• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of Global Solution to Boltzmann-Enskog Equationwith External Force?

    2012-12-27 07:06:08JIANGZHENGLUMALIJUNANDYAOZHENGAN
    關(guān)鍵詞:明顯改善關(guān)節(jié)疼痛

    JIANG ZHENG-LU,MA LI-JUNAND YAO ZHENG-AN

    (1.Department of Mathematics,Sun Yat-Sen University,Guangzhou,510275)

    (2.School of Mathematics,Hebei University of Technology,Tianjin,300401)

    Stability of Global Solution to Boltzmann-Enskog Equation
    with External Force?

    JIANG ZHENG-LU1,MA LI-JUN2AND YAO ZHENG-AN1

    (1.Department of Mathematics,Sun Yat-Sen University,Guangzhou,510275)

    (2.School of Mathematics,Hebei University of Technology,Tianjin,300401)

    In the presence of external forces depending only on the time and space variables,the Boltzmann-Enskog equation formally conserves only the mass of the system,and its entropy functional is also nonincreasing.Corresponding to this type of equation,we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals:one is to describe interactions between particles with different velocities and the other is to measure the L1distance between two mild solutions. The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the verifi cation of the L1stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the in fl uence of external forces.

    Boltzmann-Enskog equation,global solution,stability,Lyapunov functional

    1 Introduction

    We are interested in the time-asymptotic behaviour and the Lyapunov stability of the global classical solution to the Enskog equation for a moderately or highly dense gas in the in fl uence of external forces.As the generalization of the Boltzmann equation,the Enskog equation is a model first proposed by Enskog[1]in 1922 for a description of the dynamical behavior of the density of a moderately or highly dense gas.This is because the Boltzmann equation is no longer suitable for gases with high-density e ff ects although it models dilute gases successfully.The Enskog equation is a partial differential integral equation of the hyperbolic type.There are some different versions of the Enskog equation in order that they formally satisfy some properties,such as entropy bound and consistence with irreversible thermodynamics(see [2–3]).We now take into account the so-called Boltzmann-Enskog equation,in the presence of external forces E(t,x)depending on the time and space variables t∈R+and x∈R3,as follows:

    for a one-particle distribution function f=f(t,x,v)that depends on time t∈R+,the position x∈R3and the velocity v∈R3,where Q is the collision operator whose form will be addressed below.Here and throughout this paper,R+represents the positive side of the real axis including its origin andR3denotes the three-dimensional Euclidean space.

    The collision operator Q is expressed by the di ff erence between the gain and loss terms respectively,and de fi ned by

    In(1.2)-(1.3),S2+={ω∈S2:ω·(v?w)≥0}is a subset of a unit sphere surface S2inR3,a is a diameter of hard sphere,ω is a unit vector along the line passing through the centers of the spheres at their interaction,(v′,w′)are velocities after collision of two particles having precollisional velocities(v,w),and

    is the collision kernel.

    The Boltzmann-Enskog equation(1.1)is a modi fi cation of Enskog’s original work mentioned above and obeys only the conservation laws of mass in the presence of external forces.It is worth mentioning that the equation(1.1)still obeys the conservation laws of mass,momentum and energy under the assumption that E(t,x)=0,that is,in the absence of external forces(see[4]).

    As for the Boltzmann equation,two colliding particles obey the conservation laws of both kinetic momentum and energy as follows:

    This results in their velocity relations

    The two postcollisional velocities given by(1.5)also have another expression as follows(see [5–6]):

    There is a vast literature on the global existence and uniqueness of the solutions to the initial value problem for the Boltzmann and the Enskog equations without external forces. In the absence of external forces,a theorem about the existence and uniqueness of global solution was first given by Ukai[7]for the Boltzmann equation,and another global existence and uniqueness result was then shown by Illner and Shinbrot[8]about the solutions to the initial value problem for the Boltzmann equation with small initial data in the in finite vacuum,and after that,a global solution existence proof was given by DiPerna and Lions[9]for the Boltzmann equation with large data,but up to now,one cannot know whether the solution to the problem is unique or not.For the Enskog equation without external forces, one may find some solution existence results,together with the L1stability of solutions, which were given by Cercignani[10].At that time,with an analysis of the well-posedness of the initial value problem in unbounded domains,some global existence and uniqueness theorems were obtained by Toscani and Bellomo[11]about the solutions to the Enskog equation in the absence of external forces for small initial data with suitable decay to zero at in fi nity in the phase space,and the asymptotic stability of the solutions and the in fl uence of the external field was also discussed in this reference.After that,a global existence and uniqueness proof was given by Polewczak[3]for the Enskog equation with near-vaccum data and another one shown by Arkeryd[2]for the present Boltzmann-Enskog equation with large data.The time-asymptotic behaviour of solutions in the weighted L∞was also provided by Polewczak[3,12]for the Enskog equation in the absence of external forces.

    Two Lyapunov functionals were constructed by Ha[13]to show both the L1stability and the time-asymptotic behaviour for global classical solutions to the Boltzmann-Enskog equation without external forces.Recently,Jiang[14]found that two key inequalities do not hold mathematically in the proof given by Ha(see(3.1)and(3.2)in[13]),and then built two different Lyapunov functionals and showed their time-decay properties.When we use the new functionals to study the stability and the asymptotic behaviour,we can solve the problem of the inequalities mentioned above.The time-decay properties of our functionals not only yield the time-asymptotic behaviour in the L1norm but also recover the L1stability for global classical solutions to the Boltzmann-Enskog equation without external forces.On the other hand,in the case of having external forces in in finite vacuum,a global existence and uniqueness theorem of mild solutions was given by Duanet al.[5]for the Boltzmann equation,and a similar result was shown by Jiang[14]for the Boltzmann-Enskog equation. Now there is no yet this result about both the time-asymptotic behaviour and the stability of solutions to the Boltzmann-Enskog equation in the presence of external forces.The aim of this paper is to build new functionals to show this type of result in the case of the Boltzmann-Enskog equation with external forces.

    The rest of this paper is arranged as follows.In Section 2 some properties of the collision operator Q of the Boltzmann-Enskog equation(1.1)are introduced including both the entropy identity and the nonincreasing property of the system entropy functional.In Section 3 some hypotheses of the external forces are then given for the Boltzmann-Enskog equation(1.1).New functionals are constructed and the time-asymptotic behaviour of a small family of solutions to the Boltzmann-Enskog equation(1.1)with external forces is given in Section 4.different functionals are de fi ned and the Lyapunov stability of solution to the Boltzmann-Enskog equation with external forces is fi nally shown in Section 5.

    2 The Conservation of Mass and the Entropy Functional

    In this section,we first prove a property of the collision operator Q introduced above,in order to show formally the conservation law of mass for the Boltzmann-Enskog equation (1.1)in the presence of external forces,and then we derive the entropy identity to get the nonincreasing property of the system entropy functional.

    Note that

    For the collision operator Q of the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3) we give the following lemma.

    Lemma 2.1Suppose thatQ=Q+?Q?is a collisional operator as de fi ned by(1.2)and(1.3).Letψ=ψ(x,v)andf=f(x,v)be two measurable functions onR3×R3.IfψQ±(f)∈L1(R3×R3),then

    Let us first consider the loss integral Il.We proceed one step by exchanging v and w and replacing ω with?ω in the integral on the right hand side of(2.4).Then we replace x with x+aω and use(2.4).Thus we get

    The gain integral Igwill be considered below.By using the properties that

    we first rechange(2.3)as an integral with respect to the variables of ω,w′,v′and x.Then we exchange v and v′,w and w′,and replace ω with?ω.Finally,by using the same kind of changes of the loss integral Il,we can get

    Inserting(2.6)and(2.7)into(2.5)gives(2.1).

    Similarly,we can get(2.2).

    We usually call HB(t)the Boltzmann entropy functional.It has the following property:Theorem 2.1Put

    whereHB(t)andI(t)are de fi ned as follows:

    Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)inL1(R3×R3),and bothQ±(f)andln(f)Q±(f)belong toL1(R3×R3).

    By integrating over the variable x on the right hand side of(2.10),Lemma 2.1 and the fact that

    (2.12)is also called the entropy indentity.Since lnx≤x?1 for x>0,the estimation of the integral on the right hand side of the entropy indentity(2.12)reads as

    The proof of this theorem is finished.

    We usually call H(t)in Theorem 2.1 the entropy functional of the system.Theorem 2.1 shows that the entropy functional of the system is nonincreasing.

    3 Hypotheses of External Forces

    In this section some hypotheses of the external forces are made and a representation of the mild solution is given for the Boltzmann-Enskog equation(1.1).

    Let us begin with the bicharacteristic equations of the Boltzmann-Enskog eqaution(1.1):

    Suppose that such a vector-value force function E(t,x)allows the above system(3.1)to have a global-in-time smooth solution denoted by

    for any fixed(t,x,v)∈R+×R3×R3,and that there exist two functions αi(s;t,x,v) (i=1,2)such that the solution(3.2)satis fies the following conditions:

    for any s∈R+and(ξ,η)∈R3×R3with any point(t,x,v) fixed inR+×R3×R3,where α0,d0and e0are positive constants independent of s and(t,x,v),and(s;t,x,v)(i=1,2) represent the derivative with respect to s.

    We now give a representation of the mild solution to the Boltzmann-Enskog equation. Let us first introduce an operator U(s)de fi ned as follows:

    A function f(t,x,v)is called a global mild solution to the Boltzmann-Enskog equation (1.1)if f(t,x,v)satis fies(3.10)for almost every(t,x,v)∈R+×R3×R3.

    By(1.7)and(1.8),U(s)Q(f)(t,x,v)can be rewritten as the di ff erence between the gain and loss terms of two other forms:

    Remark 3.1We construct a subset M of a Banach space C(R+×R3×R3),which has the property that every element f=f(s,x,v)∈M if and only if there exists a positive constant c such that f satis fies

    for any fixed p and q in(0,+∞).It follows that M is a Banach space when it is equipped with a norm of the following form:

    The initial data f0≡f(0,x,v)is bounded in L1(R3×R3).This implies that the total mass is finite.This requires that the mean free path is sufficiently large if the finite total mass is sufficiently small(see[5]).This is exactly the requirement on the Boltzmann-Enskog equation with external forces in in finite vacuum,which is similar to one considered by Illner and Shinbrot[8]for the Boltzmann equation.It is worth mentioning that there are many different classes of functions which can be taken as the choice of h(X(0;t,x,v))and m(V(0;t,x,v))(see[5–6]).Suppose that the conditions(3.2)–(3.7)hold and that h(x)and m(v)are the same as in(3.15).It can be then known from[14]that the Boltzmann-Enskog equation(1.1)has a unique non-negative global mild solution f=f(t,x,v)∈M through a non-negative initial data f0=f0(x,v)when

    is sufficiently small.

    4 Asymptotic Behaviour

    In this section we build two new functionals and study their properties,and then show the time-asymptotic behaviour of a class of solutions to the Boltzmann-Enskog equation(1.1).

    Let us begin with two new functionals D=D++D?and F=F++F?,which are de fi ned as follows:

    where for clarity,X(s)and V(s)represent X(s;t,x,v)and V(s;t,x,v),respectively,from which the initial variables(t,x,v)are suppressed.Obviously,by(3.13)and(3.14),we know that

    For a special class of solutions f to the Boltzmann-Enskog equation,D[f](s)describes interactions between particles with various velocities.It can be found below that the timedecay property of D[f](s)for a special class of solutions f to the Boltzmann-Enskog equation leads directly to the time-asymptotic behaviour of these solutions in L1(R3×R3)and so D

    is called Lyapunov functional.To estimate the time decay of D[f](s),we first have to show the following lemma.

    Lemma 4.1[14]LetF(x)be an integrable function onR3andva vector inR3.Assume thatS2+={ω|v·ω≥0,ω∈S2}whereS2is a unit sphere surface inR3.Then

    Combining De fi nition(4.1)and Lemma 4.1,we can easily deduce that

    for a class of integrable function f=f(t,x,v).Furthermore,we also obtain a similar timedecay property of D[f](s)to that shown by Jiang[14]as follows.

    Theorem 4.1LetDandFbe de fi ned by(4.1)and(4.2).Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through an initial datumf0=f0(x,v),and that bothfandfQ±(f)belong toL1(R3×R3).Giving the hypothesis(3.8)of the external forcesE(t,x),and assuming the diametera>0,then we have

    Proof.The proof of this theorem is similar to that of Jiang[14].

    By Theorem 4.1,we then get

    Theorem 4.2Put

    Assume thatf=f(t,x,v)is a nonnegative classical solution to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through an initial datumf0=f0(x,v)satisfying

    and that bothfandfQ±(f)belong toL1(R3×R3).Giving the hypothesis(3.8)of the external forcesE(t,x),and assuming the diametera>0,thenf(t,x,v)converges inL1(R3×R3)tof∞(t,x,v)astgoes to+∞.

    Proof.By Theorem 4.1,we know that

    where D[f](s)and F[f](s)are the same as in Lemma 4.1.It follows that

    This completes our proof of Theorem 4.2.

    Remark 4.2In Theorem 4.2 the time-asymptotic behaviour of a class of solutions to the Boltzmann-Enskog equation is in fact the time-asymptotic convergence of this type of solutions in the L1norm to the free motion as t trends to in fi nity.The time-asymptotic convergence in the L∞norm for the Boltzmann-Enskog equation in the presence of external forces can be also shown by using the same method as given by Polewczak[3]for the Enskog equation in the absence of external forces.

    5 L1Stability

    In this section some new functionals are constructed for the L1stability of global classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3).One of them is a Lyapunov functional and it is equivalent to the L1distance functional.The time-decay property of the Lyapunov functional is also shown for the L1stability.

    Let us begin with constructing two functionals L[f,g](s)and Fd[f,g](s)as follows. L[f,g](s)is de fi ned by

    where k1and k2are positive constants to be determined later,D is the same as given by (4.1),Ldis denoted by

    This functional L is here called a Lyapunov functional.

    We first have the following property of the equivalence between the Lyapunov functional and L1distance functionals L and Ld.

    Lemma 5.1LetLandLdbe de fi ned by(5.1)and(5.2),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds.Assume that

    本組20例患者隨訪1年以上,末次隨訪時(shí),所有患者無疼痛,關(guān)節(jié)活動明顯改善15例,關(guān)節(jié)活動部分改善3例,無改善的2例。

    are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v),respectively,and that all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then

    where

    and by(3.8)and Lemma 4.1 it can be found that W(s,X(s),V(s))is bounded by the L1norms of f0and g0as follows:

    (5.5)thus follows.Our proof of this lemma hence ends up.

    For a class of solutions f=f(t,x,v)and g=g(t,x,v)to the Boltzmann-Enskog equation (1.1)with(1.2)and(1.3),the time-decay properties of the two functionals Dd[f,g](s)and Ld[f,g](s)can be also obtained as follows.

    Lemma 5.2LetLandLdbe de fi ned by(5.1)and(5.2),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds.Assume thatf=f(t,x,v)andg= g(t,x,v)are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)respectively,and that all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then

    It can be further shown that the functional L has the following time-decay property similar to that shown by Ha(see Theorem 1.4 in[13]).

    Theorem 5.1LetLandFdbe de fi ned by(5.1)and(5.4),respectively.Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds and that the diametera>0.Assume thatf=f(t,x,v)andg=g(t,x,v)are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)satisfyingrespectively,and that all thefunctionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).Then there exists a positive constantsuch that

    for anys∈R+,whereCis a positive constant independent ofs.

    Proof.Similarly to the proof of Ha(see Theorem 1.4 in[13]).

    By Theorem 5.1,we further have

    Theorem 5.2Suppose that the hypothesis(3.8)of the external forcesE(t,x)holds and that the diametera>0.Assume that

    are two nonnegative classical solutions to the Boltzmann-Enskog equation(1.1)with(1.2)and(1.3)through initial dataf0=f0(x,v)andg0=g0(x,v)satisfying

    respectively,and all the functionsf,g,fQ±(f)andgQ±(g)are elements inL1(R3×R3).ThenZZ

    whereCis a positive constant independent oft.

    [1]Enskog D.Kinetiche Theorie der W`armeleitung,Reibung und Selbstdi ff usion in gewissen werdichteten Gasen und Flubigkeiten.Kungl.Sv.Vetenskapsakademiens Handl,1922,63: 3–44,English Transl.in Brush S G,Kinetic Theory.vol 3.New York:Pergamon,1972.

    [2]Arkeryd L.On the Enskog equation with large initial data.SIAM J.Math.Anal.,1990,21: 631–646.

    [3]Polewczak J.Global existence and asymptotic behavior for the nonlinear Enskog equation.SIAM J.Appl.Math.,1989,49:952–959.

    [4]Polewczak J.On some open problems in the revised Enskog equation for dense gases.In Proceedings“WASCOM 99”10th Conference on Waves and Stability in Continuous Media, Vulcano(Eolie Islands),Italy,June 7–12,1999.In:Ciancio V,Donato A,Oliveri F,Rionero S.London:World Scienti fi c Publishing,2001:382–396.

    [5]Duan R,Yang T,Zhu C.Global existence to Boltzmann equation with external force in in finite vacuum.J.Math.Phys.,2005,46:053307.

    [6]Guo Y.The Vlasov-Poisson-Bolzmann system near vacuum.Comm.Math.Phys.,2001,218: 293–313.

    [7]Ukai S.Les solutions globales de l’quation de Boltzmann dans l’espace tout entier et dans le demi-espace,C.R.Acad.Sci.Paris Sr.A/B,1976,282(6):A317-A320.

    [8]Illner R,Shinbrot M.The Boltzmann equation,global existence for a rare gas in an in finite vacuum.Comm.Math.Phys.,1984,95:217–226.

    [9]DiPerna R J,Lions P L.On the Cauchy problem for Boltzmann equations:Global existence and weak stability.Ann.Math.,1989,130:321–366.

    [10]Cercignani C.Existence of global solutions for the space inhomogeneous Enskog equation.Transport Theory Statist.Phys.,1987,16:213–221.

    [11]Toscani G,Bellomo N.The Enskog-Boltzmann equation in the whole space R3:Some global existence,uniqueness and stability results.Comput.Math.Appl.,1987,13:851–859.

    [12]Polewczak J.Global existence in L1for the modi fi ed nonlinear Enskog equation in R3.J. Statist.Phys.,1989,56:157–173.

    [13]Ha S.Lyapunov functionals for the Enskog-Boltzmann equation.Indiana Univ.Math.J.,2005, 54:997–1014.

    [14]Jiang Z.Global solution to Enskog equation with external force in in finite vacuum.Chinese J.Contemp.Math.,2009,30:49–62.

    Communicated by Yin Jing-xue

    76P05,35Q75

    A

    1674-5647(2012)02-0108-13

    date:March 3,2009.

    The NSF(11171356)of China and the Grant(09LGTY45)of Sun Yat-Sen University.

    猜你喜歡
    明顯改善關(guān)節(jié)疼痛
    疼痛不簡單
    被慢性疼痛折磨的你,還要“忍”多久
    疼在疼痛之外
    特別健康(2018年2期)2018-06-29 06:13:40
    疼痛也是病 有痛不能忍
    海峽姐妹(2017年11期)2018-01-30 08:57:43
    風(fēng)電:棄風(fēng)限電明顯改善 海上風(fēng)電如火如荼
    能源(2018年8期)2018-01-15 19:18:24
    膽寧片聯(lián)合阿托伐他汀鈣片治療非酒精性脂肪肝93療效觀察
    健康前沿(2017年2期)2017-08-13 18:40:48
    人民生活明顯改善
    用跟骨解剖鋼板內(nèi)固定術(shù)治療跟骨骨折合并跟距關(guān)節(jié)及跟骰關(guān)節(jié)損傷的效果探討
    控?zé)焻f(xié)會:北京禁煙實(shí)施一周年 無煙環(huán)境明顯改善
    人民周刊(2016年11期)2016-06-30 14:04:45
    miRNA-140、MMP-3在OA關(guān)節(jié)滑液中的表達(dá)及相關(guān)性研究
    757午夜福利合集在线观看| 精品国产乱码久久久久久男人| 日韩精品青青久久久久久| 精品国产国语对白av| 欧洲精品卡2卡3卡4卡5卡区| 成年人黄色毛片网站| 天堂√8在线中文| 国产亚洲精品综合一区在线观看 | 国产片内射在线| 中国美女看黄片| 久久久国产精品麻豆| 亚洲精品一区av在线观看| www日本在线高清视频| 亚洲天堂国产精品一区在线| 久久午夜亚洲精品久久| 欧美日韩乱码在线| 国产av一区二区精品久久| 国产欧美日韩一区二区三区在线| 一区二区三区国产精品乱码| 亚洲av电影不卡..在线观看| 中文字幕人妻熟女乱码| 国产亚洲欧美在线一区二区| 亚洲国产看品久久| 12—13女人毛片做爰片一| 亚洲va日本ⅴa欧美va伊人久久| 黄片播放在线免费| 亚洲一区高清亚洲精品| 一区二区三区精品91| 日韩欧美免费精品| 一进一出好大好爽视频| 国产av在哪里看| 在线观看66精品国产| 欧美大码av| 99久久精品国产亚洲精品| 日韩大码丰满熟妇| av有码第一页| 久久中文字幕人妻熟女| 免费高清视频大片| 91字幕亚洲| 亚洲欧美日韩另类电影网站| 搡老熟女国产l中国老女人| 国产成人av教育| 久久人妻熟女aⅴ| 色综合亚洲欧美另类图片| 亚洲一区二区三区不卡视频| 校园春色视频在线观看| 国产精品久久久久久人妻精品电影| 久久婷婷人人爽人人干人人爱 | 国产午夜精品久久久久久| 老司机靠b影院| 国产成人精品久久二区二区免费| 久久久国产成人精品二区| 黄频高清免费视频| 国产精品久久久av美女十八| 欧美乱码精品一区二区三区| e午夜精品久久久久久久| 国产成人精品无人区| 日韩精品免费视频一区二区三区| 精品少妇一区二区三区视频日本电影| 女同久久另类99精品国产91| 精品国产乱子伦一区二区三区| 成人国语在线视频| bbb黄色大片| 久久午夜亚洲精品久久| 18美女黄网站色大片免费观看| 日日干狠狠操夜夜爽| 亚洲av日韩精品久久久久久密| 亚洲男人天堂网一区| 国产一卡二卡三卡精品| 日本欧美视频一区| 午夜福利18| 91成人精品电影| 国产成人免费无遮挡视频| 禁无遮挡网站| 真人一进一出gif抽搐免费| 又大又爽又粗| 国产精品 国内视频| 电影成人av| 一级片免费观看大全| 两个人视频免费观看高清| 亚洲av第一区精品v没综合| 最好的美女福利视频网| 久久久久久人人人人人| 亚洲专区中文字幕在线| 亚洲 欧美一区二区三区| 色综合欧美亚洲国产小说| 午夜福利视频1000在线观看 | 啦啦啦韩国在线观看视频| 天堂影院成人在线观看| 亚洲天堂国产精品一区在线| 怎么达到女性高潮| 制服人妻中文乱码| 脱女人内裤的视频| 女人爽到高潮嗷嗷叫在线视频| 一本大道久久a久久精品| 我的亚洲天堂| 国产人伦9x9x在线观看| 国产亚洲欧美精品永久| e午夜精品久久久久久久| 午夜老司机福利片| 麻豆国产av国片精品| 18禁裸乳无遮挡免费网站照片 | www.自偷自拍.com| 亚洲一区二区三区色噜噜| 午夜激情av网站| 欧美最黄视频在线播放免费| 制服人妻中文乱码| 亚洲精品国产一区二区精华液| 亚洲av电影不卡..在线观看| 色综合欧美亚洲国产小说| 久久草成人影院| 夜夜夜夜夜久久久久| 很黄的视频免费| 欧美乱妇无乱码| 久久久久国内视频| 夜夜爽天天搞| av视频在线观看入口| 黄色视频,在线免费观看| 亚洲狠狠婷婷综合久久图片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人久久性| 757午夜福利合集在线观看| 国产99久久九九免费精品| 欧美绝顶高潮抽搐喷水| 亚洲色图av天堂| 国产成人免费无遮挡视频| 色av中文字幕| 国产熟女午夜一区二区三区| 欧美日韩乱码在线| 啦啦啦 在线观看视频| 久久久久久国产a免费观看| 国产三级黄色录像| 成人免费观看视频高清| 亚洲中文av在线| 亚洲性夜色夜夜综合| 高清黄色对白视频在线免费看| 欧美日韩乱码在线| 性色av乱码一区二区三区2| 久久中文字幕人妻熟女| 狠狠狠狠99中文字幕| 一个人观看的视频www高清免费观看 | 亚洲天堂国产精品一区在线| 午夜免费鲁丝| 看片在线看免费视频| 国产伦一二天堂av在线观看| 中文字幕精品免费在线观看视频| 色播在线永久视频| 中文字幕精品免费在线观看视频| 成年版毛片免费区| 亚洲欧美精品综合一区二区三区| 久久香蕉精品热| 激情在线观看视频在线高清| 久热爱精品视频在线9| 中文亚洲av片在线观看爽| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕人妻熟女乱码| 国产精品秋霞免费鲁丝片| 日本vs欧美在线观看视频| 少妇的丰满在线观看| 中出人妻视频一区二区| 亚洲黑人精品在线| or卡值多少钱| 亚洲av熟女| 一级作爱视频免费观看| 很黄的视频免费| 国产精品永久免费网站| 啦啦啦韩国在线观看视频| 亚洲国产欧美网| 国产精品乱码一区二三区的特点 | 国产一区二区三区综合在线观看| 欧美黄色片欧美黄色片| 亚洲国产看品久久| 午夜福利影视在线免费观看| 在线国产一区二区在线| 咕卡用的链子| 国产免费男女视频| 国产精品亚洲美女久久久| 国产精品亚洲美女久久久| 亚洲一区二区三区不卡视频| 精品卡一卡二卡四卡免费| 精品高清国产在线一区| 成人精品一区二区免费| 国产熟女xx| 欧美国产精品va在线观看不卡| 国产亚洲精品一区二区www| 91在线观看av| av电影中文网址| 国产免费男女视频| 激情在线观看视频在线高清| 一级a爱视频在线免费观看| 久久香蕉精品热| 日韩中文字幕欧美一区二区| 一区二区三区激情视频| 999久久久精品免费观看国产| 精品一区二区三区视频在线观看免费| 一区二区三区高清视频在线| 国产三级在线视频| 国产又色又爽无遮挡免费看| 精品国产美女av久久久久小说| 国产91精品成人一区二区三区| 久久婷婷人人爽人人干人人爱 | 国产国语露脸激情在线看| 精品国产一区二区久久| 久久这里只有精品19| 精品久久蜜臀av无| 美女扒开内裤让男人捅视频| 成人18禁在线播放| 欧美一级a爱片免费观看看 | 国产蜜桃级精品一区二区三区| 在线永久观看黄色视频| 亚洲成人国产一区在线观看| 19禁男女啪啪无遮挡网站| 黄色视频,在线免费观看| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一小说| 欧美色视频一区免费| 婷婷丁香在线五月| 精品一区二区三区av网在线观看| 久久人人爽av亚洲精品天堂| 脱女人内裤的视频| 在线国产一区二区在线| 熟妇人妻久久中文字幕3abv| 亚洲最大成人中文| 搞女人的毛片| 精品福利观看| 一区二区三区激情视频| 成人国产一区最新在线观看| 一a级毛片在线观看| 欧美老熟妇乱子伦牲交| 一进一出抽搐gif免费好疼| 亚洲国产高清在线一区二区三 | 日韩一卡2卡3卡4卡2021年| 亚洲av电影不卡..在线观看| 亚洲天堂国产精品一区在线| 脱女人内裤的视频| 欧美绝顶高潮抽搐喷水| 女同久久另类99精品国产91| 日韩免费av在线播放| 久久久国产欧美日韩av| 一区二区日韩欧美中文字幕| 国产欧美日韩精品亚洲av| 嫩草影院精品99| 俄罗斯特黄特色一大片| 香蕉国产在线看| 久久久久国产一级毛片高清牌| 最新美女视频免费是黄的| 91在线观看av| 一级黄色大片毛片| 丝袜在线中文字幕| 精品国产一区二区三区四区第35| 国产一卡二卡三卡精品| 亚洲av电影在线进入| 亚洲国产欧美一区二区综合| 波多野结衣一区麻豆| 狂野欧美激情性xxxx| 久久人妻av系列| 女人爽到高潮嗷嗷叫在线视频| 一级a爱视频在线免费观看| 精品电影一区二区在线| avwww免费| 夜夜看夜夜爽夜夜摸| 黄色 视频免费看| 十八禁网站免费在线| 制服丝袜大香蕉在线| 男人操女人黄网站| 精品欧美一区二区三区在线| 精品国内亚洲2022精品成人| 女性被躁到高潮视频| 精品电影一区二区在线| 日韩欧美一区二区三区在线观看| 久久久久久大精品| 国产亚洲av嫩草精品影院| 国产单亲对白刺激| 高潮久久久久久久久久久不卡| 亚洲一区中文字幕在线| 自线自在国产av| 欧美老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 成人手机av| 欧美另类亚洲清纯唯美| 色综合婷婷激情| 国产高清视频在线播放一区| АⅤ资源中文在线天堂| 一个人免费在线观看的高清视频| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| 国产成人欧美在线观看| 正在播放国产对白刺激| 国产99久久九九免费精品| 亚洲国产日韩欧美精品在线观看 | 午夜a级毛片| 少妇被粗大的猛进出69影院| 亚洲精品美女久久av网站| 丝袜美腿诱惑在线| 1024视频免费在线观看| 非洲黑人性xxxx精品又粗又长| 精品欧美一区二区三区在线| 黄色a级毛片大全视频| 亚洲国产日韩欧美精品在线观看 | 自线自在国产av| 99re在线观看精品视频| 在线免费观看的www视频| 精品久久久久久久毛片微露脸| 一个人观看的视频www高清免费观看 | 成人欧美大片| 亚洲av五月六月丁香网| 国产99白浆流出| 好男人电影高清在线观看| 日韩精品免费视频一区二区三区| 变态另类丝袜制服| 99精品久久久久人妻精品| 久久热在线av| 日韩国内少妇激情av| 久热这里只有精品99| 免费搜索国产男女视频| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 欧美日韩黄片免| 在线观看免费视频网站a站| 免费观看人在逋| 国产极品粉嫩免费观看在线| 亚洲天堂国产精品一区在线| 不卡av一区二区三区| 成人国产一区最新在线观看| 免费高清视频大片| a级毛片在线看网站| 亚洲欧美精品综合久久99| 色综合婷婷激情| 韩国精品一区二区三区| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| 欧美成人免费av一区二区三区| 久久国产亚洲av麻豆专区| 黄网站色视频无遮挡免费观看| 国产三级在线视频| 国产精品日韩av在线免费观看 | 丝袜美足系列| 国产精品综合久久久久久久免费 | 欧美日韩亚洲综合一区二区三区_| av福利片在线| 亚洲情色 制服丝袜| 一级黄色大片毛片| 日韩欧美一区视频在线观看| 大陆偷拍与自拍| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 中文亚洲av片在线观看爽| 午夜a级毛片| 男女下面插进去视频免费观看| 夜夜夜夜夜久久久久| 精品国内亚洲2022精品成人| 国产成人欧美| 男女床上黄色一级片免费看| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av | 国产一区二区激情短视频| 99在线视频只有这里精品首页| 亚洲在线自拍视频| 成人国产一区最新在线观看| 欧美日本中文国产一区发布| 免费看十八禁软件| 多毛熟女@视频| 曰老女人黄片| 精品久久久久久,| 淫秽高清视频在线观看| 99香蕉大伊视频| 精品国产乱子伦一区二区三区| 日韩中文字幕欧美一区二区| 成人亚洲精品av一区二区| 又黄又粗又硬又大视频| 波多野结衣高清无吗| 亚洲精品粉嫩美女一区| 久久久久久久久久久久大奶| 一卡2卡三卡四卡精品乱码亚洲| 又黄又粗又硬又大视频| 村上凉子中文字幕在线| 亚洲九九香蕉| 女人精品久久久久毛片| 香蕉久久夜色| 亚洲伊人色综图| 国产一区二区三区在线臀色熟女| 三级毛片av免费| 国产99久久九九免费精品| 免费在线观看影片大全网站| 国产精品一区二区三区四区久久 | 亚洲国产毛片av蜜桃av| 极品教师在线免费播放| 久久久久久亚洲精品国产蜜桃av| 91九色精品人成在线观看| 国产三级在线视频| 99国产精品一区二区蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 欧美乱色亚洲激情| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| x7x7x7水蜜桃| 女人爽到高潮嗷嗷叫在线视频| 国产三级在线视频| 国产精品av久久久久免费| 免费不卡黄色视频| netflix在线观看网站| 最好的美女福利视频网| 精品免费久久久久久久清纯| 国产成人欧美在线观看| 少妇熟女aⅴ在线视频| 国产精品香港三级国产av潘金莲| 99国产精品一区二区蜜桃av| 狂野欧美激情性xxxx| 日韩精品中文字幕看吧| 婷婷六月久久综合丁香| 国产成人影院久久av| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| 桃红色精品国产亚洲av| 亚洲精品av麻豆狂野| 乱人伦中国视频| 欧美日韩乱码在线| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 亚洲全国av大片| 欧美激情高清一区二区三区| 人妻久久中文字幕网| 变态另类成人亚洲欧美熟女 | www.精华液| 欧美日韩黄片免| 女性生殖器流出的白浆| 国产亚洲欧美精品永久| 不卡av一区二区三区| 亚洲第一av免费看| 两个人视频免费观看高清| 大码成人一级视频| 老司机深夜福利视频在线观看| 久久国产亚洲av麻豆专区| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 最好的美女福利视频网| 两性夫妻黄色片| 欧美乱色亚洲激情| 在线视频色国产色| 18禁裸乳无遮挡免费网站照片 | 长腿黑丝高跟| 国产单亲对白刺激| 一二三四在线观看免费中文在| 美女高潮喷水抽搐中文字幕| 欧美一级毛片孕妇| 老司机靠b影院| 香蕉丝袜av| av天堂久久9| 午夜福利高清视频| 亚洲黑人精品在线| 窝窝影院91人妻| 99re在线观看精品视频| 好男人在线观看高清免费视频 | 老熟妇乱子伦视频在线观看| 国产伦人伦偷精品视频| 一本综合久久免费| 免费高清在线观看日韩| 麻豆一二三区av精品| 变态另类丝袜制服| 国产99久久九九免费精品| 国产av在哪里看| 午夜精品久久久久久毛片777| 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 老司机深夜福利视频在线观看| 黄频高清免费视频| 免费观看精品视频网站| 久久中文看片网| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 制服人妻中文乱码| 国产精品,欧美在线| 91老司机精品| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 91成年电影在线观看| 91在线观看av| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 一区二区三区国产精品乱码| 在线天堂中文资源库| 欧美久久黑人一区二区| 91精品三级在线观看| 免费在线观看日本一区| 久久婷婷人人爽人人干人人爱 | 国产亚洲av高清不卡| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 丝袜美腿诱惑在线| 国产精品一区二区免费欧美| 亚洲欧美激情在线| 国产精品av久久久久免费| 日本免费a在线| 精品熟女少妇八av免费久了| 一边摸一边抽搐一进一出视频| 欧美日韩亚洲综合一区二区三区_| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 久久久久精品国产欧美久久久| 欧美 亚洲 国产 日韩一| 精品一品国产午夜福利视频| 免费搜索国产男女视频| 精品日产1卡2卡| 亚洲av五月六月丁香网| 日日干狠狠操夜夜爽| 久久人人爽av亚洲精品天堂| 亚洲伊人色综图| 日本a在线网址| 日日夜夜操网爽| 韩国精品一区二区三区| 99久久综合精品五月天人人| 国产在线观看jvid| 国内精品久久久久精免费| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| www.精华液| 亚洲国产看品久久| 日日摸夜夜添夜夜添小说| 琪琪午夜伦伦电影理论片6080| 欧美 亚洲 国产 日韩一| 一夜夜www| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 涩涩av久久男人的天堂| 狂野欧美激情性xxxx| 国产精品一区二区三区四区久久 | 叶爱在线成人免费视频播放| 精品第一国产精品| 精品久久久久久久毛片微露脸| 变态另类成人亚洲欧美熟女 | 亚洲成人久久性| 好男人在线观看高清免费视频 | 两个人免费观看高清视频| 日韩欧美在线二视频| videosex国产| 日日摸夜夜添夜夜添小说| 母亲3免费完整高清在线观看| 九色亚洲精品在线播放| 很黄的视频免费| 午夜影院日韩av| 亚洲在线自拍视频| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看| 国产av又大| 国产精品1区2区在线观看.| 人成视频在线观看免费观看| 成人国产一区最新在线观看| 精品熟女少妇八av免费久了| 婷婷六月久久综合丁香| 丝袜美足系列| 久久中文字幕人妻熟女| 国产一区二区三区视频了| 欧美日韩福利视频一区二区| 国产xxxxx性猛交| 精品午夜福利视频在线观看一区| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 成人国产综合亚洲| 一个人观看的视频www高清免费观看 | 亚洲av成人av| 制服人妻中文乱码| 日本免费a在线| 亚洲色图综合在线观看| 亚洲黑人精品在线| 日本五十路高清| 91麻豆av在线| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 1024视频免费在线观看| 成人国产综合亚洲| 真人一进一出gif抽搐免费| 午夜a级毛片| 国产日韩一区二区三区精品不卡| 亚洲av第一区精品v没综合| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩精品亚洲av| 国语自产精品视频在线第100页| 淫秽高清视频在线观看| 中文亚洲av片在线观看爽| а√天堂www在线а√下载| 18禁观看日本| 91大片在线观看| 宅男免费午夜| 岛国在线观看网站| 免费搜索国产男女视频| 乱人伦中国视频| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 久久亚洲真实| 亚洲中文字幕日韩| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女 | 长腿黑丝高跟| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| av网站免费在线观看视频| 美女国产高潮福利片在线看| 亚洲性夜色夜夜综合| 在线十欧美十亚洲十日本专区| 久久香蕉国产精品| 高清在线国产一区| 99国产精品免费福利视频| 欧美久久黑人一区二区|