朱 彥, 李 鑫
(1.安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,合肥 230039;2.中國(guó)礦業(yè)大學(xué) 理學(xué)院,江蘇 徐州 221116)
一類非線性分?jǐn)?shù)階微分方程三點(diǎn)邊值問題的解
朱 彥1, 李 鑫2
(1.安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,合肥 230039;2.中國(guó)礦業(yè)大學(xué) 理學(xué)院,江蘇 徐州 221116)
文中研究的是關(guān)于一類非線性分?jǐn)?shù)階微分方程三點(diǎn)邊值問題解的存在性和唯一性。首先,給出了格林函數(shù)以及其簡(jiǎn)單性質(zhì);其次,利用Schauder不動(dòng)點(diǎn)定理和壓縮映像原理得到了該邊值問題解的相關(guān)性質(zhì)的兩個(gè)結(jié)果;最后舉例說明了這兩個(gè)結(jié)果。
分?jǐn)?shù)階微分方程;Green函數(shù);不動(dòng)點(diǎn)理論;解存在性和唯一性
近年來,對(duì)分?jǐn)?shù)階微分方程的研究非常活躍。除了在數(shù)學(xué)本身的應(yīng)用,分?jǐn)?shù)階微分方程還在流體力學(xué)、材料力學(xué)、天文學(xué)、生物學(xué)以及物理與工程等方面有著廣泛的應(yīng)用。隨著分?jǐn)?shù)階微分方程理論的不斷發(fā)展[1-2],有關(guān)分?jǐn)?shù)階微分方程邊值問題解的存在性和唯一性的研究成果也層出不窮[3-8]。但大多數(shù)關(guān)于分?jǐn)?shù)階微分方程邊值問題解的研究文獻(xiàn),多是標(biāo)準(zhǔn)的Riemann-Liouville型微分,而Caputo型微分方程邊值問題解的性質(zhì)研究文獻(xiàn)鮮見,為此,筆者利用不動(dòng)點(diǎn)定理,研究非線性分?jǐn)?shù)階微分方程三點(diǎn)邊值問題
文中首先給出有關(guān)分?jǐn)?shù)階微分方程的基本概念、準(zhǔn)備知識(shí)和相應(yīng)的分?jǐn)?shù)階微分方程的格林函數(shù)及其性質(zhì);其次將邊值問題(1)轉(zhuǎn)化為等價(jià)的積分方程,利用Schauder不動(dòng)點(diǎn)定理和壓縮映像原理,得到解的相關(guān)性質(zhì);最后舉例說明兩個(gè)結(jié)果的應(yīng)用。
由定理2,邊值問題(6)有唯一解。
[1]PODLUHNY I.Fractional differential equations[M].New York:Academic Press,1999.
[2]KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier Science B V,2006.
[3]LI C F,LUO X N,ZHOU Y.Existience of positive solutions of the boundary value problems for nonlinear fractional differential equztions[J].Computers & Mathematics with Applications,2010,59(3):1363-1375.
[4]UR REHMAN M,KHAN R A.Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations[J].Applied Mathematics Letters,2010,23(9):1038-1044.
[5]BAI Z B.On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Analysis:Theory,Method& Applications,2010,72(2):916 -924.
[6]BAI Z B,ZHANG Y H.The existence of solutions for a factional multi-point boundary value problem[J].Applied Mathematics and Computation,2010,60(8):2364-2372.
[7]ZHANG S Q.Positive solutions for boundary value problems of nonlinear fractional differentia equations[J].Electronic Journal of Differential Equation,2006,23:1-12.
[8]EL-SHAHED M,NIETO J J.Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order[J].Computers & MathematicswithApplications,2010,59(11):3438-3443.
Solutions for nonlinear fractional order 3-point boundary value problem
ZHU Yan1,LI Xin2
(1.School of Mathematical Sciences,Anhui University,Hefei 230039,China;2.College of Sciences,China University of Mining & Technology,Xuzhou 221116,China)
This paper is concerned with the study on the existence and uniqueness of solutions to nonlinear three-point boundary problems for a fractional differential equation.The study starts with Green’s function and its properties,followed by the existence and uniqueness of solutions obtained by means of Schauder fixed point theorem and contraction mapping principle.The study concludes with two examples to illustrate the results.
fractional differential equations;Green function;fixed point theorem;existence and uniqueness of solutions
O175.8
A
1671-0118(2012)01-0093-05
2012-01-10
教育部博士點(diǎn)基金項(xiàng)目(20113401110001)
朱 彥(1988-),女,江蘇省泰州人,碩士,研究方向:微分方程,E-mail:zhuyanhappy@126.com。
(編輯 徐 巖)