• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uniquely Strongly Clean Group Rings?

    2012-12-27 07:05:28WANGXIULAN

    WANG XIU-LAN

    (Department of Mathematics,Harbin Institute of Technology,Harbin,150001)

    Uniquely Strongly Clean Group Rings?

    WANG XIU-LAN

    (Department of Mathematics,Harbin Institute of Technology,Harbin,150001)

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean(USC for short)if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

    clean ring,group ring,p-group,USC ring

    1 Introduction

    In this paper,R is an associative ring with identity 1.A ring R is called clean if every element is the sum of an idempotent and a unit.This de fi nition first appeared in the paper by Nicholson[1]in 1977,in which it was also proved that clean rings are exchange rings,i.e., a ring R is exchange if and only if for any x∈R,there exists e2=e∈R such that e∈Rx and 1?e∈R(1?x).And the two concepts are equivalent for rings with all idempotents central.A ring R is called uniquely clean if each element has a unique representation as the sum of an idempotent and a unit.For instance,every boolean ring is uniquely clean, and a homomorphic image of a uniquely clean ring is uniquely clean.Uniquely clean rings were discussed in[2–4].Nicholson and Zhou[3]proved that a ring R is uniquely clean if and only if R modulo its Jacobson radical J(R)is boolean,idempotents lift modulo J(R),and idempotents in R are central if and only if for every a∈R there exists a unique idempotent e∈R such that e?a∈J(R).A ring R is called strongly clean if every element of R is the sum of an idempotent and a unit that commute.Strongly clean rings were introduced by Nicholson[5].Recently,Chenet al.[6]raised a new concept about uniquenly strongly clean(USC for short)ring.They called a ring R USC if every element is uniquely the sum of an idempotent and a unit that commute.They also gave the equivalent condition for USC ring,that is,a ring R is USC if and only if for all a∈R there exists a unique idempotent e∈R such that ea=ae and e?a∈J(R).Nicholson and Zhou[3],Chenet al.[6]proved the following results which we can use in this paper:

    (1) If R is uniquely clean,then R/J(R)is boolean,and 2∈J(R);

    (2) If R is USC,then R/J(R)is boolean,and 2∈J(R).

    We denote by RG the group ring of G over R.The augmentation mapping

    is given by

    and its kernel,denoted by?(G)(or by?RG),is an ideal generated by{1?g,g∈G}.If H is a subgroup of G,then εH denotes the right ideal of RG generated by{1?h,h∈H}. If H is a normal subgroup of G,then εH is an ideal and RG/εH~=R(G/H).If I is a right ideal of R,then IG denotes the elements of RG with coefficients in I,when I is an ideal so is IG,and RG/IG~=(R/I)G.For further details see[7].

    Three years ago,Chenet al.[8]raised a question:if R is a ring and G is a group,when is the group ring RG clean?Wang[9]studied the cleanness of group rings for a class of Abelian p-groups.But we know that Z(3)S3is a clean group ring,where S3is not Abelian.This motivates us to look at the cleanness of group rings of Abelian or non-Abelian groups.In Section 2,some conditions on a ring R and a group G such that RG is clean are given. Moreover,in Sections 3 and 4 it is shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.We give an example to indicate this.

    Throughout this paper,R denotes an associative ring with identity 1.As usual J(R) denotes the Jacobson radical of the ring R and U(R)the group of units in R.We write Tn(R)for the ring of all upper triangular n×n matrices over the ring R.Let G denote a group.Then a group G is called a p-group if every element of G is a power of p,where p is a prime.Let Snstand for the symmetric group of degree n.The ring of integers is denoted by Z,and we write Znfor the ring of integers modulo n.

    2 Clean Group Rings

    A group G is called locally finite if every finitely generated subgroup is finite.Lemma 2.1Let R be a ring,G a group,and△(G)?J(RG).ThenProof.Write B={γ∈RG|ε(γ)∈J(R)}.

    “?”.It is obvious that ε(J(RG))?J(R)since ε is an epimorphism,and thus J(RG)?B is clear.

    “?”.Since B is an ideal of RG,it suffices to show that 1+γ has a right inverse in RG wherever γ∈B.1+ε(γ)is invertible in R,since γ∈B implies ε(γ)∈J(R).It follows that there is a β∈R such that

    Since ε is epimorphic,there also exists a β′∈RG such that ε(β′)=β.So we have

    We say that idempotents lift modulo an ideal A of a ring R if whenever α2?α∈A, there exists e2=e∈R such that e?α∈A.

    Lemma 2.2If R is a clean(exchange)ring,G is a locally finite group,and△(G)?J(RG),thenRGis clean(exchange).

    Proof.We know that R is a clean(exchange)ring if and only if R/J(R)is clean(exchange), and idempotents can be lifted modulo J(R).

    In this spirit,we first prove RG/J(RG)is clean(exchange).Since G is a locally finite group,it implies

    is clean as R is clean.

    Next we prove idempotents can be lifted modulo J(RG).

    For any α∈RG such that

    Since R is clean(exchange),it follows that there is e2=e∈R?RG such that

    Then e?α∈J(RG)by Lemma 2.1.

    Lemma 2.3Let R be a ring and G a locally finite group.Then

    As π1is an onto ring morphism,there also exists β′∈RG such that π1(β′)=β.So we have

    Theorem 2.1Let R be a ring withchar=p>0and G a locally finite p-group.If R is clean,then so is RG.

    So RG is clean by Lemma 2.2.The proof is completed.

    More generally,we have the following results.

    Theorem 2.2Let R be a ring withcharR=p>0,G a locally finite group,N the normal p-subgroup of G,and H any subgroup of G such thatNH=G.If RH is clean,then so is RG.

    Proof.Assume that g∈G.By G=NH,there are n∈N and h∈H such that

    And then we have

    Let π:RG→RG be the canonicial homomorphism.Since G is a locally finite group, we have J(R)G?J(RG),so the following de fi nitions of mappings are reasonable.Let

    On one hand,by the de fi nition of π,there is

    On the other hand,we also have RH∩J(RG)?J(RH)by Proposition 9 in[7].Then

    Now,it suffices to prove that idempotents can be lifted modulo J(RG).Let

    For any α∈RG such that α2?α∈J(RG),there holds that

    since ω is an epimorphism.Since RH~=R(G/N)and RH is clean,there is

    Lemma 2.4Let R be a ring,G a group,N a normal subgroup of G,andεN?J(RG). Let

    Proof.Write B={γ∈RG|ω(γ)∈J(R(G/N))}.

    “?”.It is obvious since ω(J(RG))?J(R(G/N)).

    “?”.Since B is an ideal of RG,for each γ∈B,it remains to prove that 1+γ has a right inverse in RG.The rest of the proof is similar to that of Lemma 2.1.

    Example 2.1Let

    be the dihedral groups of order 2p.Then the group ring RG is clean.

    Proof.By Theorem 2.2,it remains to prove that Z(p)C2is clean.

    If p=2,then Z(p)C2is a local ring,and so it is clean.

    3 USC Group Rings

    Lemma 3.1IfRG/J(RG)is boolean,then△(G)?J(RG).

    Proof.Suppose that RG/J(RG)is a boolean ring.It implies that for any g∈G,(1?g)2?(1?g)is in J(RG),that is,g2?g∈J(RG),and hence

    Corollary 3.1([6],Proposition 24)If the group ringRGis USC,then R is USC and G is a2-group.

    Proof.Suppose that RG is USC.R as an image of RG is strongly clean.Moreover,R is a subring of RG,which implies R is USC and 2∈J(R).As RG is USC,it follows that RG/J(RG)is boolean.Then△(G)?J(RG)by Lemma 3.1,which implies G is a p-group and p∈J(R)by Proposition 15 in[7].If p=2k+1 is an odd prime,by p,2∈J(R),we have

    which is impossible since 1 is a unit of R.Then p must be equal to 2.

    Lemma 3.2LetRbe a USC ring and G be a group.If△(G)?J(RG),then RG is USC.

    Proof.Assume that R is a USC ring.Then for any α∈RG,ε(α)∈R and there exists a unique idempotent e∈R?RG such that

    As eε(α)=ε(α)e,it follows that

    By calculation,we have that

    is an idempotent of RG.

    Since

    the idempotent of RG has the form e+△(G),where e is an idempotent of R.Let j∈△(G). If e+j∈RG is an idempotent,then we have

    Multiplying the equation(?)by e from the left hand(right hand)side,we have eje+ej2=0 (eje+j2e=0).Hence

    we obtain that j2=?j∈eRGe,and j4=j2∈△(G)?J(RG)is an idempotent.It follows that?j=j2=0 since there is no non-zero idempotent in J(RG).Then the idempotents of RG are all in R.

    From the former description,we have eα?eαe=0,which implies eα=eαe.Similarly, we also have αe=eαe.Then αe=eα.

    Now we see ε(e?α)=e?ε(α)∈J(R).By Lemma 2.1,we have e?α∈J(RG).

    Next,we prove e is unique.Assume that there is another idempotent f∈RG(then in R)such that f?α∈J(RG).Then

    We have e=f since R is a USC ring.

    Theorem 3.1LetRbe a ring,andGa locally finite group.ThenRGis USC(uniquely clean)if and only ifRis USC(uniquely clean)andGis a2-group.

    Proof.Necessity can be proved by Corollary 3.1.

    Sufficiency.Suppose that R is a USC(uniquely clean)ring.Then R/J(R)is boolean and charR=2.By using Theorem 2.1,we have△(G)?J(RG).Then RG is USC(uniquely clean)by Lemma 3.2(see Corollary 3.5 of[9]).

    Remark 3.1This is why T2(Z2)D4is USC in Example 26 of[6],since T2(Z2)is a USC ring,and D4is a 2-group as a dihedral group of order 8.

    Corollary 3.2If R is a ring and G a locally finite group,then the following statements are equivalent:

    (1)RGis a USC group ring;

    (2)Ris USC,and△(G)?J(RG);

    (3)Ris USC,andJ(RG)/△(G)J(R);

    (4)Ris USC,andRG/J(RG)R/J(R);

    (5)Ris USC,andGis a2-group.

    Proof.(1)?(2)is clear by Lemma 3.1 and Corollary 3.1.

    (2)?(1)follows from Lemma 3.2.

    (2)?(3)?(4)?(2)are clear since G is a locally finite group implies J(R)G?J(RG).

    (1)?(5)can be proved by Theorem 3.1.

    4 Uniquely Exchange Group Rings

    In PH.D dissertation“clean rings and regular local rings”(see[10]),Ying[10]studied the (left)uniquely exchange ring.It was proved that an element of a ring R is called left uniquely exchange,if for any x∈R there exists a unique idempotent e∈Rx such that 1?e∈R(1?x).R is called left uniquely exchange ring if every element of R is left uniquely exchange.The right uniquely exchange element and right uniquely exchange ring can be de fi ned accordingly.We call an element or a ring uniquely exchange if it is both left and right uniquely exchange.We know that left exchange ring and right exchange ring are equivalent.But for both left and right uniquely exchange rings,this is not true.In that article,Ying[10]proved that R is a left uniquely exchange ring,then R/J(R)is boolean and 2∈J(R),and also gave the following relations:

    For the uniquely clean group rings and the USC group rings,we obtain the parallel result,i.e.,Theorem 3.1.Naturally,we consider the(left)uniquely exchange group rings. As a middle ring,does the uniquely exchange group ring also possess this property?

    Next,we give an example to indicate that this property is not fi t for the left uniquely exchange group rings,and so is the uniquely exchange group rings.

    Theorem 4.1LetRbe a boolean ring.ThenT2(R)C2is not uniquely exchange whileT2(R)is uniquely exchange.

    Proof.Assume that R is a boolean ring.Then,we see that T2(R)is uniquely exchange since T2(R)is uniquely exchange if and only if R is boolean by Corollary 2.2.3 of[8].We have known that T2(R)C2T2(RC2).So,it remains to prove RC2is not a boolean ring. As RC2is uniquely clean,and all its idempotents are in R.Moreover,R?RG,i.e.,RG contain elements which are not idempotent.Thus,RC2is not boolean.

    [1]Nicholson W K.Lifting idempotents and exchange rings.Trans.Amer.Math.Soc.,1977,229: 269–278.

    [2]Anderson D D,Camillo V P.Commutative rings whose elements are a sum of a unit and idempotent.Comm.Algebra,2002,30:3327–3336.

    [3]Nicholson W K,Zhou Y.Rings in which elements are uniquely the sum of an idempotent and a unit.Glasgow.Math.J.,2004,46:227–236.

    [4]Nicholson W K,Zhou Y.Clean general rings.J.Algebra,2005,291:297–311.

    [5]Nicholson W K.Strongly clean rings and Fitting’s lemma.Comm.Algebra,1999,27:3583–3592.

    [6]Chen J,Zhou W,Zhou Y.Rings in which elements are uniquely the sum of an idempotent and a unit that commute.J.Pure Appl.Algebra,2009,213:215–233.

    [7]Connell I G.On the group ring.Canad.J.Math.,1963,15:650–685.

    [8]Chen J,Nicholson W K,Zhou Y.Group rings in which every element is uniquely the sum of a unit and an idempotent.J.Algebra,2006,306:453–460.

    [9]Wang X.Cleanness of the group rings of Abelian p-group over a commutative ring.Algebra Colloq.,accepted.

    [10]Ying Z.Clean Rings and Regular Local Rings.PH.D.dissertation.Nanjing:Southeast Univ., 2009.

    Communicated by Du Xian-kun

    16S34,16N40

    A

    1674-5647(2012)01-0017-09

    date:March 10,2009.

    色av中文字幕| 国产伦在线观看视频一区| 中文字幕精品亚洲无线码一区| 免费看日本二区| 少妇的逼水好多| 波野结衣二区三区在线 | 国产精品av视频在线免费观看| 舔av片在线| 老鸭窝网址在线观看| 久久久国产成人精品二区| 脱女人内裤的视频| 又紧又爽又黄一区二区| 色综合亚洲欧美另类图片| 欧美一区二区亚洲| 很黄的视频免费| 日日夜夜操网爽| 国产极品精品免费视频能看的| 在线视频色国产色| 偷拍熟女少妇极品色| 一本一本综合久久| 久久人妻av系列| 少妇熟女aⅴ在线视频| 国内精品一区二区在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 午夜精品一区二区三区免费看| 少妇高潮的动态图| 男女下面进入的视频免费午夜| 一个人免费在线观看电影| 99热6这里只有精品| 国产精品电影一区二区三区| 国产爱豆传媒在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 免费在线观看亚洲国产| 给我免费播放毛片高清在线观看| 国模一区二区三区四区视频| 51国产日韩欧美| 真实男女啪啪啪动态图| 18+在线观看网站| 又黄又爽又免费观看的视频| 黄色日韩在线| 国内精品一区二区在线观看| 国产一区二区三区视频了| 2021天堂中文幕一二区在线观| 国产一区在线观看成人免费| 久久久久久久久大av| 中文字幕熟女人妻在线| 亚洲精华国产精华精| 别揉我奶头~嗯~啊~动态视频| 老司机午夜福利在线观看视频| 亚洲人成网站高清观看| netflix在线观看网站| 亚洲av五月六月丁香网| 在线观看av片永久免费下载| 男女下面进入的视频免费午夜| 国内揄拍国产精品人妻在线| 性色av乱码一区二区三区2| 男人和女人高潮做爰伦理| 国产精品亚洲av一区麻豆| 日日摸夜夜添夜夜添小说| 亚洲av二区三区四区| 日韩精品青青久久久久久| 国产私拍福利视频在线观看| 久久九九热精品免费| 国产久久久一区二区三区| 18+在线观看网站| 国产精品自产拍在线观看55亚洲| 成人鲁丝片一二三区免费| av专区在线播放| 精品不卡国产一区二区三区| 国产男靠女视频免费网站| 亚洲狠狠婷婷综合久久图片| 欧美日韩福利视频一区二区| 男女那种视频在线观看| 国产精品永久免费网站| 亚洲色图av天堂| 精品人妻1区二区| 亚洲国产欧洲综合997久久,| 免费观看人在逋| 国产69精品久久久久777片| 国产激情偷乱视频一区二区| 99久久久亚洲精品蜜臀av| 亚洲成人中文字幕在线播放| 亚洲五月天丁香| 欧美丝袜亚洲另类 | 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 亚洲人成网站在线播| 看黄色毛片网站| 人妻丰满熟妇av一区二区三区| 中文字幕高清在线视频| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 69人妻影院| 国产视频内射| netflix在线观看网站| 无遮挡黄片免费观看| 国产一区二区激情短视频| 男人的好看免费观看在线视频| 人妻久久中文字幕网| 真实男女啪啪啪动态图| 国产乱人视频| 亚洲精品国产精品久久久不卡| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| 婷婷亚洲欧美| www日本黄色视频网| 国产精品一区二区三区四区久久| 美女cb高潮喷水在线观看| 欧美色欧美亚洲另类二区| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx| 中文字幕av在线有码专区| 亚洲精品一区av在线观看| 偷拍熟女少妇极品色| 精品午夜福利视频在线观看一区| 久久国产精品影院| 国产成年人精品一区二区| 中亚洲国语对白在线视频| 老司机福利观看| 亚洲无线观看免费| 亚洲真实伦在线观看| 亚洲精品美女久久久久99蜜臀| 1024手机看黄色片| 免费在线观看日本一区| 日韩欧美 国产精品| 国产精品免费一区二区三区在线| 久久性视频一级片| 国产探花在线观看一区二区| 国产高清视频在线播放一区| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 国产av麻豆久久久久久久| 不卡一级毛片| 天堂动漫精品| 女警被强在线播放| 少妇的逼水好多| 好男人电影高清在线观看| 日韩亚洲欧美综合| www.熟女人妻精品国产| 国产精品98久久久久久宅男小说| 亚洲一区二区三区色噜噜| 免费av不卡在线播放| 99国产精品一区二区蜜桃av| 久久性视频一级片| 最后的刺客免费高清国语| 中文字幕精品亚洲无线码一区| 人妻久久中文字幕网| 最后的刺客免费高清国语| 欧美成人a在线观看| 亚洲性夜色夜夜综合| 国产伦人伦偷精品视频| 色综合站精品国产| 亚洲av免费在线观看| 欧美午夜高清在线| 国产午夜精品久久久久久一区二区三区 | 99久久精品国产亚洲精品| 美女 人体艺术 gogo| 国产中年淑女户外野战色| 国内精品久久久久久久电影| 在线观看免费午夜福利视频| 精品欧美国产一区二区三| 精品一区二区三区视频在线 | 精品久久久久久成人av| 国产在视频线在精品| av专区在线播放| 亚洲一区二区三区不卡视频| 久久国产精品影院| 精品电影一区二区在线| 国产精品影院久久| 国产精品影院久久| 香蕉av资源在线| 淫秽高清视频在线观看| 嫩草影院入口| 国产亚洲av嫩草精品影院| aaaaa片日本免费| 日韩欧美国产在线观看| 国产乱人视频| 欧美激情在线99| 精品久久久久久久久久久久久| 黄色日韩在线| 亚洲熟妇熟女久久| 尤物成人国产欧美一区二区三区| 精品人妻偷拍中文字幕| а√天堂www在线а√下载| 精品日产1卡2卡| 高潮久久久久久久久久久不卡| 免费无遮挡裸体视频| 久久亚洲精品不卡| 午夜精品在线福利| av专区在线播放| 国产高清视频在线播放一区| 亚洲精品成人久久久久久| 国产精品久久久人人做人人爽| 亚洲欧美日韩卡通动漫| 级片在线观看| 日韩中文字幕欧美一区二区| 色综合站精品国产| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| 日本 av在线| www.www免费av| 九色国产91popny在线| 国产99白浆流出| 国产高清视频在线观看网站| av女优亚洲男人天堂| 中文字幕高清在线视频| 色噜噜av男人的天堂激情| www.www免费av| 亚洲人成网站高清观看| 国产av在哪里看| 欧美性猛交黑人性爽| 国产视频内射| 一级黄色大片毛片| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 18+在线观看网站| 国产野战对白在线观看| 天天躁日日操中文字幕| 啦啦啦韩国在线观看视频| 国产乱人视频| 亚洲欧美日韩卡通动漫| 欧美一级a爱片免费观看看| 日韩人妻高清精品专区| 叶爱在线成人免费视频播放| 蜜桃亚洲精品一区二区三区| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 老司机福利观看| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 亚洲精品国产精品久久久不卡| 午夜激情欧美在线| 成年版毛片免费区| 亚洲无线在线观看| 色尼玛亚洲综合影院| 国产99白浆流出| 午夜福利免费观看在线| 欧美日韩福利视频一区二区| 看黄色毛片网站| 亚洲自拍偷在线| 听说在线观看完整版免费高清| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| av天堂在线播放| 69人妻影院| 国产综合懂色| 欧美+亚洲+日韩+国产| 日韩欧美免费精品| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 最新在线观看一区二区三区| 一a级毛片在线观看| 欧美乱码精品一区二区三区| 亚洲精品一区av在线观看| 亚洲国产欧洲综合997久久,| 日韩欧美三级三区| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 有码 亚洲区| 97超级碰碰碰精品色视频在线观看| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 亚洲精品456在线播放app | 国内揄拍国产精品人妻在线| 国产成年人精品一区二区| 啪啪无遮挡十八禁网站| 欧美色欧美亚洲另类二区| 51国产日韩欧美| 99热6这里只有精品| 国产精品久久电影中文字幕| 日本在线视频免费播放| 最近最新中文字幕大全电影3| 韩国av一区二区三区四区| 一级毛片高清免费大全| 国产v大片淫在线免费观看| 国产淫片久久久久久久久 | 久久精品国产亚洲av香蕉五月| АⅤ资源中文在线天堂| 国产精品 国内视频| 51国产日韩欧美| 国产又黄又爽又无遮挡在线| 两性午夜刺激爽爽歪歪视频在线观看| 大型黄色视频在线免费观看| 99热只有精品国产| 嫩草影院入口| 成年免费大片在线观看| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久 | 国产精品99久久99久久久不卡| 国产精品久久久久久亚洲av鲁大| 日韩欧美三级三区| 成年人黄色毛片网站| 国产色爽女视频免费观看| 久久精品91蜜桃| 欧美bdsm另类| 久久久精品欧美日韩精品| www.999成人在线观看| 亚洲av美国av| 男女之事视频高清在线观看| 18禁黄网站禁片午夜丰满| 久久人妻av系列| 激情在线观看视频在线高清| 国产男靠女视频免费网站| 中文字幕人妻丝袜一区二区| 欧美成人a在线观看| 性欧美人与动物交配| 99久久99久久久精品蜜桃| 人妻夜夜爽99麻豆av| 亚洲精品日韩av片在线观看 | 中文字幕av在线有码专区| 亚洲激情在线av| 亚洲第一欧美日韩一区二区三区| 人人妻人人澡欧美一区二区| 国产成人av教育| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 人人妻人人看人人澡| www.999成人在线观看| 日韩欧美国产在线观看| 国产伦精品一区二区三区视频9 | 男女午夜视频在线观看| 中文字幕精品亚洲无线码一区| 精品一区二区三区人妻视频| 国产精华一区二区三区| 欧美区成人在线视频| 两个人视频免费观看高清| 国产伦在线观看视频一区| 久久香蕉国产精品| 嫩草影院入口| 亚洲国产日韩欧美精品在线观看 | 在线播放无遮挡| 女生性感内裤真人,穿戴方法视频| 一本精品99久久精品77| www.色视频.com| 老司机午夜福利在线观看视频| 午夜福利在线观看免费完整高清在 | 少妇人妻一区二区三区视频| 97超级碰碰碰精品色视频在线观看| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 伊人久久大香线蕉亚洲五| 一本一本综合久久| 色哟哟哟哟哟哟| 最后的刺客免费高清国语| 亚洲成av人片在线播放无| 十八禁网站免费在线| xxx96com| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品国产清高在天天线| 久久久久精品国产欧美久久久| 日韩 欧美 亚洲 中文字幕| 国产69精品久久久久777片| 成人国产一区最新在线观看| 最近在线观看免费完整版| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 又紧又爽又黄一区二区| 免费看十八禁软件| 国产老妇女一区| 母亲3免费完整高清在线观看| 伊人久久精品亚洲午夜| 51午夜福利影视在线观看| 亚洲无线观看免费| 国产精品女同一区二区软件 | 国产69精品久久久久777片| av天堂在线播放| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| xxxwww97欧美| 亚洲成人精品中文字幕电影| 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 亚洲专区中文字幕在线| 在线看三级毛片| 精品电影一区二区在线| aaaaa片日本免费| av中文乱码字幕在线| xxxwww97欧美| 97人妻精品一区二区三区麻豆| 国产97色在线日韩免费| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 18禁黄网站禁片免费观看直播| 性欧美人与动物交配| 亚洲精品日韩av片在线观看 | 人人妻,人人澡人人爽秒播| 女警被强在线播放| 久久久久亚洲av毛片大全| 亚洲欧美激情综合另类| 亚洲美女黄片视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 亚洲av电影不卡..在线观看| 久久这里只有精品中国| 久久久久精品国产欧美久久久| 香蕉av资源在线| 日韩欧美国产在线观看| 免费高清视频大片| 免费一级毛片在线播放高清视频| 亚洲狠狠婷婷综合久久图片| 成人永久免费在线观看视频| 岛国在线免费视频观看| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| 欧美日韩黄片免| 欧美乱妇无乱码| 12—13女人毛片做爰片一| av女优亚洲男人天堂| 久久久久久人人人人人| 国内精品久久久久久久电影| 18禁黄网站禁片免费观看直播| 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 日本三级黄在线观看| 久久99热这里只有精品18| 亚洲第一电影网av| 97超视频在线观看视频| 成人欧美大片| 听说在线观看完整版免费高清| 亚洲无线观看免费| 国产精品久久久久久人妻精品电影| 免费无遮挡裸体视频| 中亚洲国语对白在线视频| 夜夜看夜夜爽夜夜摸| 一本一本综合久久| 国产三级中文精品| 首页视频小说图片口味搜索| 草草在线视频免费看| 精品久久久久久久久久久久久| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 一二三四社区在线视频社区8| 免费人成在线观看视频色| 亚洲精品国产精品久久久不卡| 成人精品一区二区免费| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 极品教师在线免费播放| 成人一区二区视频在线观看| 露出奶头的视频| 国产亚洲精品一区二区www| 一夜夜www| 波野结衣二区三区在线 | 在线十欧美十亚洲十日本专区| 69av精品久久久久久| av天堂中文字幕网| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 一级黄片播放器| 色在线成人网| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 脱女人内裤的视频| 少妇裸体淫交视频免费看高清| 岛国在线观看网站| 18禁裸乳无遮挡免费网站照片| 精品国产亚洲在线| 免费在线观看成人毛片| www日本黄色视频网| 日本在线视频免费播放| 哪里可以看免费的av片| 欧美日本视频| 久久久久久久精品吃奶| 在线天堂最新版资源| 亚洲国产色片| 最好的美女福利视频网| 国产精品永久免费网站| 免费高清视频大片| 无限看片的www在线观看| 欧美成人a在线观看| 不卡一级毛片| 两人在一起打扑克的视频| eeuss影院久久| 真实男女啪啪啪动态图| 成人特级av手机在线观看| 无限看片的www在线观看| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看| 非洲黑人性xxxx精品又粗又长| 国产真实伦视频高清在线观看 | 国产亚洲欧美98| 草草在线视频免费看| 一级毛片女人18水好多| 观看美女的网站| 一级黄色大片毛片| 欧美日韩一级在线毛片| 日韩成人在线观看一区二区三区| 国产在视频线在精品| 国产国拍精品亚洲av在线观看 | 哪里可以看免费的av片| 内射极品少妇av片p| www.www免费av| 日韩人妻高清精品专区| 老司机福利观看| 99精品欧美一区二区三区四区| 少妇的逼水好多| 亚洲在线观看片| 90打野战视频偷拍视频| 亚洲av二区三区四区| 亚洲人成电影免费在线| 一级a爱片免费观看的视频| 尤物成人国产欧美一区二区三区| 亚洲国产欧美人成| www日本在线高清视频| 嫁个100分男人电影在线观看| 国产乱人视频| 校园春色视频在线观看| 九色成人免费人妻av| 国产精品99久久久久久久久| 国产成人影院久久av| 99国产极品粉嫩在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲成人中文字幕在线播放| 国产成人av激情在线播放| 少妇裸体淫交视频免费看高清| 在线天堂最新版资源| 在线看三级毛片| 免费av毛片视频| 午夜日韩欧美国产| 成人午夜高清在线视频| 色哟哟哟哟哟哟| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 麻豆一二三区av精品| 久久久久久久精品吃奶| 精品电影一区二区在线| 99久国产av精品| 国产伦精品一区二区三区视频9 | 99热只有精品国产| 亚洲午夜理论影院| 高清毛片免费观看视频网站| 日本五十路高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩欧美免费精品| 久久精品91蜜桃| 少妇的丰满在线观看| 亚洲av美国av| 在线观看舔阴道视频| 欧美成人a在线观看| 午夜福利高清视频| 成年免费大片在线观看| 美女高潮喷水抽搐中文字幕| 一本综合久久免费| 久久久色成人| 在线观看一区二区三区| 日日夜夜操网爽| 亚洲欧美日韩卡通动漫| 在线观看av片永久免费下载| 亚洲男人的天堂狠狠| 亚洲国产欧美人成| 变态另类成人亚洲欧美熟女| 亚洲成a人片在线一区二区| 黄片小视频在线播放| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 一级a爱片免费观看的视频| 免费在线观看日本一区| 亚洲黑人精品在线| 此物有八面人人有两片| 国产 一区 欧美 日韩| 日本免费a在线| 精品一区二区三区人妻视频| 欧美另类亚洲清纯唯美| 综合色av麻豆| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品乱码久久久久久99久播| 欧美乱色亚洲激情| tocl精华| 国产主播在线观看一区二区| 天堂av国产一区二区熟女人妻| 中国美女看黄片| 色在线成人网| 国产精品电影一区二区三区| 一个人观看的视频www高清免费观看| 国内少妇人妻偷人精品xxx网站| 日本在线视频免费播放| 国产精品女同一区二区软件 | 国产黄片美女视频| 在线免费观看不下载黄p国产 | 国内揄拍国产精品人妻在线| 午夜日韩欧美国产| 国产亚洲精品久久久com| 国产一区二区在线观看日韩 | 久久久久久久久久黄片| 久久久久国产精品人妻aⅴ院| 精品熟女少妇八av免费久了| 国产精品久久久人人做人人爽| 国产成+人综合+亚洲专区| 久久久色成人| 男女做爰动态图高潮gif福利片| 色综合婷婷激情| 午夜免费激情av| 国产成人系列免费观看| 成人一区二区视频在线观看| 中国美女看黄片| 国产成人系列免费观看| 真人做人爱边吃奶动态| 亚洲五月婷婷丁香| 男女下面进入的视频免费午夜| 9191精品国产免费久久| 久久久色成人| 国产伦精品一区二区三区视频9 | 久久久久久久午夜电影| 国产老妇女一区| 99久久综合精品五月天人人| 久久久久久大精品| 亚洲国产高清在线一区二区三| 国产v大片淫在线免费观看| 九九热线精品视视频播放|