n>0.Set

    We see that

    Therefore,I?B contains almost all the points in I.

    ClaimFor any n≥1 and any x∈I?B,there exists an mn>0 such that fmn(x)∈φn(I).

    We use the induction.Let x∈I?B and n=1.If x∈φ(I),then f(x)∈φ2(I)?φ(I), and we may take m1=1.If otherwise,then x∈[λ,1]?B?φ(I).Noting that

    we have fk(x)∈J?F0for some k≥0.We may assume x∈J?F0.Since

    denotes the orbit of x,it follows that there exists an m1>0 such that fm1(x)∈φ(I).Then the Claim is true for n=1.

    Assume that the Claim holds for n≥1.By Lemma 3.4,without loss of generality,we assume that fmn(x)∈[0,λn].Set

    Combining the Claim with Lemma 3.3,we know that for any x∈I?B and n>0,there exists a k≥0 such that fm(x)∈φn(I)holds true for all m≥k.Thus from

    we see that for m→∞the sequence{fm(x)}approaches to E.

    (2)E is a minimal set of f.

    By the de fi nition we know that for each i the contraction ratio of φi≤λ,so the contraction ratio of φi1···ik≤λk.It follows that diamφi1···ik(“diam”denotes the diameter) converges to zero uniformly for ir∈{1,2,···,p},1≤r≤k as k→∞.Let x∈E.For any y∈E and any open set V containing y,since

    there exist φi1···ik(I)and φj1···jk(I)such that x∈φi1···ik(I),y∈φj1···jk(I)?V.By Lemma 3.4,there exists an n>0 such that

    This shows y∈ω(x,f),and then E?ω(x,f).By(3.4)and Lemma 3.3,f(E)?E.Since E is closed,we also have ω(x,f)?E,and so

    From the arbitrariness of x,we know that E is a minimal set of f.

    Combining(1)with(2),by De fi nition 2.1,we know that

    We complete the proof of Theorem 3.1.

    Theorem 3.2For anyt∈(0,1),there exists ap-order non-univallecular Feigenbaum’s mapfsuch that

    and f0is linear on[λ,α]and[α,1].It is easily to check that f0satis fies all the conditions of Lemma 3.1,and then there exists a unique p-order non-univallecular Feigenbaum’s map f such that

    Also,by the de fi nition of f0,we see that

    By Theorem 3.1 and a simple calculation,we get

    [1]Eckmann J P,Epstein H,Wittwer P.Fixed points of Feigenbaum’s type for the equation fp(λx)=λf(x).Comm.Math.Phys.,1984,93:496–516.

    [2]Feigenbaum M.Qauntitative universality for a class of nonlinear transformations.J.Statist. Phys.,1978,19:25–52.

    [3]Feigenbaum M.The universal metric properties of nonlinear transformations.J.Statist.Phys., 1979,21:669–706.

    [4]Yang L,Zhang J Z.The second type of Feigenbaum’s functional equation.Sci.China,1986, A29:1252–1263.

    [5]Campanino M,Epstein H.On the existence of Feigenbaum’s fixed point.Comm.Math.Phys., 1981,79:261–302.

    [6]Epstein H.New proofs of the existence of the Feigenbaum’s functions.Comm.Math.Phys., 1986,106:395–426.

    [7]Liao G F.Solutions on the second type of Feigenbaum’s functional equations.Chinese Ann. Math.,1988,A9:649–654.

    [8]Liao G F,Wang L D,Zhang Y C.p-order Feigenbaum’s maps.Northeast.Math.J.,2004,20: 284–290.

    [9]Falconer K J.The Geometry of Fractal Sets.Cambridge and New York:Cambridge Univ. Press,1985.

    [10]Huang G F,Wang L D,Liao G F.A note on the unimodal Feigenbaum’s maps.Internat.J. Modern Phys.,2009,B23:3101–3111.

    [11]Milnor J.On the concept of attrator.Comm.Math.Phys.,1985,99:177–195.

    [12]Block L S,Coppel W A.Dynamics in One Dimension:Lecture Notes in Math.vol.1513. Berlin:Springer-Verlag,1992.

    Communicated by Lei Feng-chun

    39B52

    A

    1674-5647(2012)02-0137-09

    date:Sept.6,2010.

    The NSF(10771084)of China.

    午夜福利高清视频| 一二三四中文在线观看免费高清| 精品国产露脸久久av麻豆| 国产淫语在线视频| 综合色丁香网| 日韩中字成人| 99视频精品全部免费 在线| 久久久久久久亚洲中文字幕| 久久久久久久午夜电影| 亚洲一区二区三区欧美精品 | 蜜臀久久99精品久久宅男| 日韩电影二区| av国产久精品久网站免费入址| 精品国产三级普通话版| 亚洲欧美日韩东京热| 亚洲精品乱码久久久v下载方式| 日本欧美国产在线视频| 久久99蜜桃精品久久| 伦理电影大哥的女人| 欧美潮喷喷水| 高清在线视频一区二区三区| 99热这里只有是精品在线观看| 一本久久精品| 一级二级三级毛片免费看| 精品国产乱码久久久久久小说| 大香蕉久久网| 国产成人a区在线观看| 干丝袜人妻中文字幕| 免费黄色在线免费观看| 日本猛色少妇xxxxx猛交久久| 两个人的视频大全免费| 一个人看视频在线观看www免费| 亚洲人成网站在线播| 在线免费观看不下载黄p国产| 青青草视频在线视频观看| 久久久久精品久久久久真实原创| 亚洲国产日韩一区二区| 天堂网av新在线| 能在线免费看毛片的网站| 在线观看三级黄色| 日日啪夜夜撸| 国产老妇女一区| 99久久九九国产精品国产免费| 最近最新中文字幕大全电影3| 国产高清有码在线观看视频| 极品少妇高潮喷水抽搐| 国模一区二区三区四区视频| 国产男人的电影天堂91| 精品国产乱码久久久久久小说| 三级国产精品欧美在线观看| 亚洲成色77777| 麻豆成人av视频| 国产一区有黄有色的免费视频| 欧美丝袜亚洲另类| 国产亚洲av嫩草精品影院| 国产免费视频播放在线视频| 一级二级三级毛片免费看| 免费av毛片视频| 黄片wwwwww| 欧美区成人在线视频| 搞女人的毛片| 国产淫语在线视频| 直男gayav资源| 99热6这里只有精品| 国产精品久久久久久av不卡| 激情 狠狠 欧美| 97超视频在线观看视频| 精品久久久久久电影网| 99热国产这里只有精品6| 国产一区二区在线观看日韩| freevideosex欧美| 日本黄大片高清| 国产免费福利视频在线观看| 日本黄大片高清| 两个人的视频大全免费| 国内少妇人妻偷人精品xxx网站| 国产乱人视频| 午夜福利在线在线| 亚洲av欧美aⅴ国产| 精品国产露脸久久av麻豆| 白带黄色成豆腐渣| h日本视频在线播放| 五月开心婷婷网| 十八禁网站网址无遮挡 | 美女国产视频在线观看| 视频区图区小说| 菩萨蛮人人尽说江南好唐韦庄| 日本午夜av视频| 成人国产麻豆网| 精品人妻视频免费看| 91午夜精品亚洲一区二区三区| 麻豆久久精品国产亚洲av| 国产精品一区二区性色av| 久久久亚洲精品成人影院| 欧美日韩在线观看h| 国产黄频视频在线观看| 日本与韩国留学比较| 深夜a级毛片| freevideosex欧美| 国产亚洲5aaaaa淫片| 日韩伦理黄色片| 成人国产av品久久久| 午夜免费观看性视频| 老女人水多毛片| 最近最新中文字幕大全电影3| 国产色婷婷99| 国产成人一区二区在线| 人妻一区二区av| 国产欧美亚洲国产| 岛国毛片在线播放| 国产有黄有色有爽视频| 三级国产精品欧美在线观看| 亚洲av欧美aⅴ国产| 男的添女的下面高潮视频| 久久久亚洲精品成人影院| 精品人妻视频免费看| 亚洲av成人精品一二三区| 美女国产视频在线观看| 成人特级av手机在线观看| 18禁裸乳无遮挡动漫免费视频 | 涩涩av久久男人的天堂| 99热这里只有是精品50| 男人添女人高潮全过程视频| 夜夜爽夜夜爽视频| 18+在线观看网站| 91精品国产九色| 丝袜美腿在线中文| 亚洲精品国产av成人精品| 国产亚洲精品久久久com| 亚洲精品日本国产第一区| 九九爱精品视频在线观看| 尾随美女入室| 美女脱内裤让男人舔精品视频| 亚洲精品成人av观看孕妇| 中文乱码字字幕精品一区二区三区| 乱系列少妇在线播放| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| 国语对白做爰xxxⅹ性视频网站| 五月天丁香电影| 三级国产精品片| 美女视频免费永久观看网站| 亚洲精品乱码久久久v下载方式| 国产成人a区在线观看| 人妻一区二区av| av.在线天堂| 欧美日韩在线观看h| 国产精品人妻久久久影院| 偷拍熟女少妇极品色| av卡一久久| 亚洲av免费高清在线观看| 免费在线观看成人毛片| 国产成人a∨麻豆精品| 日韩制服骚丝袜av| 免费不卡的大黄色大毛片视频在线观看| 久久热精品热| 内射极品少妇av片p| av天堂中文字幕网| 婷婷色麻豆天堂久久| 色吧在线观看| 日本爱情动作片www.在线观看| 男人和女人高潮做爰伦理| 久久久久久久国产电影| 久热这里只有精品99| av在线亚洲专区| 国产白丝娇喘喷水9色精品| 久久精品人妻少妇| 成人国产麻豆网| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 国产精品一区www在线观看| 在线亚洲精品国产二区图片欧美 | 韩国高清视频一区二区三区| 丝瓜视频免费看黄片| 亚洲精品乱码久久久v下载方式| 又爽又黄a免费视频| 久久精品国产亚洲av天美| 亚洲av在线观看美女高潮| av在线老鸭窝| 午夜视频国产福利| 成人亚洲精品一区在线观看 | 男女边吃奶边做爰视频| 欧美另类一区| 国产黄片视频在线免费观看| 美女内射精品一级片tv| 久久久久精品性色| 国产爽快片一区二区三区| av免费在线看不卡| av免费在线看不卡| 亚洲精品国产色婷婷电影| 色播亚洲综合网| 久久久久网色| 国产精品久久久久久精品古装| 青春草视频在线免费观看| 色综合色国产| 亚洲精品乱码久久久久久按摩| 亚洲天堂av无毛| 2018国产大陆天天弄谢| 亚洲精品久久午夜乱码| 老司机影院成人| 欧美高清性xxxxhd video| 80岁老熟妇乱子伦牲交| 黄色一级大片看看| 在线看a的网站| 亚洲欧洲国产日韩| 五月玫瑰六月丁香| 少妇猛男粗大的猛烈进出视频 | 最近中文字幕2019免费版| 边亲边吃奶的免费视频| 精品国产三级普通话版| 偷拍熟女少妇极品色| 插阴视频在线观看视频| a级毛色黄片| 国产一区有黄有色的免费视频| 久久久久久久久久成人| 你懂的网址亚洲精品在线观看| 日韩一本色道免费dvd| 日本与韩国留学比较| 亚洲自偷自拍三级| 免费电影在线观看免费观看| 国产精品三级大全| 少妇猛男粗大的猛烈进出视频 | 看免费成人av毛片| 亚洲国产高清在线一区二区三| 国产黄色免费在线视频| 人妻夜夜爽99麻豆av| av天堂中文字幕网| 国产日韩欧美在线精品| 成人美女网站在线观看视频| 男女无遮挡免费网站观看| 免费av观看视频| 亚洲色图av天堂| 免费观看在线日韩| 亚洲天堂av无毛| 亚洲av福利一区| 在线观看美女被高潮喷水网站| 一个人观看的视频www高清免费观看| 亚洲最大成人手机在线| 免费在线观看成人毛片| 亚洲美女搞黄在线观看| 精品视频人人做人人爽| 熟女av电影| av.在线天堂| 2021天堂中文幕一二区在线观| 免费播放大片免费观看视频在线观看| 欧美精品国产亚洲| 欧美成人a在线观看| 特大巨黑吊av在线直播| 波多野结衣巨乳人妻| 国产探花极品一区二区| 久久精品久久久久久久性| 国产av不卡久久| 麻豆国产97在线/欧美| 精品久久久精品久久久| 久久久久精品性色| 韩国高清视频一区二区三区| 精品亚洲乱码少妇综合久久| 一级毛片aaaaaa免费看小| 色综合色国产| 在线观看av片永久免费下载| 精品久久久久久久久亚洲| 爱豆传媒免费全集在线观看| 男女国产视频网站| 一本久久精品| 少妇熟女欧美另类| 免费看日本二区| 在线观看人妻少妇| kizo精华| 黄色一级大片看看| av.在线天堂| 亚洲天堂av无毛| 2018国产大陆天天弄谢| 国产黄片视频在线免费观看| 丝袜美腿在线中文| 亚洲四区av| 天堂俺去俺来也www色官网| 国产爽快片一区二区三区| 中文字幕制服av| 人妻 亚洲 视频| 十八禁网站网址无遮挡 | 最近最新中文字幕免费大全7| 日韩三级伦理在线观看| 亚洲精品国产成人久久av| 在线观看国产h片| 久久韩国三级中文字幕| 国产精品一区www在线观看| 日韩 亚洲 欧美在线| 免费看日本二区| 久久这里有精品视频免费| 亚洲经典国产精华液单| 三级国产精品欧美在线观看| 亚洲精品,欧美精品| 菩萨蛮人人尽说江南好唐韦庄| 国产精品精品国产色婷婷| 一本一本综合久久| 成人鲁丝片一二三区免费| 夜夜爽夜夜爽视频| 亚洲国产精品999| 女人久久www免费人成看片| 日韩一本色道免费dvd| 精品人妻视频免费看| 国产成人91sexporn| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 成人无遮挡网站| 精品人妻熟女av久视频| 成人鲁丝片一二三区免费| 精品人妻一区二区三区麻豆| 特级一级黄色大片| 人体艺术视频欧美日本| 中文天堂在线官网| 日本色播在线视频| 日韩不卡一区二区三区视频在线| 一级片'在线观看视频| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区国产| 亚洲不卡免费看| 男人添女人高潮全过程视频| av福利片在线观看| 国产精品无大码| 免费电影在线观看免费观看| 亚洲精品国产色婷婷电影| 亚洲婷婷狠狠爱综合网| 亚洲av免费高清在线观看| 欧美 日韩 精品 国产| 欧美日本视频| 制服丝袜香蕉在线| 国产精品久久久久久精品电影| 深爱激情五月婷婷| 久久久久网色| 亚洲人与动物交配视频| 中文字幕亚洲精品专区| 亚洲精华国产精华液的使用体验| 久久久久久久久久久免费av| 男女啪啪激烈高潮av片| 精品久久久久久电影网| 各种免费的搞黄视频| 国产黄片视频在线免费观看| 麻豆精品久久久久久蜜桃| 国产一级毛片在线| 国产精品不卡视频一区二区| 国产有黄有色有爽视频| 国产精品成人在线| 在线观看三级黄色| 日韩成人av中文字幕在线观看| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| 91精品一卡2卡3卡4卡| 老司机影院毛片| 少妇丰满av| 男女边吃奶边做爰视频| 国产精品久久久久久av不卡| 91精品国产九色| 亚洲三级黄色毛片| 欧美激情久久久久久爽电影| 免费看a级黄色片| 国产一区亚洲一区在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲人与动物交配视频| av在线app专区| 成人毛片60女人毛片免费| 九九在线视频观看精品| 日韩欧美精品v在线| 一级a做视频免费观看| 国产精品久久久久久av不卡| 亚洲精品456在线播放app| 国产伦理片在线播放av一区| 熟女电影av网| 婷婷色综合大香蕉| 国产黄a三级三级三级人| 亚洲国产最新在线播放| 狠狠精品人妻久久久久久综合| 精品一区二区三卡| 日韩欧美 国产精品| 九色成人免费人妻av| 精品久久久久久久末码| 国产成人aa在线观看| 国产一区有黄有色的免费视频| 国产成人精品久久久久久| 久久久久久久久大av| 亚洲高清免费不卡视频| 女的被弄到高潮叫床怎么办| 国产伦理片在线播放av一区| 神马国产精品三级电影在线观看| 一本色道久久久久久精品综合| 最近手机中文字幕大全| 熟妇人妻不卡中文字幕| 岛国毛片在线播放| 哪个播放器可以免费观看大片| 我要看日韩黄色一级片| 日韩 亚洲 欧美在线| av在线老鸭窝| 熟女电影av网| 亚洲国产精品专区欧美| av卡一久久| 99热全是精品| 亚洲,欧美,日韩| 少妇人妻 视频| 欧美成人一区二区免费高清观看| 精品99又大又爽又粗少妇毛片| 色5月婷婷丁香| 国产 一区精品| av卡一久久| 国产乱人偷精品视频| 九九在线视频观看精品| 美女主播在线视频| 亚洲色图综合在线观看| 中文字幕免费在线视频6| 不卡视频在线观看欧美| 少妇丰满av| 国产成人a∨麻豆精品| 亚洲国产精品国产精品| 免费观看av网站的网址| 久久ye,这里只有精品| 国产69精品久久久久777片| 久久久久久久久久成人| 亚洲欧美精品专区久久| 噜噜噜噜噜久久久久久91| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 日韩av不卡免费在线播放| 亚洲精品国产成人久久av| 成人二区视频| 日本熟妇午夜| 免费播放大片免费观看视频在线观看| 一区二区三区四区激情视频| videos熟女内射| 成人毛片60女人毛片免费| 在线观看国产h片| 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 免费观看的影片在线观看| 精品一区二区三卡| 国产爱豆传媒在线观看| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 黄色日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国模一区二区三区四区视频| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| 精品久久国产蜜桃| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 一级片'在线观看视频| 国产精品99久久99久久久不卡 | 欧美一区二区亚洲| 草草在线视频免费看| av免费观看日本| 久久久国产一区二区| 男人和女人高潮做爰伦理| 亚洲精品国产av蜜桃| 成年版毛片免费区| 精品久久久久久电影网| 卡戴珊不雅视频在线播放| videos熟女内射| 亚洲激情五月婷婷啪啪| 免费观看无遮挡的男女| 欧美 日韩 精品 国产| 国产成人freesex在线| 国产一区二区在线观看日韩| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久丰满| 国产午夜精品一二区理论片| 街头女战士在线观看网站| 在线观看免费高清a一片| 美女视频免费永久观看网站| av在线app专区| 久久精品国产亚洲av涩爱| 欧美一级a爱片免费观看看| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 美女主播在线视频| 麻豆成人午夜福利视频| 岛国毛片在线播放| 亚洲国产欧美人成| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 18禁在线无遮挡免费观看视频| 成人欧美大片| 日韩制服骚丝袜av| 国产69精品久久久久777片| av.在线天堂| av国产精品久久久久影院| 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 别揉我奶头 嗯啊视频| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 波多野结衣巨乳人妻| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产| 欧美区成人在线视频| 青春草亚洲视频在线观看| 一级爰片在线观看| 日本色播在线视频| 国产成人aa在线观看| 亚洲电影在线观看av| 亚洲精品久久午夜乱码| 国产在线男女| 九九久久精品国产亚洲av麻豆| 少妇人妻精品综合一区二区| 色网站视频免费| 国产综合精华液| 午夜免费观看性视频| 高清日韩中文字幕在线| 国产一级毛片在线| 午夜福利高清视频| videossex国产| 99re6热这里在线精品视频| 一级片'在线观看视频| 直男gayav资源| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 网址你懂的国产日韩在线| 精品一区在线观看国产| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 精品国产一区二区三区久久久樱花 | 欧美日韩视频高清一区二区三区二| 男女那种视频在线观看| av免费观看日本| 狂野欧美激情性bbbbbb| 亚洲成人av在线免费| 69人妻影院| 国产又色又爽无遮挡免| xxx大片免费视频| 亚洲av不卡在线观看| 午夜福利高清视频| 婷婷色综合www| 欧美激情久久久久久爽电影| 欧美少妇被猛烈插入视频| 成年女人在线观看亚洲视频 | 高清毛片免费看| 日本色播在线视频| 男插女下体视频免费在线播放| 亚洲最大成人中文| 舔av片在线| 欧美潮喷喷水| 国产成人免费观看mmmm| 国产精品久久久久久久久免| 亚洲精品,欧美精品| 在线免费十八禁| 成年女人看的毛片在线观看| 国产免费视频播放在线视频| 91狼人影院| 一级二级三级毛片免费看| 精品久久久久久久人妻蜜臀av| 国产亚洲91精品色在线| 伊人久久国产一区二区| 精品国产乱码久久久久久小说| 成人鲁丝片一二三区免费| 男女边摸边吃奶| 老司机影院成人| 你懂的网址亚洲精品在线观看| 亚洲av一区综合| 中国美白少妇内射xxxbb| 国产精品三级大全| 观看免费一级毛片| 精华霜和精华液先用哪个| 97精品久久久久久久久久精品| 国产av码专区亚洲av| 亚洲国产最新在线播放| 成人免费观看视频高清| 免费观看性生交大片5| 尾随美女入室| 国产成人福利小说| 国产爽快片一区二区三区| 成人黄色视频免费在线看| 国产中年淑女户外野战色| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| 国产精品.久久久| 亚洲,一卡二卡三卡| 一个人看视频在线观看www免费| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 久久久国产一区二区| 国产日韩欧美在线精品| 亚洲国产精品专区欧美| 欧美成人午夜免费资源| 国产精品无大码| 建设人人有责人人尽责人人享有的 | 一级毛片电影观看| 99久久精品一区二区三区| 啦啦啦在线观看免费高清www| 99热这里只有是精品50| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品一二三| 麻豆国产97在线/欧美| 男女无遮挡免费网站观看| 亚洲国产欧美在线一区| 男人添女人高潮全过程视频| 一级片'在线观看视频| 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 涩涩av久久男人的天堂| 爱豆传媒免费全集在线观看| 欧美潮喷喷水| 精品久久久久久久久av| 99久久精品一区二区三区| 夫妻午夜视频| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 亚洲国产日韩一区二区| videossex国产| 高清午夜精品一区二区三区| 国内精品宾馆在线| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 91aial.com中文字幕在线观看|