• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strong Converse Inequality for the Meyer-Knig and Zeller-Durrmeyer Operators?

    2012-12-27 07:05:50QIQIULANANDLIUJUAN

    QI QIU-LANAND LIU JUAN

    (1.College of Mathematics and Information Science,Hebei Normal University,

    Shijiazhuang,050016)

    (2.No.1 Middle Shcool of Handan,Handan,Hebei,056002)

    Strong Converse Inequality for the Meyer-Knig and Zeller-Durrmeyer Operators?

    QI QIU-LAN1AND LIU JUAN2

    (1.College of Mathematics and Information Science,Hebei Normal University,

    Shijiazhuang,050016)

    (2.No.1 Middle Shcool of Handan,Handan,Hebei,056002)

    In this paper we give a strong converse inequality of type B in terms of uni fi ed K-functional(f,t2)(0≤λ≤1,0< α< 2)for the Meyer-Knig and Zeller-Durrmeyer type operators.

    Meyer-Knig and Zeller-Durrmeyer type operator,moduli of smoothness,K-functional,strong converse inequality,Hlder’s inequality

    1 Introduction

    which were the object of several investigations in approximation theory(see[1–3]).In recent years there are many results of strong converse inequalities for various operators(see[4–7]).Since the expression of the moment of the Meyer-Knig and Zeller type operators is very complicated(see[8–10]),we have not seen any result of strong converse inequality for Meyer-Knig and Zeller-Durrmeyer type operators.In this paper,we study the modi fi cation of Meyer-Knig and Zeller-Durrmeyer type operators(f,x):

    Throughout this paper,C denotes a positive constant independent of n and x,which are not necessarily the same at each occurrence.

    2 Lemmas

    In order to prove our main result,we need the following fundamental lemmas.Proof.Using Hlder’s inequality,(2.4)and(2.5),we can get(2.7).The methods to estimate (2.4),(2.5)and(2.6)are similar,so we only give the proof of(2.4).

    First,for k≥1,n=3,by simple calculations,we can get(2.4).

    Secondly,for k≥1,n≥4,one has

    Combining the above inequality with Hlder’s inequality and Lemmas 2.2–2.4,we can get (2.11).We have thus completed the proof of Lemma 2.6.

    The methods of estimating I1,I2,I3are similar,so we estimate I1for an example.It is easy to see that

    3 Main Results

    [1]Becker M,Nessel R J.A global approximation theorem for Meyer-Knig and Zeller operators.Math.Z.,1978,160:195–206.

    [2]Totik V.Approximation by Meyer-Knig and Zeller operators.Math.Z.,1983,182:425–446.

    [3]Totik V.Uniform approximation by Baskakov and Meyer-Knig and Zeller operators.Period. Math.Hungar.,1983,14:209–228.

    [4]Chen W,Ditzian Z.Strong converse inequality for Kantorovich polynomials.Constr.Approx., 1994,10:95–106.

    [5]Gonska H H,Zhou X.The strong converse inequality for Bernstein-Kantorovich operators.Comput.Math.Appl.,1995,30:103–128.

    [6]Guo S,Qi Q.Strong converse inequalities for Baskakakov operators.J.Approx.Theory,2003, 124:219–231.

    [7]Totik V.Strong converse inequalities.J.Approx.Theory,1994,76:369–375.

    [8]Abel U.The moments for the Meyer-Knig and Zeller operators.J.Approx.Theory,1995,82: 352–361.

    [9]Alkemade A H.The second moment for the Meyer-Knig and Zeller operators.J.Approx. Theory,1984,40:261–273.

    [10]Guo S,Qi Q.The moments for Meyer-Knig and Zeller operators.Appl.Math.,2007,27: 719–722.

    [11]Ditzian Z,Totik V.Moduli of Smoothness.New York:Springer-Verlag,1987.

    Communicated by Ma Fu-ming

    41A25,41A36,41A27

    A

    1674-5647(2012)01-0001-09

    date:May 28,2007.

    The NSF(10571040)of China and NSF(L2010Z02)of Hebei Normal University.

    彝良县| 金山区| 汝南县| 通榆县| 团风县| 五河县| 马公市| 清涧县| 马山县| 富民县| 巨野县| 石泉县| 新昌县| 申扎县| 深州市| 邹平县| 岳池县| 泾川县| 方山县| 宁武县| 犍为县| 博湖县| 西藏| 南投市| 尖扎县| 崇文区| 新巴尔虎左旗| 自贡市| 兴宁市| 海阳市| 皋兰县| 宜良县| 梅州市| 富蕴县| 红原县| 彰武县| 合川市| 永吉县| 永善县| 郧西县| 西林县|