• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Invertible Linear Maps on the General Linear Lie Algebras Preserving Solvability?

    2012-12-27 07:05:38CHENZHENGXINANDCHENQIONG

    CHEN ZHENG-XIN AND CHEN QIONG

    (School of Mathematics and Computer Science,Fujian Normal University,Fuzhou,350007)

    Invertible Linear Maps on the General Linear Lie Algebras Preserving Solvability?

    CHEN ZHENG-XIN AND CHEN QIONG

    (School of Mathematics and Computer Science,Fujian Normal University,Fuzhou,350007)

    Let Mnbe the algebra of alln×ncomplex matrices andgl(n,C)be the general linear Lie algebra,wheren≥2.An invertible linear mapφ:gl(n,C)→gl(n,C)preserves solvability in both directions if bothφandφ?1map every solvable Lie subalgebra ofgl(n,C)to some solvable Lie subalgebra.In this paper we classify the invertible linear maps preserving solvability ongl(n,C)in both directions.As a sequence,such maps coincide with the invertible linear maps preserving commutativity on Mnin both directions.

    general linear Lie algebra,solvability,automorphism of Lie algbra

    1 Introduction

    Let L be a Lie algebra.Recall that the derived Lie algebra L(1)of L is the Lie ideal[L,L] spanned by all[x,y],x,y∈L.To each Lie algebra L we associated the derived series:

    The Lie algebra L is solvable if there exists a positive integer r such that L(r)={0}.The set of all n×n complex matrices is denoted by Mnwhen considered as a set or a linear space or an algebra.If the linear space Mnis equipped with the Lie product

    then it becomes a general linear Lie algebra,denoted by gl(n,C).

    A lot of attention has been paid to linear preserver problem,which concerns the characterization of linear maps on matrix spaces or algebras that leave certain functions,subsets, relations,etc.,invariant.The earliest paper on linear preserver problem dates back to 1897 (see[1]),and a great deal of e ff ort has been devoted to the study of this type of question sincethen.One may consult the survey papers[2–4]for details.For linear or nonlinear preserver problem concerning linear Lie algebras we refer to the literature[5–12].The author in[7] characterized the invertible linear maps on simple Lie algebras of linear types preserving zero Lie products.Radjavi and Semrl in[11]characterized the nonlinear maps which preserve solvability in both directions on the general linear Lie algebras and the special linear Lie algebras.In this article we determine the invertible linear maps preserving solvability on gl(n,C)in both directions,where an invertible linear map φ:gl(n,C)→gl(n,C)is said to preserve solvability in both directions if for any solvable Lie algebra s?gl(n,C),both φ(s) and φ?1(s)are solvable Lie algebras of gl(n,C).Now we state our main theorem:

    Theorem 1.1Letφ:gl(n,C)→gl(n,C)be an invertible linear map.The following two conditions are equivalent:

    (1)φpreserves solvability in both directions;

    (2)There exists a non-zero scalarμ∈C,a linear functionalfongl(n,C)withf(I)?μand an invertible matrixS∈gl(n,C)such that either

    for everyX∈gl(n,C),whereXtdenotes the transpose ofX.

    The above result determines an explicit form of the linear invertible map preserving solvability described in Theorem 1.1 of[11].In[12],the author proved that any bijective linear commutativity preserving map φ on Mnis also one of the above two standard maps. Thus we have the following corollary.

    Corollary 1.1Letφbe an invertible linear map ongl(n,C).Then the following conditions are equivalent:

    (1)φpreserves solvability in both directions;

    (2)φpreserves zero Lie products in both directions.

    Here we specify some notations for later use.We denote by I the identity matrix in gl(n,C)and by Eijthe matrix in gl(n,C)whose sole nonzero entry 1 is in the(i,j)-position. Let CI be the set{aI|a∈C}of all scalar matrices,H the set of all diagonal matrices in gl(n,C),andn+(resp.,n?)the set of all strictly upper(resp.,low)triangular matrices.Let D be the set of the diagonalizable matrices.Denote the one-dimensional vector space CEstby Lstfor any pair(s,t),1≤st≤n.And denote C?=C?{0}.

    2 Certain Invertible Linear Maps Preserving Solvability

    In this section,we construct certain invertible linear maps preserving solvability in both directions on gl(n,C),which will be used to describe arbitrary invertible linear maps preserving solvability in both directions.

    (A)Inner automorphisms:

    For any invertible matrix T∈gl(n,C),the map

    is an automorphism of gl(n,C),called an inner automorphism of gl(n,C).

    (B)Graph automorphisms:

    Let

    Then ω0is an automorphism of gl(n,C).Both 1 and ω0are called graph automorphism of gl(n,C).

    (C)Scalar multiplication maps:

    For any c∈C?,de fi ne

    We call ψca scalar multiplication map on gl(n,C).It is obvious that any scalar multiplication map is an invertible linear map preserving solvability in both directions.

    (D)Invertible linear maps induced by a linear function on gl(n,C):

    Let f:gl(n,C)→C be a linear function such that

    It is easy to see that the map

    is an invertible linear map,and its inverse is the linear mapde fi ned by

    The map ψfis called an invertible linear map induced by the linear function f.Since

    for any X,Y∈gl(n,C),ψfpreserves solvability in both directions.

    The following lemma is easy to check.

    Lemma 2.1(1)ψc′·ψc=ψc′cfor anyc,c′∈C?;

    (2)σT′·σT=σTT′for any pair of invertible matricesT,T′∈gl(n,C);

    By Lemma 2.1 we have

    3 Proof of the Main Theorem

    Before proving the main theorem,we recall some results from Theorem 1.1,Proposition 2.4 and the proof of Lemma 2.5 in[11].

    Lemma 3.1Letφbe a bijective map ongl(n,C)preserving solvability in both directions. Then

    and two diagonalizable matricesAandBcommute if and only ifφ(A)andφ(B)commute. Moreover,letDk(k=1,2,···,n)be the set of all diagonalizable matrices with exactlykdistinct eigenvalues.Then we have

    for some nonzeroλ∈C?.

    Proof of Theorem 1.1First we prove that Theorem 1.1 holds for n≥3.

    For the sufficient direction,it is easy to see that φ is an invertible linear map and its inverse is given by

    for any X,Y∈gl(n,C),for any solvable Lie subalgebra s of gl(n,C),φ(s)is a solvable Lie subalgebra of gl(n,C).Similarly,φ?1preserves solvability.Thus φ is an invertible linear map preserving solvability in both directions.

    Now we prove the essential direction of the theorem.Let φ be an invertible linear map on gl(n,C)preserving solvability in both directions.First observe that the image(under φ)of a solvable subalgebra generated by a subset X of gl(n,C)is precisely the subalgebra generated by φ(X).We prove the main theorem through the following nine steps.

    Step 1.There exists an invertible matrixS1∈gl(n,C)such that

    For a diagonal matrix

    we have φ(h0)∈D by Lemma 3.1,and so there exists an invertible matrix S1∈gl(n,C) such that

    is a diagonal matrix.Denote

    Then φ1is still an invertible linear map on gl(n,C)preserving solvability in both directions. Let

    Since h0∈Dn,by Lemma 3.1,φ1(h0)∈Dn,and so

    so by Lemma 3.1,

    By the above equality(3.1),we know that φ1(h)is a diagonal matrix.It follows that

    Step 2.For any pair(s,t),1≤st≤n,there exists some pair(p,q),1≤pq≤n, such that

    Consider φ1(H+Lst).Since H+Lstis an(n+1)-dimensional solvable subalgebra containing H,φ1(H+Lst)is also an(n+1)-dimensional solvable subalgebra containing H. First we prove that

    Applying(ad h1)repeatedly on x,we have

    View the above equations(3.2)as a system of linear equations in n2?n variants(2u?1?2v?1)auvEuvfor the pairs(u,v)with coefficients(2u?1?2v?1)k?1.For any(u,v)(u′,v′), it is easy to see that

    So the determinant of coefficients of variants(2u?1?2v?1)auvEuv,being exactly a Vandermonde determinant,takes a nonzero value.So each(2u?1?2v?1)auvEuvcan be written as a linear combination of

    Assume that

    where h∈H,a∈C?.We now need to show that h=0.Otherwise,take

    such that

    and h′,h are linearly independent(do exist).Let

    Since Lst+Ch′′is a two-dimensional solvable subalgebra generated by Estand h′′,φ1(Lst+ Ch′′)is a two-dimensional solvable subalgebra generated by aEpq+h and h′.By

    we see that h=0.Thus

    Step 3.There exists some invertible matrixS2such that

    (1)(φ1·σS2)(H)=H;

    (2)(φ1·σS2)(Lst)?n+for any1≤s<t≤n;

    (3)(φ1·σS2)(Lst)?n?for any1≤t<s≤n.

    It is not difficult to see that(2)is equivalent to the following announcement:

    for any 1≤s≤n?1.

    Since(3)follows from(2)by Step 2,we only need to prove(1)and(?).

    Let

    Now we use decreasing induction on Cardto complete(1)and(?).If

    i.e.,φ1(Lst)?n+for any 1≤s<t≤n,then we choose S2=I to complete the proof.If

    then there exists at least one i∈{1,2,···,n?1}such that φ1(Li,i+1)?n?.Choose an invertible matrix

    By an easy computation,we have the following results:

    (i)σS′(diag{a1,···,ai,ai+1,···,an})=diag{a1,···,ai+1,ai,···,an},and so

    (ii)σS′(Ei,i+1)=?Ei+1,i,and so

    (iii)For any t>i+1,

    (if φ1(Li+1,i)?n?,then φ1(Li,i+1+H+Li+1,i)=H+φ1(Li,i+1)+φ1(Li+1,i)?H+n?is solvable,which contradicts the fact that Li,i+1+H+Li+1,iis not solvable);

    (iii)φ1·σS′induces a permutation on the set{Lst|(s,t)(i,i+1),1≤s<t≤n}. One will see that the number of pairs(s,t),1≤s<t≤n,satisfying that

    is precisely k+1.By induction hypotheses,there exists an invertible matrix S′′such that

    (i)((φ1·σS′)·σS′′)(H)=H;

    (ii)((φ1·σS′)·σS′′)(Lst)?n+for any 1≤s<t≤n.

    Let

    Then by Lemma 2.1(2),the proofs of(1)and(2)are completed.

    In the remainder of this proof,we denote

    Step 4.For anys∈{1,2,···,n?1},there is somej∈{1,2,···,n?1}such that

    By Step 3,

    Since dimφ2(n+)=dimn+,we have

    Sincen+is a solvable subalgebra generated by all Ls,s+1for s∈{1,2,···,n?1},we see thatn+is also generated by all φ2(Ls,s+1)for s∈{1,2,···,n?1}.Then Step 4 holds from Step 2.

    Step 5.There is a graph automorphismωofgl(n,C)such that

    for anys∈{1,2,···,n?1}.

    For any two distinct s,t∈{1,2,···,n?1},|s?t|=1 if and only if the dimension of the solvable subalgebra generated by Ls,s+1and Lt,t+1is 3,and|s?t|>1 if and only if the dimension of the solvable subalgebra generated by Ls,s+1and Lt,t+1is 2.By Step 4,we can set π to be the permutation of{1,2,···,n?1}such that

    for any s=1,2,···,n?1.Since the dimension of the solvable subalgebra generated by Ls,s+1and Lt,t+1is equal to the dimension of the solvable subalgebra generated by Lπ(s),π(s)+1and Lπ(t),π(t)+1,|s?t|=1 if and only if|π(s)?π(t)|=1,and|s?t|>1 if and only if |π(s)?π(t)|>1.Then either

    (1)π(s)=s,1≤s≤n?1,or

    (2)π(s)=n?s,1≤s≤n?1.

    For the case(1),we set ω=I;and for the case(2),we set ω=ω0.Then Step 5 holds.

    Denote

    Step 6.φ3(Lst)=Lstfor anys,t∈{1,2,···,n}andst.

    At first we prove that

    To achieve the aim we use decreasing induction on t?s,where 1≤t?s≤n?1.For t?s=n?1,then t=n,s=1.Since L1n+Lk,k+1is a two-dimensional solvable subalgebra for any k=1,2,···,n?1,the image φ3(L1n+Lk,k+1)is also a two-dimensional subalgebra, which is generated by φ3(L1n)and φ3(Lk,k+1).Assume that

    Then there is some i∈{1,2,···,n?1}such that

    which implies that the subalgebra of gl(n,C)generated by φ3(L1n)and φ3(Li,i+1)is at least three-dimensional,a contradiction.Thus

    for any pair(s,t)satisfying t?s≥k+1,1≤s<t≤n.Let(p,q)be a pair satisfying |p?q|=k and 1≤p<q≤n.There is some i∈{1,2,···,n?1}such that

    The subalgebra t generated by Lpqand Li,i+1is

    which is three-dimensional and solvable.We consider the three-dimensional solvable algebra φ3(t).On the one hand,it is the subalgebra generated by φ3(Lpq)and Li,i+1,i.e.,it is the subalgebra

    As in Step 4,we can similarly prove that for any 1≤i≤n?1,there is some j such that

    For a given i∈{1,2,···,n?1},if the above ji,then the solvability of Lj+1,j+Li,i+1+H will force

    to be solvable,absurd.So

    A similar discussion to the above shows that

    Step 7.There exist a constantv∈C?and a linear functionf′such that

    For any fixed i∈{1,2,···,n},and any two distinct j,ki,Eiiand Ejk+Ekjgenerate a two-dimensional solvable subalgebra of gl(n,C).So φ3(Eii)and φ3(Ekj+Ejk)also generate a two-dimensional subalgebra of gl(n,C).Since

    Denote

    Step 8.There is an invertible matrixS3such that

    for any pair(s,t)such that 1≤s<t≤n by induction on t?s.It is easy to check that

    So it holds for t?s=1.Assume that

    Et?1,t?1+Et?1,tand Es,t?1+Estgenerate a two-dimensional solvable subalgebra,and so (σS3·φ4)(Et?1,t?1+Et?1,t)and(σS3·φ4)(Es,t?1+Est)also generate a two-dimensional solvable subalgebra,where

    First we prove that

    We prove it in the following two cases.

    Case 1.t=1.

    Since

    we see that E11+E21and E13+E23generate a two-dimensional solvable subalgebra of gl(n,C),and so(σS3·φ4)(E11+E21)and(σS3·φ4)(E13+E23)also generate a two-dimensional subalgebra of gl(n,C).SinceCase 2.t>1.

    Since

    we see that Et+1,t+1+Et+1,tand Et?1,t+1+Et?1,tgenerate a two-dimensional solvable subalgebra of gl(n,C),and so(σS3·φ4)(Et+1,t+1+Et+1,t)and(σS3·φ4)(Et?1,t+1+Et?1,t) also generate a two-dimensional solvable subalgebra of gl(n,C).Since

    A similar discussion as above shows that

    Thus Step 8 holds.

    Step 9.There are a nonzero elementμ∈C?,an invertible matrixSand a linear functionfongl(n,C)withf(I)?μsuch that either

    for anyX∈gl(n,C).

    By Step 8,

    and so

    We prove Step 9 in the following two cases:

    Case 1.ω=1.

    In this case,by Lemma 2.1,we have

    and f be the linear function determined by

    Thus Step 9 holds.

    Case 2.ω=ω0.

    In this case,by Lemma 2.1,we have

    Thus Step 9 holds.

    Finally,Theorem 1.1 holds for the case n≥3.

    Next we prove Theorem 1.1 holds for n=2.

    We only need to prove the essential direction.

    Let φ be an invertible linear map preserving solvability on gl(2,C).

    Since

    is a solvable subalgebra of gl(2,C),φ(T2)is a solvable subalgebra of gl(2,C),and so there is an invertible matrix S1such that

    Here σS1·φ is still an invertible linear map preserving solvability on gl(2,C).The set gl(2,C) is a disjoint union of CI,N and D′,where N is the set of all matrices of the form λI+N with N0 and N2=0,and D′is the set of all nonscalar diagonalizable matrices.By Section 3 of[11],each of the sets CI,N,and D′is invariant under σS1·φ.Let

    Since E11,E12generate a two-dimensional solvable subalgebra,φ1(E11)and φ1(E12)also generate a two-dimensional solvable subalgebra.By computation,

    where h∈H,a12,a21∈C.Since E11,E22,E21generate a three-dimensional solvable subalgebra,φ1(E11),φ1(E22)and φ1(E21)generate a three-dimensional solvable subalgebra, denoted by t.Choose

    Then(ad h1)(φ1(E21))∈t,(ad h1)2(φ1(E21))∈t,i.e.,a21E21?a12E12∈t,a21E21+ a12E12∈t.Thus a21E21∈t,a12E12∈t.If a120(resp.,a210),then E12∈t(resp., E21∈t).Thus one of a12,a21is zero and the other is nonzero.Assume that

    In this case φ1(E12),φ1(E21)and φ1(E11?E22)generate a solvable subalgebra of gl(2,C), which contradicts the fact that the subalgebra generated by E21,E12and E11?E22is not solvable.Thus

    Next we prove that h=0.

    We could choose p′,q′∈C so that p′q′,and p′qq′p.Then p′E11+q′E22and h are linearly independent.Let

    Since CE21+Ch′′is a two-dimensional solvable subalgebra generated by h′′and E21,t′is a two-dimensional solvable subalgebra generated by φ1(E21)and φ1(h′′).However,

    a contradiction.Thus

    where a21∈C?.So

    Let f′be a linear function on C determined by

    is an invertible linear map preserving solvability.It is easy to check that

    we see that E11+E12?E21?E22and E21+E12generate a two-dimensional solvable subalgebra of gl(2,C),and so(σS3·φ2)(E11+E12?E21?E22)and(σS3·φ2)(E21+E12) also generate a two-dimensional solvable subalgebra of gl(2,C).By computation,

    and Theorem 1.1 holds for n=2.

    The proof of Theorem 1.1 is completed.

    [1]Frobenius C.Uber die Darstellung der Endlichen Gruppen Durch Lineare Substitutioen.Berlin: Sitzungsber Deutsch Akad Wiss,1897.

    [2]Li C K,Tsing N K.Linear preserver problem:a brief introduction and some special techniques.Linear Algebra Appl.,1992,162-164:217–235.

    [3]Pierce S,Li C K,Loewy R,Lim M H,Tsing N.A survey of linear preserver problems.Linear and Multilinear Algebra,1992,33:1–129.

    [4]Li C K,Pierce S.Linear preserver problem.Amer.Math.Monthly,2001,108:591–605.

    [5]Marcus M.Linear operations of matrices.Amer.Math.Monthly,1962,69:837–847.

    [6]Marcoux L W,Sourour A R.Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras.Linear Algebra Appl.,1999,288:89–104.

    [7]Wong W J.Maps on simple algebras preserving zero products,II:Lie algebras of linear type.Paci fi c J.Math.,1981,92:469–487.

    [8]Semrl P.Non-linear commutativity preserving maps.Acta Sci.Math.(Szeged),2005,71:781–819.

    [9]Fosner A.Non-linear commutativity preserving maps on Mn(R).Linear and Multilinear Algebra,2005,53:323–344.

    [10]Semrl P.Commutativity preserving maps.Linear Algebra Appl.,2008,429:1051–1070.

    [11]Radjavi H,Semrl P.Non-linear maps preserving solvability.J.Algebra,2004,280:624–634.

    [12]Watkins W.Linear maps that preserve commuting pairs of matrices.Linear Algebra Appl., 1976,14:29–35.

    Communicated by Du Xian-kun

    15A01,17B40

    A

    1674-5647(2012)01-0026-17

    date:June 4,2010.

    The NSF(2009J05005)of Fujian Province and a Key Project of Fujian Provincial Universities—Information Technology Research Based on Mathematics.

    亚洲av第一区精品v没综合| 国产午夜精品久久久久久一区二区三区 | xxxwww97欧美| aaaaa片日本免费| 精品乱码久久久久久99久播| 韩国av一区二区三区四区| 欧美一级a爱片免费观看看| 一本精品99久久精品77| 高清在线国产一区| 中文字幕人妻熟人妻熟丝袜美 | 精品国产亚洲在线| 悠悠久久av| 午夜福利在线在线| 亚洲精品日韩av片在线观看 | a在线观看视频网站| 久久性视频一级片| 久久久久性生活片| 午夜日韩欧美国产| 日韩精品青青久久久久久| 欧美黄色片欧美黄色片| 免费观看的影片在线观看| 成熟少妇高潮喷水视频| 久久精品国产综合久久久| 色哟哟哟哟哟哟| 一区福利在线观看| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 婷婷亚洲欧美| 99久久精品热视频| 久久精品91无色码中文字幕| 成年女人毛片免费观看观看9| 少妇的逼水好多| 亚洲精品在线美女| 亚洲18禁久久av| 一区二区三区免费毛片| 尤物成人国产欧美一区二区三区| 精品不卡国产一区二区三区| 亚洲激情在线av| 免费人成视频x8x8入口观看| 非洲黑人性xxxx精品又粗又长| 婷婷丁香在线五月| 一本一本综合久久| 日韩欧美三级三区| 国产精品女同一区二区软件 | 香蕉久久夜色| 在线十欧美十亚洲十日本专区| 精品福利观看| 一个人看视频在线观看www免费 | 18+在线观看网站| 精品日产1卡2卡| 国产精品永久免费网站| 精品一区二区三区av网在线观看| 美女被艹到高潮喷水动态| 亚洲无线观看免费| 老熟妇乱子伦视频在线观看| 午夜两性在线视频| 午夜福利高清视频| 最好的美女福利视频网| 国产高清激情床上av| АⅤ资源中文在线天堂| 日本a在线网址| 99国产精品一区二区蜜桃av| 国产成人啪精品午夜网站| 一个人看视频在线观看www免费 | 可以在线观看毛片的网站| 精品国产亚洲在线| 国产一区二区激情短视频| 高清毛片免费观看视频网站| 精品久久久久久久久久免费视频| 免费在线观看影片大全网站| 色综合站精品国产| 别揉我奶头~嗯~啊~动态视频| 久久国产精品人妻蜜桃| 国产视频一区二区在线看| 日本 av在线| 一个人观看的视频www高清免费观看| 久久草成人影院| 91九色精品人成在线观看| 又粗又爽又猛毛片免费看| 香蕉av资源在线| 九九久久精品国产亚洲av麻豆| 亚洲国产中文字幕在线视频| 亚洲人成伊人成综合网2020| av视频在线观看入口| 久久中文看片网| 国产真人三级小视频在线观看| 国产不卡一卡二| 色综合亚洲欧美另类图片| 90打野战视频偷拍视频| 在线观看美女被高潮喷水网站 | 亚洲自拍偷在线| 国产高清激情床上av| 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 国产真实乱freesex| 老司机福利观看| 脱女人内裤的视频| 国产精品乱码一区二三区的特点| 欧美一区二区精品小视频在线| 亚洲精品成人久久久久久| 国产伦人伦偷精品视频| 蜜桃久久精品国产亚洲av| 色老头精品视频在线观看| 美女免费视频网站| 亚洲精品影视一区二区三区av| 成人av在线播放网站| 性色avwww在线观看| 中文字幕久久专区| 欧美日韩福利视频一区二区| 久久午夜亚洲精品久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人手机在线| 午夜激情欧美在线| 中出人妻视频一区二区| 久久国产精品人妻蜜桃| 国产午夜精品论理片| 久久香蕉精品热| 久久国产乱子伦精品免费另类| 久久精品国产亚洲av香蕉五月| 成年女人永久免费观看视频| 乱人视频在线观看| 国产精品久久视频播放| 欧美日韩福利视频一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 悠悠久久av| 丁香欧美五月| 国产欧美日韩一区二区三| 偷拍熟女少妇极品色| 1024手机看黄色片| 麻豆成人午夜福利视频| 色综合欧美亚洲国产小说| svipshipincom国产片| 日本一本二区三区精品| 啦啦啦观看免费观看视频高清| 免费在线观看日本一区| 午夜激情福利司机影院| 亚洲18禁久久av| 国产精品自产拍在线观看55亚洲| 亚洲黑人精品在线| 国产成人影院久久av| 51午夜福利影视在线观看| 1024手机看黄色片| 99久久成人亚洲精品观看| 亚洲一区二区三区不卡视频| 亚洲成人免费电影在线观看| 97人妻精品一区二区三区麻豆| 女生性感内裤真人,穿戴方法视频| 国产精品 国内视频| 日本黄色片子视频| 国产av麻豆久久久久久久| 99视频精品全部免费 在线| 亚洲国产精品sss在线观看| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久com| 欧美中文综合在线视频| 欧美最黄视频在线播放免费| eeuss影院久久| 午夜老司机福利剧场| 怎么达到女性高潮| 18禁黄网站禁片免费观看直播| 母亲3免费完整高清在线观看| 制服人妻中文乱码| 欧美一区二区精品小视频在线| 欧美一区二区亚洲| 久久久久久久亚洲中文字幕 | 亚洲片人在线观看| 午夜激情福利司机影院| 全区人妻精品视频| 国产精品自产拍在线观看55亚洲| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看| 丝袜美腿在线中文| 国产色婷婷99| 一级a爱片免费观看的视频| 免费看十八禁软件| 韩国av一区二区三区四区| 国产精品香港三级国产av潘金莲| 欧美日韩福利视频一区二区| 日本成人三级电影网站| 床上黄色一级片| 欧美黄色淫秽网站| 亚洲中文字幕日韩| 女人十人毛片免费观看3o分钟| 国产色爽女视频免费观看| 日韩精品青青久久久久久| 亚洲黑人精品在线| 日韩欧美在线乱码| 国产真实伦视频高清在线观看 | 成年女人看的毛片在线观看| 亚洲美女视频黄频| 日本一二三区视频观看| 真人做人爱边吃奶动态| 两人在一起打扑克的视频| 高潮久久久久久久久久久不卡| 两个人的视频大全免费| 国产免费一级a男人的天堂| 免费av毛片视频| 亚洲精品国产精品久久久不卡| 性色av乱码一区二区三区2| 国产69精品久久久久777片| 日本一本二区三区精品| 小蜜桃在线观看免费完整版高清| 黑人欧美特级aaaaaa片| 欧美成人免费av一区二区三区| 国产色婷婷99| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 欧美黄色淫秽网站| 欧美色欧美亚洲另类二区| 久久99热这里只有精品18| h日本视频在线播放| 欧美黄色片欧美黄色片| 真实男女啪啪啪动态图| 噜噜噜噜噜久久久久久91| 国产免费男女视频| 国产伦精品一区二区三区视频9 | 岛国在线免费视频观看| 亚洲电影在线观看av| 性欧美人与动物交配| 国内毛片毛片毛片毛片毛片| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 中文字幕精品亚洲无线码一区| 俄罗斯特黄特色一大片| 此物有八面人人有两片| 99久久99久久久精品蜜桃| 久久6这里有精品| 国产91精品成人一区二区三区| 欧美日韩精品网址| 日韩大尺度精品在线看网址| 国产三级黄色录像| 国产精品一区二区三区四区免费观看 | 精品久久久久久成人av| 欧美在线黄色| 窝窝影院91人妻| 国产真实乱freesex| 色精品久久人妻99蜜桃| 亚洲,欧美精品.| 日本五十路高清| 国产午夜精品论理片| 我要搜黄色片| 一a级毛片在线观看| 成人国产一区最新在线观看| 亚洲av五月六月丁香网| 日本一本二区三区精品| 欧美中文综合在线视频| 国产精品 国内视频| 久久久久久大精品| 精品乱码久久久久久99久播| 成人国产一区最新在线观看| 久久久久国产精品人妻aⅴ院| 制服人妻中文乱码| 特大巨黑吊av在线直播| 午夜老司机福利剧场| 一夜夜www| 丰满的人妻完整版| 午夜免费成人在线视频| 国产爱豆传媒在线观看| 变态另类成人亚洲欧美熟女| 欧美日韩亚洲国产一区二区在线观看| 有码 亚洲区| avwww免费| 欧美又色又爽又黄视频| 精品一区二区三区视频在线观看免费| 欧美高清成人免费视频www| 日本一本二区三区精品| av黄色大香蕉| av片东京热男人的天堂| 中亚洲国语对白在线视频| 精品乱码久久久久久99久播| 在线观看免费视频日本深夜| 尤物成人国产欧美一区二区三区| 99国产精品一区二区三区| 亚洲国产精品sss在线观看| 男女之事视频高清在线观看| 内地一区二区视频在线| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 最新在线观看一区二区三区| 欧美绝顶高潮抽搐喷水| 女生性感内裤真人,穿戴方法视频| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 18禁黄网站禁片免费观看直播| 亚洲av熟女| 日本三级黄在线观看| 午夜两性在线视频| 精品久久久久久久毛片微露脸| 内地一区二区视频在线| 免费在线观看影片大全网站| 色综合站精品国产| 亚洲狠狠婷婷综合久久图片| 亚洲18禁久久av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区二区三区不卡视频| 午夜日韩欧美国产| 国产久久久一区二区三区| 免费av不卡在线播放| 九色国产91popny在线| 免费观看人在逋| 婷婷精品国产亚洲av在线| 小说图片视频综合网站| 好看av亚洲va欧美ⅴa在| 操出白浆在线播放| 亚洲av免费高清在线观看| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 久久6这里有精品| 一级毛片高清免费大全| 中文字幕人成人乱码亚洲影| www.www免费av| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 国产aⅴ精品一区二区三区波| 国产99白浆流出| 国产亚洲欧美在线一区二区| 亚洲成a人片在线一区二区| 午夜免费男女啪啪视频观看 | 亚洲 国产 在线| 五月玫瑰六月丁香| 国产单亲对白刺激| 国产极品精品免费视频能看的| 亚洲av第一区精品v没综合| 蜜桃久久精品国产亚洲av| 在线播放国产精品三级| 国产色爽女视频免费观看| 又粗又爽又猛毛片免费看| 国产精品爽爽va在线观看网站| 精品日产1卡2卡| 免费在线观看成人毛片| 欧美日韩乱码在线| 国产精品日韩av在线免费观看| 亚洲七黄色美女视频| 大型黄色视频在线免费观看| 亚洲真实伦在线观看| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| 久久久久久久久中文| 中文字幕人妻丝袜一区二区| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 国产野战对白在线观看| 1000部很黄的大片| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 99精品久久久久人妻精品| 色综合婷婷激情| 在线免费观看的www视频| 午夜福利在线观看吧| 中国美女看黄片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色视频,在线免费观看| 在线免费观看不下载黄p国产 | 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区| 婷婷六月久久综合丁香| 国产亚洲欧美98| 女同久久另类99精品国产91| 色av中文字幕| 1000部很黄的大片| 天天躁日日操中文字幕| 日韩国内少妇激情av| 男女床上黄色一级片免费看| 在线免费观看不下载黄p国产 | 国产一区二区在线观看日韩 | 丁香欧美五月| 国产午夜福利久久久久久| 香蕉av资源在线| 69av精品久久久久久| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| av国产免费在线观看| 久久久久久大精品| 欧美色视频一区免费| 窝窝影院91人妻| 国产午夜精品久久久久久一区二区三区 | 中国美女看黄片| 男女那种视频在线观看| 免费无遮挡裸体视频| 日本与韩国留学比较| 69人妻影院| 久久国产精品人妻蜜桃| 国产午夜福利久久久久久| 床上黄色一级片| 免费观看的影片在线观看| 国产 一区 欧美 日韩| 色老头精品视频在线观看| 最近视频中文字幕2019在线8| 两个人看的免费小视频| 国产伦精品一区二区三区视频9 | 麻豆成人av在线观看| a级毛片a级免费在线| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 99久久综合精品五月天人人| 搡老岳熟女国产| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 欧美成人a在线观看| 国产伦在线观看视频一区| 我要搜黄色片| 午夜日韩欧美国产| 国产精品久久久久久精品电影| 亚洲一区高清亚洲精品| 此物有八面人人有两片| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 国产黄a三级三级三级人| 欧美一级毛片孕妇| 亚洲精品成人久久久久久| 国产美女午夜福利| 精品国产亚洲在线| 精品熟女少妇八av免费久了| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月 | 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区国产一区二区| 国产午夜精品论理片| 一区二区三区激情视频| 色吧在线观看| 欧美zozozo另类| 两人在一起打扑克的视频| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 91av网一区二区| 久久久成人免费电影| 欧美色视频一区免费| 国产精品亚洲美女久久久| 啦啦啦免费观看视频1| 男女视频在线观看网站免费| 淫妇啪啪啪对白视频| 日韩精品青青久久久久久| a级毛片a级免费在线| 精品国产亚洲在线| 久久亚洲精品不卡| 最近视频中文字幕2019在线8| 一卡2卡三卡四卡精品乱码亚洲| 老司机在亚洲福利影院| 日本免费a在线| 免费观看精品视频网站| 国产蜜桃级精品一区二区三区| 在线免费观看不下载黄p国产 | 国产成年人精品一区二区| 国产日本99.免费观看| 波野结衣二区三区在线 | 琪琪午夜伦伦电影理论片6080| 99热6这里只有精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 麻豆一二三区av精品| 美女高潮喷水抽搐中文字幕| 精品国内亚洲2022精品成人| 国产成人福利小说| 亚洲国产精品久久男人天堂| 怎么达到女性高潮| 美女免费视频网站| 狂野欧美激情性xxxx| 亚洲欧美日韩东京热| 日本与韩国留学比较| 亚洲狠狠婷婷综合久久图片| xxx96com| 热99在线观看视频| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 在线播放无遮挡| 淫秽高清视频在线观看| 怎么达到女性高潮| 欧美一区二区亚洲| 国产亚洲精品av在线| 狠狠狠狠99中文字幕| 99久久99久久久精品蜜桃| 一个人免费在线观看的高清视频| 18+在线观看网站| 麻豆国产97在线/欧美| 熟妇人妻久久中文字幕3abv| 亚洲狠狠婷婷综合久久图片| 内射极品少妇av片p| 观看美女的网站| 成人永久免费在线观看视频| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 丰满乱子伦码专区| 国产成人欧美在线观看| 婷婷精品国产亚洲av在线| 久久久久性生活片| 国产乱人视频| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 亚洲精华国产精华精| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看| 欧美激情久久久久久爽电影| 日本a在线网址| 亚洲国产高清在线一区二区三| 嫁个100分男人电影在线观看| 白带黄色成豆腐渣| 毛片女人毛片| 亚洲 欧美 日韩 在线 免费| 国产视频内射| av天堂在线播放| 久久久色成人| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站 | 欧美日韩黄片免| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 亚洲精品一卡2卡三卡4卡5卡| 在线观看日韩欧美| 亚洲专区中文字幕在线| 99在线视频只有这里精品首页| 亚洲欧美日韩无卡精品| 99久久综合精品五月天人人| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 有码 亚洲区| 久久久久久久午夜电影| 欧美极品一区二区三区四区| 日韩精品青青久久久久久| 成年女人永久免费观看视频| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 禁无遮挡网站| 又黄又粗又硬又大视频| 久久久成人免费电影| 黄片大片在线免费观看| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 深夜精品福利| 国产日本99.免费观看| 国产精品99久久99久久久不卡| 亚洲av电影在线进入| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 国产精华一区二区三区| 12—13女人毛片做爰片一| 国产69精品久久久久777片| 国产三级在线视频| 久久草成人影院| 精品国产亚洲在线| 国产高清有码在线观看视频| 九色国产91popny在线| 97碰自拍视频| 俄罗斯特黄特色一大片| 最后的刺客免费高清国语| 亚洲无线观看免费| 美女黄网站色视频| 男插女下体视频免费在线播放| 国产熟女xx| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 国产精品久久久久久久电影 | 51午夜福利影视在线观看| 99久久精品一区二区三区| 午夜福利免费观看在线| 国产综合懂色| 最新中文字幕久久久久| 欧美3d第一页| 国产伦一二天堂av在线观看| 久久久久久久午夜电影| 亚洲av成人精品一区久久| 日韩欧美精品v在线| 在线观看午夜福利视频| 夜夜夜夜夜久久久久| 日本黄大片高清| 国产精品 国内视频| 亚洲无线观看免费| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 国产三级在线视频| 久久久国产成人免费| 久久欧美精品欧美久久欧美| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲欧美在线一区二区| 亚洲av二区三区四区| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 婷婷丁香在线五月| 国产免费av片在线观看野外av| 国产亚洲精品一区二区www| 一个人免费在线观看电影| 久久香蕉精品热| 露出奶头的视频| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 午夜福利高清视频| 99久久精品国产亚洲精品| 神马国产精品三级电影在线观看| 美女高潮的动态| 婷婷六月久久综合丁香| 一本综合久久免费| 国产精品久久视频播放| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 天堂√8在线中文| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 国产真实伦视频高清在线观看 | 九九在线视频观看精品| 亚洲精品久久国产高清桃花|