• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈣鈦礦型La1-xCaxCoO3納米孔材料在Al-H2O2半燃料電池中的應(yīng)用

    2012-12-21 06:32:54莊樹新劉素琴張金寶涂飛躍黃紅霞黃可龍李艷華
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:中南大學(xué)鈣鈦礦桂林

    莊樹新 劉素琴,* 張金寶 涂飛躍 黃紅霞 黃可龍 李艷華

    (1中南大學(xué)化學(xué)化工學(xué)院,長沙410083;2桂林科技大學(xué)化學(xué)與生物工程學(xué)院,廣西桂林541004)

    鈣鈦礦型La1-xCaxCoO3納米孔材料在Al-H2O2半燃料電池中的應(yīng)用

    莊樹新1劉素琴1,*張金寶1涂飛躍1黃紅霞2黃可龍1李艷華1

    (1中南大學(xué)化學(xué)化工學(xué)院,長沙410083;2桂林科技大學(xué)化學(xué)與生物工程學(xué)院,廣西桂林541004)

    通過改進的無定形檸檬酸前驅(qū)體法制備鈣鈦礦型La1-xCaxCoO3(x=0.2,0.4,0.5)系列化合物.使用循環(huán)伏安法和恒電流測試La1-xCaxCoO3系列化合物對于過氧化氫的電催化還原性能.同時也檢測了La1-xCaxCoO3化合物中La與Ca的摩爾比及煅燒溫度對其催化性能的影響.在La1-xCaxCoO3系列化合物中,650°C煅燒的La0.6Ca0.4CoO3展現(xiàn)出最佳的催化活性.在含有0.4 mol·dm-3H2O2的3.0 mol·dm-3KOH水溶液中,使用這種材料作為鋁-H2O2半燃料電池的陰極催化劑,在150 mA·cm-2電流密度下該電池的電壓為1.34 V,能量密度為201 mW·cm-2.

    鋁半燃料電池;鈣鈦礦;過氧化氫電還原;堿性介質(zhì)

    1 Introduction

    Hydrogen peroxide(H2O2)has been investigated as an attractive oxidant instead of oxygen for several types of liquid-based fuel cells.Compared to oxygen,H2O2is liquid,resulting in an easier handling and storage.Moreover,electroreduction kinetics of H2O2is faster than that of oxygen.Therefore,fuel cells with H2O2as an oxidant tend to have better performance and are more compact than those using oxygen.The application of H2O2in several types of fuel cells has been widely studied,including direct methanol-H2O2fuel cells,1-3borohydride-H2O2fu-el cells,4-9and metal-H2O2semi fuel cells.10-16Research results showed that these fuel cells exhibited high energy density, good performance,and workability without air.

    Among various electrocatalysts for H2O2reductions,such as noble metals,17-23macrocycle complexes of transition metals,24-26and transition metal oxides,27-29noble metals are usually known to be fairly active for H2O2electroreduction.Noble metal catalysts,however,have some serious problems to be overcome before worldwide spread of fuel cells,such as high cost and limited resources.Although macrocycle complex of transition metals is another considerable candidate as H2O2electroreduction catalyst showing high reduction potential and no excessive oxygen evolution,30it requires specific environments,specific temperature ranges,and are less stable than conventional noble metal catalysts.

    Perovskite-type oxides which have the general formula ABO3, especially La1-xCaxCoO3,as the promising bifunctional catalyst of air electrodes have been extensively investigated.31-33And they can be found in many demonstration batteries.34,35Their catalytic activity,ionic and electronic conductivities can be tuned by partially replacing the elements in either A-site(such as La and Ca)or B-site (such as Co,Mn,Ni,Fe,and Cu).More recently,the electrocatalytic behavior of La0.6Ca0.4CoO3towards oxygen reduction in an ambient temperature alkaline electrolyte has been reported by our group,36,37finding that La0.6Ca0.4CoO3exhibited good catalytic activity for oxygen reduction.Hence,it will be interesting to study the catalytic behavior of perovskite-type La1-xCaxCoO3on H2O2reduction.

    The aim of this work is to open up the possibility for development of perovskite-type compounds as H2O2cathode.Nanoporous perovskite La1-xCaxCoO3were synthesized by a modified amorphous citrate precursor(ACP)method.The electrocatalytic activity and stability of La1-xCaxCoO3for H2O2reduction in alkaline medium were investigated by cyclic voltammetry and chronoamperometry.The performance of La0.6Ca0.4CoO3as the cathode catalyst of an alkaline aluminun-H2O2semi fuel cell was evaluated.And the electrochemical performance of Al-H2O2semi fuel cell using nanoporous La1-xCaxCoO3cathode was investigated.

    2 Experimental

    2.1 Preparation and characterization of La1-xCaxCoO3

    The catalyst La1-xCaxCoO3powder was synthesized by a modified-ACP method.37Carbon black(Vulcan XC-72R,30 nm, Cabot)was used as a pore-forming material.La(NO3)3·6H2O, Ca(NO3)2·4H2O,Co(NO3)3·6H2O,and citric acid(Sinopharm Chemical Reagent Co.,Ltd,China)used as reaction reagents were all analytical grade.An aqueous solution of citric acid with a 10% (molar fraction)excess over the number of ionic equivalents of cations was prepared.The aqueous solution of citric acid was then added by a fixed amount of carbon black,in which the mass ratio of carbon black to the theoretical mass of La1-xCaxCoO3was 3:1. Then they were agitated vigorously for 2 h in room temperature. Subsequently,the aqueous solutions of the stoichiometric metal nitrates were gradually added to the as-prepared solution and they were agitated for another 15 min.The resulting solution was concentrated by slowly evaporating water under vacuum in a rotavapor at 75°C until a gel was obtained.This gel was dried in an oven,in which temperature slowly increased to 200°C and was kept for about 12 h to produce a solid amorphous citrate precursor. The precursor was milled and calcined in air at 550,600,650,and 700°C for 4 h,respectively.

    Phase identifications of the synthesized powders were conducted by a MXPAHF X-ray diffractometer(XRD)(Make Corporation,Japan)from 20°to 80°with a Cu Kαof 0.154056 nm. Thermo-gravimetry and differentialscanning calorimetry (TG-DSC)wereperformedwithaNetzschSTA 499C (NETZSCH-Ger?tebau GmbH.Selb,Germany)in a flow of air (40 cm3·min-1)at a heating rate of 10°C·min-1from room temperature up to 900°C.Both the morphologies and energy dispersive X-ray spectroscopy (EDS)of the as-prepared La1-xCaxCoO3particles were observed by a Hitachi S-4800 scanning electron microscope(SEM)equipment(HITACHI,Japan).Specific surface area was measured by nitrogen adsorption-desorption with the Brunauer-Emmett-Teller(BET)method(Autosorb?-iQ,Quantachrome,America).

    2.2 Preparation of La1-xCaxCoO3electrodes

    To prepare La1-xCaxCoO3electrodes,La1-xCaxCoO3powder and carbon black(Vulcan XC-72)were dispersed in anhydrous ethanol by sonication for 10 min to obtain a suspension,to which a polytetrafluorethylene(PTFE,10%(w)in H2O)emulsion was added.This mixture was blended for another 30 min with ultrasonic agitation and then dried at 80°C to obtain a dough-like paste,which was finally rolled into a thin layer of about 200 μm in thickness.These thin layers had the same geometrical area of 10 mm×10 mm and the catalyst loading was approximately kept at 0.2 mg·cm-2.Two pieces of the identical thin layers were finally pressed together with a nickel foam current collector under 10 MPa pressure for 30 s and then sintered at 340°C for 30 min.The obtained electrodes consisted of 75%(mass fraction,the same below)La1-xCaxCoO3,15%carbon black,and 10%PTFE.

    2.3 Electrochemical measurements

    Electrochemical measurements were performed in a standard three-electrode electrochemical cell with saturated Ag/AgCl reference electrode and a bright platinum(2 cm2)foil counter electrode.The electrolyte was 3.0 mol·dm-3KOH containing H2O2with different concentrations.Cyclic voltammetry was conducted by Parstat 2273.And galvanostatic profiles were measured at various current densities for 1800 s.The reported current densities were calculated using the geometrical area of the electrode.All the solutions were made with analytical grade chemical reagents and ultra-pure water(Milli-Q,18 MΩ· cm).All potentials were referred to the saturated Ag/AgCl, KCl reference electrode.

    The performance of La0.6Ca0.4CoO3as a cathode catalyst of the Al-H2O2semi fuel cell was examined by using a home-made flow through test cell as shown in Fig.1.Both the aluminum alloy anode(LF6,91.9%Al,6.5%Mg,0.6%Mn,0.3% Fe,0.3%Si,0.2%Zn,0.1%Ti)and the La0.6Ca0.4CoO3cathode have the same geometrical area of 20 mm×20 mm.Nafion 1135(DuPont)membrane was used to separate the anode and the cathode compartments.The anolyte(3.0 mol·dm-3KOH) and the catholyte(3.0 mol·dm-3KOH+0.6 mol·dm-3H2O2) were pumped into the bottom of the anode and the cathode compartments,respectively,using an individual peristaltic pump,at a flow rate of 80 cm3·min-1,and exited at the top of the compartments.The electrochemical performance of the Al-H2O2was recorded at ambient temperature on a battery test instrument(Wuhan Land Electronic Co.Ltd.,China).

    Fig.1 Schematic diagram of the plexi-glass cell used for electrochemical measurementsThe dimensions of the cell are 30 mm(long)×40 mm(wide)×40 mm(height), and the distances from the electrodes to the membrane are both 5 mm.

    3 Results and discussion

    3.1 Characterization of La1-xCaxCoO3

    Fig.2 TG-DSC curves of the precursors prepared by the modifiedACPmethod

    In order to understand the decomposition behavior and the phase evolution of the La1-xCaxCoO3precursors,the TG-DSC of the as-prepared La0.6Ca0.4CoO3precursor was conducted and the result is shown in Fig.2.The TG and DSC curves show that the whole thermal treatment process could be divided into five stages marked as stages I,II,III,IV,and V on the graph.A mass loss of 9.5%occurring in stage I(around 20-150°C)results from the removal of the residual adsorbed and hydrated water.Amass loss of 12.4%in stage II(around 150-300°C)is due to the loss of nitrate and acetic anions via decomposition and oxidation of precursors. Stage III(around 300-418°C)with a mass loss of 22.7%can be assigned to the combustion of metal citrates because the decomposition of metal citrates starts at around 320°C.38A mass loss of 38.4%in stage IV(around 418-560°C)is accompanied by a strong sharp exothermal peak at 519°C,which is attributed to the combustion of the pore-forming carbon black.39At stage V (around 560-900°C),no significant mass loss is observed,implying that almost all the nitrate anion and organic derivatives are removed and that the La0.6Ca0.4CoO3perovskite phase has already formed.

    XRD analysis was performed to obtain information about the formation of crystallographic phase during thermal treatment.Fig.3 shows the XRD patterns of the La0.6Ca0.4CoO3calcined at 550,600,650,and 700°C,respectively.For the sample calcined at 550°C,the peaks corresponding to perovskite La0.6Ca0.4CoO3are observed but not so sharp,indicating that perovskite-type oxide La0.6Ca0.4CoO3has already formed but not well crystallized.The samples calcined above 600°C present a pure perovskite La0.6Ca0.4CoO3phase,without any impurity,which agrees well with the JCPDS standard pattern (36-1389).Moreover,the corresponding characteristic peaks become sharper and sharper with the calcination temperature increasing from 600 to 700°C,indicating a better crystalline structure.The average crystalline sizes of the calcined samples, calculated based on the Scherrer equation,are from 34 to 40 nm.

    The morphology of La0.6Ca0.4CoO3sample calcined at 650°C together with the EDS spectrum of the particles in the selected region is shown in Fig.4.EDS only detected trace amount of the carbon element(Fig.4(b)),which might come from the carbon tap during the EDS test.As shown in Fig.4(a),most of the particles are in irregular shape,but presenting novel nanoporous structure with the particle size of about 50 nm.The interconnected pore channels would provide much convenience for the electrolyte and H2O2moving into the catalyst powders.40

    Fig.3 XRD patterns of La0.6Ca0.4CoO3calcined at different temperatures

    The influence of the molar ratio of La to Ca on the crystal structure of La1-xCaxCoO3compounds was investigated by XRD spectrum.Fig.5 shows the XRD patterns of a series of La1-xCaxCoO3compounds calcined at 650°C(x=0.2,0.4,0.5). The XRD patterns are all in good agreement with corresponding JCPDS standard patterns(36-1390,36-1389,and 36-1388, respectively),indicating that this series of perovskite-type oxides La1-xCaxCoO3are all well crystallized at 650°C in the modified-ACP preparation process.In addition,the homogeneous nanoporous La1-xCaxCoO3catalysts have a high specific surface areas(205,213,215 m2·g-1for x=0.2,0.4,0.5 calcined at 650°C,respectively).It was because the carbon can not only hinder the growth of solid particles during heating41but also act as the pore-forming material after burning out which causes nanoporous structure forming when the calcination temperature reached above 550°C.Such a high specific surface area supplies a number of surface active sites,which facilitate material?s electrocatalytic properties.

    Fig.4 SEM image of La0.6Ca0.4CoO3calcined at 650°C(a)and the EDS spectra(at 15.0 kV)collected onto the square zone in the image(a)

    3.2 Electrocatalytic performance of La1-xCaxCoO3

    for H2O2reduction

    The influence of thermal treatment temperature on the electrocatalytic performance of La0.6Ca0.4CoO3was investigated by cyclic voltammetry.The cyclic voltammograms were recorded at a scan rate of 5 mV·s-1in 3 mol·dm-3KOH containing 0.4 mol·dm-3H2O2and the results are displayed in Fig.6.The onset potential for H2O2reduction is around+0.05 V and independent of the calcination temperature.In the potential region from+0.05 to-0.2 V,the differential of current density to potential(dj/dE)increases initially and then deceases with the calcination temperature elevating from 550 to 700°C,demonstrating that the sample calcined at 650°C exhibited the highest electrocatalytic activity.This is probably because the sample calcined at 650°C achieves a better balance between crystal structure and specific surface area as indicated by TG-DSC and XRD results.Lower thermal treatment temperature favors larger specific surface area but worsens crystallinity.Higer calcination temperature leads to better crystallinity but smaller specific surface area due to the sintering.

    Fig.5 XRD patterns of La1-xCaxCoO3(x=0.2,0.4,0.5) calcined at 650°C

    Fig.7 shows the effect of the molar ratio of La to Ca on the electrocatalytic activity of La1-xCaxCoO3calcined at 650°C. The cyclic voltammograms were recorded at a scan rate of 5 mV·s-1in 3.0 mol·dm-3KOH containing 0.4 mol·dm-3H2O2. As shown in Fig.7,H2O2electroreduction starts at around +0.05 V,being also independent of the composition of La1-xCaxCoO3.However,the current density varies with the molar ratio of La to Ca.Among the three samples,the La0.6Ca0.4CoO3sample presents the highest dj/dE value and cathodic peak current density in the potential range from+0.05 to-0.2 V.It indicated that the sample La0.6Ca0.4CoO3exhibited the best catalytic activity for H2O2electroreduction,which was in good agreement with the references.33,42

    Fig.6 Cyclic voltammograms of La0.6Ca0.4CoO3calcined at different temperatures in 3.0 mol·dm-3KOH solution containing 0.4 mol·dm-3H2O2

    Fig.8 presents the influence of H2O2concentration on the electroreduction activity of La0.6Ca0.4CoO3electrode.As shown in Fig.8,the dj/dE remains constant from+0.05 V to-0.2 V but the cathodic peak current density remarkably enhances with H2O2concentration increasing.The approximate linear re-lationship between the cathodic peak current density and the H2O2concentration implies that the reduction reaction was controlled by H2O2diffusion.43The nearly linear behavior of the polarization curves in the cathodic scan manifests a large ohmic resistive effect of the electrode,which is likely due to the low conductivity of La0.6Ca0.4CoO3at room temperature.Although higher limiting current density can be achieved at higher H2O2concentration, the chemical decomposition of H2O2to O2became more significant at high H2O2concentration as indicated by the formation of gas bubbles on the electrode surface.No gas bubbles were observed at H2O2concentrations below 0.4 mol·dm-3,but obvious gas evolution occurred when H2O2concentration exceeded 0.6 mol·dm-3.This indicates that the chemical decomposition of H2O2to O2becomes easier to proceed at a high H2O2concentration. Therefore,using low H2O2concentration is essential for keeping high H2O2utilization efficiency.This study demonstrated that perovskite La1-xCaxCoO3possessed considerable catalytic activity and stability towards electroreduction of H2O2in alkaline medium at room temperature.

    Fig.7 Cyclic voltammograms of La1-xCaxCoO3calcined at 650°C recorded in 3.0 mol·dm-3KOH containing 0.4 mol·dm-3H2O2

    The stability of La0.6Ca0.4CoO3electrode for H2O2electroreduction was also investigated by galvanostatic measurements. Fig.9 shows galvanostatic curves of H2O2electroreduction on La0.6Ca0.4CoO3calcined at 650°C with various current densities.At these four current densities,the voltage agree well with the results of cyclic voltammograms.At low current densities, the voltage reaches to steady state after a few seconds and displays no sign of decrease within the test period,indicating that the catalytic performance of La0.6Ca0.4CoO3was stable and sustainable for hydrogen peroxide electroreduction.When the current density further increases(200 mA·cm-2),the voltage fluctuations are observed within 30 min test period,which is due to the depletion of H2O2near the electrode surface with 0.4 mol·dm-3H2O2.

    Fig.8 Cyclic voltammograms of La0.6Ca0.4CoO3measured in 3.0 mol·dm-3KOH containing H2O2with different concentrations

    Fig.9 Galvanostatic curves for H2O2electroreduction on La0.6Ca0.4CaO3electrode at different current densities in3.0 mol·dm-3KOH+0.4 mol·dm-3H2O2

    The performance of La0.6Ca0.4CaO3as the cathode catalyst of Al-H2O2semi fuel cell was investigated.Fig.10 presents plots of cell voltage and power density against current density.The cell was operated at room temperature with 0.4 mol·dm-3H2O2feeding to the cathode compartment.The cell exhibited an open circuit voltage of around 1.55 V and the cell voltage decayed almost linearly and then dropped drastically with the current density increasing.This behavior indicated that the cell performance had the poor mass transport and the large ohmic resistance,which might be attributed to the cell design.By optimizing the cell design,better cell performance might be achieved.Further investigation is undergoing in our laboratory. A peak power density of 201 mW·cm-2was obtained at 150 mA·cm-2and 1.34 V,which was comparable with that of Al-H2O2semi fuel cell using nanoparticle Co3O4cathode,27but was better than that of Al-O2semi fuel cell reported by Rota et al.44Although high power density of Al-H2O2semi fuel cell can be achieved with high concentration of H2O2,the chemical de-composition rate of H2O2at high concentration will increase the expense of H2O2.It was worth emphasizing that La1-xCaxCoO3can also be used as cathode catalysts for other types of fuel cells using H2O2as oxidant such as direct methanol-H2O2fuel cell and borohydride-H2O2fuel cell.

    4 Conclusions

    Perovskite-type La1-xCaxCoO3(x=0.2,0.4,0.5)compounds were prepared by a modified amorphous citrate precursor method.Based on XRD and SEM analyses,a series of compounds La1-xCaxCoO3could be synthesized at 550°C and presented homogeneous nanoporous morphology at 650°C.Their catalytic activities for H2O2electroreduction in alkaline medium were evaluated at room temperature.Dependence of catalytic activity upon the molar ratio of La to Ca in the La1-xCaxCoO3and the calcination temperature was discussed deeply.The results showed that the sample La0.6Ca0.4CaO3calcined at 650°C exhibited the best catalytic activity.The Al-H2O2fuel cell using La0.6Ca0.4CaO3as cathode catalysts displayed an open circuit voltage of 1.55 V and a peak power density of 201 mW·cm-2. Compared with precious materials such as Ru,Rh,Ir,Pt,and Pd,perovskite-type La1-xCaxCoO3are more abundant and cheaper.Hence,perovskite-type La1-xCaxCoO3are attractive electrocatalysts for H2O2electroreduction.

    (1) Sung,W.;Choi,J.W.J.Power Sources 2007,172,198.

    (2) Bewer,T.;Beckmann,T.;Dohle,H.;Mergel,J.;Stolten,D. J.Power Sources 2004,125,1.

    (3) Prater,D.N.;Rusek,J.J.Appl.Energy 2003,74,135.

    (4) Gu,L.;Luo,N.;Miley,G.H.J.Power Sources 2007,173,77.

    (5) Raman,R.K.;Prashant,S.K.;Shukla,A.K.J.Power Sources 2006,162,1073.

    (6) Chatenet,M.;Micoud,F.;Roche,I.;Chainet,E.;Vondrák,J. Electrochim.Acta 2006,51,5452.

    (7)Pei,F.;Wang,Y.;Wang,X.;He,P.;Chen,Q.;Wang,X.;Wang, H.;Yi,L.;Guo,J.Int.J.Hydrog.Energy 2010,35,8136.

    (8) Ponce de León,C.;Walsh,F.C.;Patrissi,C.J.;Medeiros,M. G.;Bessette,R.R.;Reeve,R.W.;Lakeman,J.B.;Rose,A.; Browning,D.Electrochem.Commun.2008,10,1610.

    (9)Raman,R.K.;Choudhury,N.A.;Shukla,A.K.Electrochem. Solid-State Lett.2004,7,A488.

    (10) Brodrecht,D.J.;Rusek,J.J.Appl.Energy 2003,74,113.

    (11)Yang,W.;Yang,S.;Sun,W.;Sun,G.;Xin,Q.J.Power Sources 2006,160,1420.

    (12) Popovich,N.A.;Govind,R.J.Power Sources 2002,112,36.

    (13) Hasvold,?.;Johansen,K.H.;Mollestad,O.;Forseth,S.; St?rkersen,N.J.Power Sources 1999,80,254.

    (14) Hasvold,?.;St?rkersen,N.J.;Forseth,S.;Lian,T.J.Power Sources 2006,162,935.

    (15)Yang,W.;Yang,S.;Sun,W.;Sun,G.;Xin,Q.Electrochim.Acta 2006,52,9.

    (16) Patrissi,C.J.;Bessette,R.R.;Kim,Y.K.;Schumacher,C.R. J.Electrochem.Soc.2008,155,B558.

    (17) Savinova,E.R.;Wasle,S.;Doblhofer,K.Electrochim.Acta 1998,44,1341.

    (18) Prakash,J.;Joachin,H.Electrochim.Acta 2000,45,2289.

    (19) Strbac,S.Electrochim.Acta 2011,56,1597.

    (20) Zeis,R.;Lei,T.;Sieradzki,K.;Snyder,J.;Erlebacher,J. J.Catal.2008,253,132.

    (21)Qin,X.;Wang,H.;Wang,X.;Miao,Z.;Fang,Y.;Chen,Q.; Shao,X.Electrochim.Acta 2011,56,3170.

    (22) Fu,R.;Zheng,J.S.;Wang,X.Z.;Ma,J.X.Acta Phys.-Chim. Sin.2011,27,2141.[符 蓉,鄭俊生,王喜照,馬建新.物理化學(xué)學(xué)報,2011,27,2141.]

    (23) Wu,Y.N.;Liao,S.J.Acta Phys.-Chim.Sin.2010,26,669. [吳燕妮,廖世軍.物理化學(xué)學(xué)報,2010,26,669.]

    (24)Bouwkamp-Wijnoltz,A.L.;Visscher,W.R.;van Veen,J.A. Electrochim.Acta 1998,43,3141.

    (25) Raman,R.K.;Shukla,A.K.J.Appl.Electrochem.2005,35, 1157.

    (26) Herrmann,I.;Kramm,U.I.;Fiechter,S.;Bogdanoff,P. Electrochim.Acta 2009,54,4275.

    (27) Cao,D.;Chao,J.;Sun,L.;Wang,G.J.Power Sources 2008, 179,87.

    (28) Goldik,J.S.;Nesbitt,H.W.;No?l,J.J.;Shoesmith,D.W. Electrochim.Acta 2004,49,1699.

    (29) Keech,P.G.;No?l,J.J.;Shoesmith,D.W.Electrochim.Acta 2008,53,5675.

    (30) González,G.L.;Kahlert,H.;Scholz,F.Electrochim.Acta 2007, 52,1968.

    (31)Zhang,H.M.;Shimizu,Y.;Teraoka,Y.;Miura,N.;Yamazoe,N. J.Catal.1990,121,432.

    (32) Tanaka,H.;Misono,M.Curr.Opin.Solid State Mater.Sci. 2001,5,381.

    (33) Weidenkaff,A.;Ebbinghaus,S.G.;Lippert,T.Chem.Mater. 2002,14,1797.

    (34) Lee,C.K.;Striebel,K.A.;McLarnon,F.R.;Cairns,E.J. J.Electrochem.Soc.1997,144,3801.

    (35) Müller,S.;Holzer,F.;Haas,O.J.Appl.Electrochem.1998,28, 895.

    (36) Zhuang,S.;Huang,K.;Huang,H.;Liu,S.;Fan,M.J.Power Sources 2011,196,4019.

    (37) Zhuang,S.;Huang,C.;Huang,K.;Hu,X.;Tu,F.;Huang,H. Electrochem.Commun.2011,13,321.

    (38) Deganello,F.;Marcì,G.;Deganello,G.J.Eur.Ceram.Soc. 2009,29,439.

    (39) Jakab,E.;Omastová,M.J.Anal.Appl.Pyrolysis 2005,74,204.

    (40) Yang,J.;Xu,J.J.Electrochem.Commun.2003,5,306.

    (41) Liu,H.P.;Wang,Z.X.;Li,X.H.;Guo,H.J.;Peng,W.J. J.Power Sources 2008,184,469.

    (42)Kahoul,A.;Hammouche,A.;Poillerat,G.;De Doncker,R.W. Catal.Today 2004,89,287.

    (43)Wang,G.;Bao,Y.;Tian,Y.;Xia,J.;Cao,D.J.Power Sources 2010,195,6463.

    (44) Rota,M.;Comninellis,C.;Muller,S.;Holzer,F.;Haas,O. J.Appl.Electrochem.1995,25,114.

    September 6,2011;Revised:November 23,2011;Published on Web:November 29,2011.

    Application of Nanoporous Perovskite La1-xCaxCoO3in an Al-H2O2Semi Fuel Cell

    ZHUANG Shu-Xin1LIU Su-Qin1,*ZHANG Jin-Bao1TU Fei-Yue1
    HUANG Hong-Xia2HUANG Ke-Long1LI Yan-Hua1
    (1College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,P.R.China;
    2College of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004,Guangxi Province,P.R.China)

    Perovskite-type series of compounds La1-xCaxCoO3(x=0.2,0.4,0.5)were synthesized by a modified amorphous citrate precursormethod.Theircatalytic activities forhydrogen peroxide electroreduction in 3.0 mol·dm-3KOH at room temperature were evaluated by cyclic voltammetry and galvanostatic measurements.The influences of annealing temperature and the molar ratio of La to Ca of La1-xCaxCoO3on catalytic performance were investigated.Among the series of compounds,La0.6Ca0.4CoO3calcined at 650°C exhibited the highest catalytic activity.An aluminum-hydrogen peroxide semi fuel cell using La0.6Ca0.4CoO3as cathode catalyst achieved a peak power density of 201 mW·cm-2at 150 mA·cm-2and 1.34 V running in 0.4 mol·dm-3H2O2.

    Aluminium semi fuel cell;Perovskite;Hydrogen peroxide electroreduction; Alkaline medium

    10.3866/PKU.WHXB201111293

    *Corresponding author.Email:zsxtonny@yahoo.com.cn;Tel:+86-31-88879850.

    The project was supported by the National High-Tech Research and Development Program of China(863)(2008AA031205)and Graduate Degree Thesis Innovation Foundation of Central South University,China(1343-74334000005).

    國家高技術(shù)研究發(fā)展計劃(863)(2008AA031205)和中南大學(xué)博士創(chuàng)新基金(1343-74334000005)資助項目

    O646

    猜你喜歡
    中南大學(xué)鈣鈦礦桂林
    桂林六漫之歌
    歌海(2024年2期)2024-06-06 05:54:00
    桂林,美
    中南大學(xué)建筑與藝術(shù)學(xué)院作品選登
    中南大學(xué)教授、博士生導(dǎo)師
    安全(2021年4期)2021-05-19 07:56:52
    中南大學(xué)校慶文創(chuàng)產(chǎn)品設(shè)計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    當(dāng)鈣鈦礦八面體成為孤寡老人
    幾種新型鈣鈦礦太陽電池的概述
    艾米莉·狄金森的自然:生態(tài)批評的解讀
    桂林游
    小主人報(2015年1期)2015-03-11 19:40:59
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    91精品国产九色| av网站免费在线观看视频| 国产高清三级在线| 国产69精品久久久久777片| 91久久精品国产一区二区成人| 桃花免费在线播放| 大话2 男鬼变身卡| 美女中出高潮动态图| 99热6这里只有精品| 日本爱情动作片www.在线观看| 久久久久久久久大av| 免费观看av网站的网址| 亚洲性久久影院| 乱码一卡2卡4卡精品| 美女cb高潮喷水在线观看| 丰满少妇做爰视频| 国产在视频线精品| 青春草亚洲视频在线观看| 久久久久久久久大av| 国产女主播在线喷水免费视频网站| 在线观看一区二区三区激情| a 毛片基地| 男男h啪啪无遮挡| 日本猛色少妇xxxxx猛交久久| 日韩伦理黄色片| 中文字幕人妻丝袜制服| av视频免费观看在线观看| 丝袜在线中文字幕| 春色校园在线视频观看| 国产精品人妻久久久影院| 日本av免费视频播放| 99国产综合亚洲精品| 亚洲精华国产精华液的使用体验| 精品99又大又爽又粗少妇毛片| 亚洲欧美清纯卡通| 9色porny在线观看| 国产精品人妻久久久影院| 成人手机av| 亚洲人成77777在线视频| 国产日韩欧美亚洲二区| 在线免费观看不下载黄p国产| 大片免费播放器 马上看| 99久久综合免费| 高清av免费在线| 亚洲精品日韩av片在线观看| 日韩一本色道免费dvd| 99精国产麻豆久久婷婷| 伊人久久精品亚洲午夜| 午夜福利视频在线观看免费| 国产精品国产三级国产专区5o| 日本欧美国产在线视频| 91精品伊人久久大香线蕉| 青春草亚洲视频在线观看| 各种免费的搞黄视频| 国产 一区精品| 国产免费福利视频在线观看| 麻豆成人av视频| 久久精品久久久久久久性| 美女国产高潮福利片在线看| 久久韩国三级中文字幕| 激情五月婷婷亚洲| 色婷婷av一区二区三区视频| 如日韩欧美国产精品一区二区三区 | 一区二区av电影网| 亚洲av中文av极速乱| 久久人妻熟女aⅴ| 性高湖久久久久久久久免费观看| 少妇被粗大的猛进出69影院 | 99九九在线精品视频| 有码 亚洲区| 一级毛片电影观看| 欧美少妇被猛烈插入视频| 国产男人的电影天堂91| 又粗又硬又长又爽又黄的视频| 亚洲伊人久久精品综合| 一区在线观看完整版| 人成视频在线观看免费观看| 免费av不卡在线播放| 人妻制服诱惑在线中文字幕| 亚洲无线观看免费| 欧美变态另类bdsm刘玥| 中文字幕精品免费在线观看视频 | 精品午夜福利在线看| 亚洲精品色激情综合| 一区二区av电影网| 一区二区av电影网| 成人国产av品久久久| 亚洲成人av在线免费| 日韩在线高清观看一区二区三区| 久久久欧美国产精品| 18+在线观看网站| 免费看不卡的av| 久久精品国产亚洲av涩爱| a级片在线免费高清观看视频| 欧美97在线视频| 国产乱人偷精品视频| 秋霞在线观看毛片| 水蜜桃什么品种好| 国产视频内射| 三级国产精品片| 免费黄色在线免费观看| 亚洲欧美日韩另类电影网站| 在现免费观看毛片| 成人无遮挡网站| 亚洲精品日本国产第一区| 九色亚洲精品在线播放| 中文乱码字字幕精品一区二区三区| 久久人人爽人人片av| 久久精品久久久久久久性| av女优亚洲男人天堂| 美女cb高潮喷水在线观看| 热99国产精品久久久久久7| 日韩亚洲欧美综合| 国产日韩欧美视频二区| 美女视频免费永久观看网站| 欧美成人精品欧美一级黄| 久久久久久久大尺度免费视频| 黑人巨大精品欧美一区二区蜜桃 | 欧美精品亚洲一区二区| 国产亚洲一区二区精品| 久久精品夜色国产| 丰满饥渴人妻一区二区三| 久久精品国产亚洲网站| 日本黄色片子视频| 免费看av在线观看网站| 热99国产精品久久久久久7| 王馨瑶露胸无遮挡在线观看| 日韩免费高清中文字幕av| 国产成人a∨麻豆精品| 99九九线精品视频在线观看视频| 男女边吃奶边做爰视频| 国产男女内射视频| 亚洲精品国产色婷婷电影| 国模一区二区三区四区视频| 国产 精品1| 日韩 亚洲 欧美在线| 丝袜喷水一区| 成年人免费黄色播放视频| 国产女主播在线喷水免费视频网站| 精品久久久久久久久亚洲| 99热网站在线观看| 国产亚洲最大av| 在线 av 中文字幕| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 国产一区二区在线观看日韩| a级毛片免费高清观看在线播放| 啦啦啦视频在线资源免费观看| 一区二区三区免费毛片| 免费观看的影片在线观看| 一本久久精品| 亚洲国产精品成人久久小说| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 99国产精品免费福利视频| 久久精品人人爽人人爽视色| 纵有疾风起免费观看全集完整版| 制服诱惑二区| 黑人高潮一二区| 亚洲欧洲精品一区二区精品久久久 | 午夜福利影视在线免费观看| 亚洲国产精品成人久久小说| 中文字幕人妻熟人妻熟丝袜美| 亚洲无线观看免费| 男女啪啪激烈高潮av片| 夫妻午夜视频| 春色校园在线视频观看| 国产精品一二三区在线看| 一级毛片aaaaaa免费看小| 老司机影院毛片| 国产精品无大码| 亚洲av福利一区| av国产精品久久久久影院| 丰满少妇做爰视频| 久久99热6这里只有精品| 免费黄网站久久成人精品| 嘟嘟电影网在线观看| 亚洲av综合色区一区| 亚洲精品456在线播放app| 久久精品国产a三级三级三级| 日韩视频在线欧美| 免费看不卡的av| 亚洲av二区三区四区| 只有这里有精品99| 中国三级夫妇交换| 黑人猛操日本美女一级片| 99久久综合免费| 午夜激情福利司机影院| 天天影视国产精品| 亚洲欧美成人精品一区二区| 波野结衣二区三区在线| 久久免费观看电影| 黑人高潮一二区| av不卡在线播放| 欧美成人午夜免费资源| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到 | 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放| 成年美女黄网站色视频大全免费 | 2021少妇久久久久久久久久久| 亚洲成人一二三区av| 又黄又爽又刺激的免费视频.| 久久精品熟女亚洲av麻豆精品| 欧美变态另类bdsm刘玥| videosex国产| 亚洲美女黄色视频免费看| 七月丁香在线播放| 国产黄片视频在线免费观看| 中文字幕精品免费在线观看视频 | 青青草视频在线视频观看| 久久午夜福利片| 麻豆精品久久久久久蜜桃| 日本91视频免费播放| 久久毛片免费看一区二区三区| 欧美日本中文国产一区发布| av.在线天堂| 中文欧美无线码| 色婷婷av一区二区三区视频| 激情五月婷婷亚洲| 大片免费播放器 马上看| 国产 精品1| 欧美成人午夜免费资源| 欧美变态另类bdsm刘玥| 免费高清在线观看日韩| 永久免费av网站大全| 欧美日韩成人在线一区二区| 国产伦精品一区二区三区视频9| 久久久国产一区二区| 观看美女的网站| av电影中文网址| 一边摸一边做爽爽视频免费| 伊人久久国产一区二区| 国产av一区二区精品久久| 欧美激情极品国产一区二区三区 | 在线播放无遮挡| 国产av精品麻豆| 亚洲精品自拍成人| 久久久久精品久久久久真实原创| 啦啦啦在线观看免费高清www| 视频中文字幕在线观看| 一本大道久久a久久精品| 亚洲五月色婷婷综合| 亚洲精品一区蜜桃| 蜜桃在线观看..| 国产精品一区二区在线观看99| 亚洲一区二区三区欧美精品| 精品一区二区免费观看| 黑人猛操日本美女一级片| 久久韩国三级中文字幕| 秋霞在线观看毛片| 一个人免费看片子| 女人久久www免费人成看片| 亚洲av国产av综合av卡| 色吧在线观看| 久久精品久久精品一区二区三区| 国产片特级美女逼逼视频| 亚洲精品中文字幕在线视频| 在线观看一区二区三区激情| 亚洲美女搞黄在线观看| 青春草视频在线免费观看| 亚洲少妇的诱惑av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品视频女| 亚洲一级一片aⅴ在线观看| 天堂8中文在线网| 在线 av 中文字幕| 18禁观看日本| 人妻 亚洲 视频| 国产高清不卡午夜福利| 免费高清在线观看视频在线观看| 七月丁香在线播放| 最近中文字幕高清免费大全6| 亚洲综合精品二区| 久热久热在线精品观看| 亚洲精品久久成人aⅴ小说 | 欧美日韩成人在线一区二区| 色吧在线观看| 亚洲色图综合在线观看| 久久人人爽人人片av| 日韩精品免费视频一区二区三区 | 亚洲欧美一区二区三区黑人 | 欧美xxxx性猛交bbbb| 97在线人人人人妻| 人人妻人人爽人人添夜夜欢视频| 伊人亚洲综合成人网| 亚洲av男天堂| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 成人综合一区亚洲| 色94色欧美一区二区| 成人亚洲精品一区在线观看| 制服诱惑二区| 久久午夜综合久久蜜桃| 国产老妇伦熟女老妇高清| 伊人久久国产一区二区| 99国产精品免费福利视频| 国产精品国产三级专区第一集| 欧美精品国产亚洲| 18禁在线无遮挡免费观看视频| 欧美成人精品欧美一级黄| 赤兔流量卡办理| 欧美三级亚洲精品| 搡女人真爽免费视频火全软件| 日本av手机在线免费观看| 国产视频内射| 女人久久www免费人成看片| 一个人免费看片子| 亚洲精品一二三| 天天操日日干夜夜撸| 亚洲国产av新网站| 天堂8中文在线网| 一边摸一边做爽爽视频免费| 国产色婷婷99| 99国产综合亚洲精品| 久久精品国产自在天天线| 日韩成人av中文字幕在线观看| 狂野欧美激情性bbbbbb| 又黄又爽又刺激的免费视频.| 成人亚洲精品一区在线观看| 哪个播放器可以免费观看大片| 中国国产av一级| 狂野欧美白嫩少妇大欣赏| 男人添女人高潮全过程视频| 波野结衣二区三区在线| 26uuu在线亚洲综合色| 精品少妇久久久久久888优播| 国产乱来视频区| 欧美97在线视频| 成年美女黄网站色视频大全免费 | 韩国av在线不卡| 久久狼人影院| 永久免费av网站大全| 亚洲av福利一区| 99久国产av精品国产电影| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 各种免费的搞黄视频| 高清欧美精品videossex| 久久精品国产亚洲av天美| 国产精品.久久久| 最黄视频免费看| 亚洲,一卡二卡三卡| 国产一级毛片在线| 久久人妻熟女aⅴ| 99九九线精品视频在线观看视频| 亚洲少妇的诱惑av| 亚洲精品,欧美精品| 免费观看的影片在线观看| 日本黄色日本黄色录像| 色哟哟·www| av黄色大香蕉| 久久99蜜桃精品久久| 最近手机中文字幕大全| 欧美激情 高清一区二区三区| 国产 一区精品| 一区二区三区四区激情视频| 老女人水多毛片| freevideosex欧美| 免费大片18禁| 飞空精品影院首页| 久久精品人人爽人人爽视色| 亚洲国产av影院在线观看| 夜夜骑夜夜射夜夜干| 亚洲三级黄色毛片| 午夜日本视频在线| 久久综合国产亚洲精品| 中文字幕制服av| 成人亚洲精品一区在线观看| 一级毛片 在线播放| 曰老女人黄片| 中国美白少妇内射xxxbb| 少妇丰满av| 亚洲婷婷狠狠爱综合网| 亚洲国产毛片av蜜桃av| 午夜福利网站1000一区二区三区| 国产片内射在线| 亚洲av综合色区一区| 成人免费观看视频高清| 桃花免费在线播放| a级毛片黄视频| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 毛片一级片免费看久久久久| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 十八禁高潮呻吟视频| 满18在线观看网站| 成人漫画全彩无遮挡| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 人人澡人人妻人| 久久精品国产鲁丝片午夜精品| 满18在线观看网站| 国产综合精华液| 亚洲精品乱码久久久v下载方式| 高清午夜精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲网站| 国产在线免费精品| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区综合在线观看 | 最黄视频免费看| 美女国产高潮福利片在线看| 日韩成人伦理影院| 日韩精品有码人妻一区| 国产成人免费观看mmmm| 亚洲精品日本国产第一区| 亚洲在久久综合| 日日撸夜夜添| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产亚洲网站| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 中文字幕人妻丝袜制服| 伦理电影免费视频| 久久精品国产a三级三级三级| 人成视频在线观看免费观看| 高清不卡的av网站| 秋霞伦理黄片| 亚洲国产av新网站| 欧美xxxx性猛交bbbb| 女性生殖器流出的白浆| 免费久久久久久久精品成人欧美视频 | 国产av码专区亚洲av| 国产视频首页在线观看| 自线自在国产av| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 精品久久久久久久久亚洲| 下体分泌物呈黄色| 国产成人精品福利久久| 午夜久久久在线观看| 嘟嘟电影网在线观看| 寂寞人妻少妇视频99o| 亚洲精品久久午夜乱码| 欧美一级a爱片免费观看看| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久| 亚洲国产欧美日韩在线播放| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 国产成人精品一,二区| 亚洲熟女精品中文字幕| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 飞空精品影院首页| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频| 国产女主播在线喷水免费视频网站| 一区二区三区四区激情视频| 考比视频在线观看| 成人国产av品久久久| 伊人亚洲综合成人网| 久久国产亚洲av麻豆专区| 考比视频在线观看| 美女国产视频在线观看| 欧美3d第一页| 成人毛片60女人毛片免费| 嫩草影院入口| 中国美白少妇内射xxxbb| 亚洲综合色网址| videossex国产| 国产不卡av网站在线观看| 搡女人真爽免费视频火全软件| 老司机影院成人| 国产欧美亚洲国产| 亚洲国产精品一区三区| 少妇被粗大的猛进出69影院 | 日本av免费视频播放| 青春草国产在线视频| 久久99精品国语久久久| 国产视频内射| 国产精品国产三级专区第一集| 国产精品一区www在线观看| 制服丝袜香蕉在线| 男人爽女人下面视频在线观看| 国产成人精品久久久久久| 午夜老司机福利剧场| 免费av不卡在线播放| 亚洲欧洲精品一区二区精品久久久 | 成人免费观看视频高清| 国产成人精品婷婷| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 中文字幕av电影在线播放| 人妻 亚洲 视频| 日日撸夜夜添| 欧美 日韩 精品 国产| 日产精品乱码卡一卡2卡三| 亚洲四区av| 国产免费现黄频在线看| 激情五月婷婷亚洲| 成人综合一区亚洲| 少妇的逼好多水| 老女人水多毛片| 极品人妻少妇av视频| 内地一区二区视频在线| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 亚洲精品日韩av片在线观看| 一级黄片播放器| 日本黄大片高清| 大片免费播放器 马上看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中国国产av一级| 国产淫语在线视频| 七月丁香在线播放| 亚洲精品乱码久久久v下载方式| 只有这里有精品99| 国产片特级美女逼逼视频| 亚洲成人av在线免费| 国产综合精华液| 99久久精品一区二区三区| av免费在线看不卡| 国产爽快片一区二区三区| 免费人妻精品一区二区三区视频| 男人爽女人下面视频在线观看| 99视频精品全部免费 在线| xxxhd国产人妻xxx| 十八禁网站网址无遮挡| 免费大片18禁| 国产精品不卡视频一区二区| 国产精品免费大片| 精品人妻在线不人妻| 亚洲国产欧美在线一区| 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 国产一级毛片在线| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 精品熟女少妇av免费看| 国产免费一区二区三区四区乱码| 伊人久久精品亚洲午夜| 国产综合精华液| 欧美激情国产日韩精品一区| 中国国产av一级| 亚洲人成网站在线观看播放| 激情五月婷婷亚洲| 熟女av电影| 天堂8中文在线网| 99国产精品免费福利视频| 欧美日韩视频高清一区二区三区二| 99久久精品一区二区三区| 日韩av免费高清视频| 美女中出高潮动态图| xxx大片免费视频| 国产日韩欧美亚洲二区| 精品久久久久久电影网| 乱人伦中国视频| 又大又黄又爽视频免费| 中文字幕制服av| 国产一区二区在线观看日韩| 丝袜在线中文字幕| 91国产中文字幕| 国产亚洲一区二区精品| 汤姆久久久久久久影院中文字幕| a 毛片基地| 中文天堂在线官网| 曰老女人黄片| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频 | 十八禁网站网址无遮挡| 久久 成人 亚洲| 五月开心婷婷网| 美女福利国产在线| 美女脱内裤让男人舔精品视频| 大香蕉97超碰在线| 亚洲国产精品一区二区三区在线| 亚洲精品日本国产第一区| 人妻夜夜爽99麻豆av| 老司机影院成人| 国产免费一级a男人的天堂| a级毛片黄视频| 天天躁夜夜躁狠狠久久av| 午夜激情av网站| 22中文网久久字幕| 国产精品久久久久久精品电影小说| 亚洲国产精品一区二区三区在线| 2021少妇久久久久久久久久久| 中文字幕人妻丝袜制服| 大香蕉97超碰在线| 国产成人精品久久久久久| 久久午夜福利片| 中国美白少妇内射xxxbb| 国产日韩一区二区三区精品不卡 | 成人毛片60女人毛片免费| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 少妇熟女欧美另类| 亚洲精品视频女| 韩国高清视频一区二区三区| 一区在线观看完整版| 18禁观看日本| 亚洲一级一片aⅴ在线观看| 在线观看一区二区三区激情| 有码 亚洲区| 亚洲精华国产精华液的使用体验| 青青草视频在线视频观看| 九草在线视频观看| 一本大道久久a久久精品|