• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ZnSe摻Cu與Zn空位缺陷的穩(wěn)定性、電子結(jié)構(gòu)與光學(xué)性質(zhì)

    2012-12-11 09:09:54張勝濤
    物理化學(xué)學(xué)報 2012年12期
    關(guān)鍵詞:第一性重慶大學(xué)化工學(xué)院

    郭 雷 胡 舸 張勝濤

    (重慶大學(xué)化學(xué)化工學(xué)院,重慶400044)

    ZnSe摻Cu與Zn空位缺陷的穩(wěn)定性、電子結(jié)構(gòu)與光學(xué)性質(zhì)

    郭 雷 胡 舸*張勝濤

    (重慶大學(xué)化學(xué)化工學(xué)院,重慶400044)

    采用基于密度泛函理論框架下的第一性原理平面波超軟贗勢方法,對ZnSe閃鋅礦結(jié)構(gòu)本體、摻入p型雜質(zhì)Cu(Zn0.875Cu0.125Se)及Zn空位(Zn0.875Se)超晶胞進(jìn)行結(jié)構(gòu)優(yōu)化處理.計算并詳細(xì)分析了缺陷體系的形成能和三種體系下ZnSe材料的態(tài)密度、能帶結(jié)構(gòu)、集居數(shù)、介電和吸收光譜.結(jié)果表明:在Zn空位與Cu摻雜ZnSe體系中,由于空位及雜質(zhì)能級的引入,禁帶寬度有所減小,吸收光譜產(chǎn)生紅移;單空位缺陷結(jié)構(gòu)不易形成, Zn0.875Se結(jié)構(gòu)不穩(wěn)定,Cu摻雜ZnSe結(jié)構(gòu)相對更穩(wěn)定.

    硒化鋅;空位缺陷;Cu摻雜;電子結(jié)構(gòu);光學(xué)性質(zhì);第一性原理

    1 Introduction

    Zinc selenide(ZnSe)is an II-VI semiconductor material with a relatively wide and direct band-gap(2.67 eV at room temperature)and high optical transparency(~90%).1It has high potential and attraction for optoelectronic applications such as green-blue light emitting diodes,laser diodes,and solar cells etc.2-4In order to design novel semiconductor materials,considerable theoretical and experimental efforts have been devoted to determine the electronic and optical properties of ZnSe system materials.5-7Moreover,ZnSe is experiencing a renaissance as a material with properties most appropriate for application in quantum computing.Recently,Yamamoto et al.8have shown that independent ZnSe quantum wells doped with fluorine can emit indistinguishable photons,which can be used to encode and transport information.Jana et al.9synthesized Cu(II)doped ZnSe nanoparticles using molecular cluster precursors.The Cu(II)dopant had the effect of quenching the ZnSe band edge emission,yet only weak emission from Cu(II) centers was observed.However,very little is known about the microscopic structure of Cu-related point defects in ZnSe.As far as we know,a native point defect in ZnSe that has been positively identified is the zinc vacancy.This defect was also observed in electron-irradiated ZnSe at low temperatures by Watkins,10who considered that the neutral zinc vacancy had a threefold-degenerate level in the band gap(with a capacity of six electrons),four of which are occupied.

    Although experimenters have tried their best to realize the high quality p-type ZnSe conductivity via introducing probable dopants,the origin of the doping difficulties remains unclear. In order to contribute to a better understanding of defect mechanism,we performed density functional calculations on zinc vacancy and Cu-related point defects in ZnSe.In the present article,the formation energies,electronic and optical properties of the defects have been calculated.The band structure,density of states,Mulliken charges,dielectric functions,and absorption spectra were analyzed in terms of the precisely calculated results.

    2 Methods and models

    2.1 Computational details

    All calculations were performed using the plane-wave pseudopotential approach and the generalized gradient approximation(GGA)within Perdew-Burke-Ernzerhof scheme as implanted in CASTEP.11Zn 3d104s2,Se 4s24p4,and Cu 3d104s1were treated as valence states because of their relatively high energies.In all calculations,self-consistency was achieved with a tolerance in the total energy of at least 1.0×10-5eV· atom-1.The lattices and the positions of the atoms were fully relaxed to minimize the total energy with all the forces on the atoms converged to less than 0.1 eV·nm-1.The cutoff energy was 400 eV,and a 4×4×4 k-points grid was adopted for integration in the first Brillouin zone.The total stress tensor was reduced to the order of 0.02 GPa using the finite basis set corrections.Optical properties may be determined using the complex dielectric function ε(ω)=ε1(ω)+iε2(ω).12The imaginary part of the dielectric function is given as:

    The real part of the dielectric function can be evaluated from the imaginary part by applying the Kramers-Kronig relations:

    where C and V denote the conduction band(CB)and valence band(VB),corresponding to the intrinsic energy EC(k)and EV(k),|e·MCV(k)|is the momentum operator,e is the electronic charge,ω is the light frequency,k is the reciprocal lattice vector.The peaks appearing in the ε2(ω)part of dielectric function are directly related to different intra-band or inter-band transitions in the first irreducible Brillouin zone.The absorption spectrum is calculated using Eq.(3).13

    The calculation of optical properties usually requires a dense mesh of uniformly distributed k-points.We employ Brillouin zone integration with a 20×20×20 grid of Monkhorst-Pack points for the calculation.

    2.2 Models

    Ideal ZnSe in cubic zinc-blende(ZB)structure belongs tospace group,T2dsymmetry system.The primitive cell contains four zinc(Zn)cations and four selenium(Se)anions,and the cell parameters are a=b=c=0.5668 nm,α=β=γ= 90°.All configurations were simulated within a ZnSe supercell,being equivalent to a 2×1×1 primitive cell and containing 16 atoms,with periodic boundary conditions applied.Using the similar tactics,14,15when doping or creating vacancy,the Zn [0.5,0.5,0.5]atom would be directly substituted by Cu atoms or removed.Besides,depending on the circumstances,we divide Se atoms into two categories:Se I(Se1-Se4)and Se II (Se5-Se8),and four groups for Zn atoms:Zn I(Zn1,vertex atom),Zn II(Zn2,midpoint atom),Zn III(Zn3,centroid atom), and Zn IV(Zn4-Zn7),as displayed in Fig.1.

    3 Results and discussion

    3.1 Structural properties

    Firstly,the three periodic supercells of ZnSe were optimized for testing the validity of the method.

    Table 1 summarizes the equilibrium lattice constants of pure and defective ZnSe systems.Our calculation for pure ZnSe is slightly beyond the experimental value.16This overestimation of the lattice constants based on the GGA method is reasonable.17However,it is in good agreement with other theoretical result.18A little bigger for Zn0.875Se in volume than pure ZnSe derived from weaker interactions between the hole and surrounding atoms.Conversely,the volume reduction for Zn0.875Cu0.125Se results from a minor difference in atomic radius between Cu and Zn.The local structure around the Cu dopant is slightly suppressed with the Se atoms drawn closer to the Cu atom after geometry optimization,for which evidence can be found in Table 2.

    Fig.1 Supercell structure(2×1×1)of ZnSe with defectX:vacancy or impurity atom

    Table 1 Optimized geometric lattice parameters of perfect and defective ZnSe systems

    Zn atoms and Se atoms contributed four bonding electrons to form a polar covalent bond normally.The removal of Zn atom from the perfect ZnSe causes structural relaxations of the ions surrounding the vacancy.Four bonding electrons are removed while the formation of Zn vacancy,such a close neighbor of the vacancy of the Se atoms will appear four effective charge of dangling bonds.Unsaturated bonds are thus reconfigured because of the electronic resonance coupling among dangling bonds with the nearest neighbors and the second nearest neighbors.Fig.2 provides the differences of charge density of study subjects around Zn-vacancy and Cu-impurity.Compare Fig.2(b,c)to Fig.2(a),which shows that the charge density of Se atoms close to Zn vacancy is significantly reduced,and the charge density of Cu d orbitals is tiny.The charge redistribution can be seen as the micro-explanation for the above lattice distortions.

    3.2 Formation energy of the defects

    The formation energy(represented by Ef)is a key quantity charactering the properties of a defect or impurity in a solid, and defects with low formation energies are easy to form.For neutral defects,we calculate the defect formation energy as19,20

    where Edefis the energy of the defective supercell,Ebulkis the energy of the ideal crystal cell(bulk),and nαis the number of atoms of species α that is added to(negative)or removed from (positive)the ideal crystal to create the defect,with the corresponding chemical potential μα.

    Fig.2 Plots of differences of charge density contour of(a)perfect ZnSe,(b)Zn0.875Se,and(c)Zn0.875Cu0.125Se

    The chemical potentials for Zn and Se are not uniquely determined by the total energy,but depend on the crystal growth conditions.Some boundaries can be established for these chemical potentials.The energy condition gives us μZn+μSe=EZnSe, where EZnSeis the total energy of a pair of atoms in the crystal. To prevent pure Zn formation,μZn≤μZn(bulk),where μZn(bulk)is the total energy per atom of bulk Zn in a hexagonal closepacked structure.The upper limit of the Zn chemical potential for the zinc-rich limit in ZnO meets μZn=μZn(bulk).We must also have μSe≤μSe(bulk),otherwise bulk Se would be more stable than the ZnSe crystal and precipitation would occur,forming a bulk Se phase.Limited by the thermodynamic stability condition for ZnSe,μZnand μSeare variables correlated as:

    where ΔH(ZnSe)is the enthalpy of formation of bulk ZnSe. The calculated formation enthalpy of ZnSe is-6.14 eV,in good agreement with experimental values.21Under the Zn-rich limit condition,μZn=EZn,μSe=ΔH(ZnSe)-EZn;similarly,under the Se-rich limit condition,μSe=ESe,μZn=ΔH(ZnSe)-ESe.Particularly,we have used the bulk fcc Cu as the source of the Cu atom.The formation energy of the zinc vacancyis 4.26 eV (3.34 eV)under the Zn-rich(Se-rich)condition,while that of the Cu defectis-2.13 eV(-1.21 eV)under the same condition.is so high that it is hard to create VZnin bulk ZnSe.However,if a Zn vacancy is accompanied by a Li(or H) interstitial,its formation energy can be sharply lowered.22A negative binding energy of Cu impurity means that the reaction is exothermic,can be fabricated more easily by experiments and more stable than anion-doped ZnSe with typically positive formation energy.23

    3.3 Electronic structures

    Fig.3(a-c)show electronic band structures along the symmetry lines of the Brillouin zone for ZnSe,Zn0.875Se,and Zn0.875Cu0.125Se,respectively.The energy scale was measured in eV and the top of the VB was set to zero on this energy scale. It is obvious that the valence band maximum(VBM)and conduction band minimum(CBM)occur at the same k-point(G) for all the three cells,indicating that they are all direct gap semiconductors.However,the calculated band gap of ZnSe isabout 1.747 eV,only 65.2%of the experimental data,24but agrees well with the value reported by Laref et al.25The severe underestimation of semiconductor band gaps is a well-known drawback of LDAand GGA.26

    Table 2 Mulliken bond population analysis of Zn―Se and Cu―Se bonds

    Fig.3 Band structures in the vicinity of the Fermi level(a)perfect ZnSe,(b)Zn0.875Se,(c)Zn0.875Cu0.125Se;The Fermi level was indicated by the dot line.

    Fig.4(a-c)show the density of states(DOSs)of perfect ZnSe,Zn0.875Se,and Zn0.875Cu0.125Se,respectively.The DOSs in Fig.4(a)indicate that CBs of ZnSe originate mainly from the cooperative contributions of Se 4p,Zn 4s,and Zn 3d orbitals, among which Zn atoms are dominant.VBs between-13.5 and-11.5 eV are derived from Se 4s orbital.This band is somewhat isolated and far away from the other bands that we will pay little attention on it.The major contributions to VBs between-7.5 and-5.0 eV are mainly from Se 4p and localized Zn 3d orbitals.The upper VBs from-5.0 to 0.0 eV are mostly composed of Se 4p states.

    However,compared with those of perfect ZnSe,Se 4p states of Zn0.875Se shift to upper energy range and vacancy orbitals appears in the vicinity of the Fermi energy.It is caused by the lone unpaired valence electrons of Se atoms.Those differences caused by electron deficiency will strongly affect the optical properties.The theoretical calculations have predicted that the zinc vacancy in Zn0.875Se may form shallow acceptor level and make them p-type conductivity.

    Fig.4 Total and partial state densities of(a)perfect ZnSe, (b)Zn0.875Se,and(c)Zn0.875Cu0.125SeThe zero point energy(vertical line)was aligned at the Fermi level.

    Had the VBM consisted of anion orbitals alone,one would expect roughly similar band gap in ZnSe and Zn0.875Cu0.125Se, since the Cu s-orbital energies are close to those of Zn.The band structure and DOSs indicate that Zn0.875Cu0.125Se has a narrower band gap(1.537 eV),and the energy of the VBM(EV) rises to 0.239 eV,as shown in Figs.3(c)and 4(c),respectively. The appropriate explanation seems to be the p-d repulsion effect:27the Cu 3d orbitals in Zn0.875Cu0.125Se are considerably closer in energy to the Se 4p orbitals than the Zn 3d orbitals,leading to a far more effective p-d repulsion,with a consequent dramatic reduction in the band gap compounded by the fact that the Cu 3d orbitals are also more delocalized than the Zn 3d orbitals,leading to a largercoupling matrix elementin Zn0.875Cu0.125Se and,hence,a larger p-d repulsion.Fig.5 shows a schematic diagram of the p-d repulsion effects for the hypothetical ferromagnetic ZB CuSe.As we can see:the Cu 3d states split into a triply degenerate t2gstate and a double degenerate egstate,the t2gorbitals couple with the Se 4p orbitals to form bonding states(B+or B-)and antibonding states(AB+or AB-), but the egorbitals of Cu have no counterpart in Se and hence remain nonbonding.The downward shifting of the lowest-lying CB energy arises from the strong sp hybridization between Cu 4s orbitals and Se 4p orbitals.28Zn0.875Cu0.125Se produces a deep acceptor impurity level from the EV,resulting in the lower concentration of the holes,which need larger ionization energy. This may be one of the foremost difficulties in p-type doping.

    As a comparison,we calculated crystal orbital overlap populations for the three systems on the grounds that this helps to understand bonding behavior,as listed in Table 2.In addition to providing an objective criterion for bonding between atoms, the overlap population may be used to assess the covalent or ionic nature of a bond.29A high value of the bond population indicates a covalent bond,while a low value indicates an ionic interaction.Positive and negative values indicate bonding and antibonding states,respectively.A value for the overlap population close to zero indicates that there is no significant interaction between the electronic populations of the two atoms.30From Table 2,a large proportion of Zn―Se bond overlap population values among the three systems are high,exhibiting covalent bonding;some show mixed ionic-covalent character.As to Zn0.875Se,the overlap population of the Zn II(or Zn IV)―Se I increases,and the bond length decreases.It suggests that Zn vacancy induced changes in the bonding of the nearest neighbor Se atoms and there was increased covalency in the Zn―Se bonds,which is in good agreement with above electron density difference analysis.The Zn IV―Se II bonds in Zn0.875Se exert strong ionic abilities with the minimum population value,and it demonstrates that valence electrons of Zn IV atoms play an important role in the Zn0.875Se?s electrical conductivity.Note that charge population of Cu―Se I bond is higher than other Zn―Se bonds in Zn0.875Cu0.125Se,and this also indicates that covalent interaction is strengthened.

    In order to further explore the structural relaxation,Mulliken atomic population analysis of all the present atoms was performed,and the results are listed in Table 3.As is clear from Table 3,the charge distributions of the same atoms are diverse along with different atom sites.In Zn0.875Se,the Se atoms seemingly cannot hold onto the obtained electrons tightly,as indicated by statistics showing decreased absolute values of charge for Se atoms,whether close to the vacancy center or not,and it is noteworthy that Se I atoms decrease slightly more than others due to a lack of electronic contribution of Zn atom.The charge value of Zn I atom increases,while greatly reduces for Zn II atom,as has been already pointed out,resulting from the unpaired valence electrons of Se atoms caused by Zn vacancy, for which evidence can be found in the abnormal increase of Zn II s orbital electron occupancy.For Zn0.875Cu0.125Se,the Se I charge changes sharply,the charge of Cu is negative(-0.06e), indicating that the electronegativity of Cu is bigger than Zn, consequently,it is more difficult to lose electrons.Obviously, whether in Zn0.875Cu0.125Se or Zn0.875Se,Zn II atoms invariably have the fewest charges,which indicates that the Zn II site has the most sensitive response to Zn vacancy or impurity atom, and the weak interactions with other neighbors would exist spontaneously.

    Fig.5 Schematic diagram of the p-d repulsion effects for hypothetical ferromagnetic ZB CuSe

    Table 3 Mulliken atomic population analysis of Zn,Se,and Cu atoms

    3.4 Optical properties

    The optical properties are important for these compounds, since they can find potential applications in photoelectron devices and the semiconductor industry.We amended band gaps by using a scissor operator(scissor:0.923 eV).Fig.6(a)depicts the calculated imaginary parts of dielectric function for the studied compounds.The imaginary part ε2(ω)of the dielectric function for perfect ZnSe has four prominent peaks:A(3.8 eV),B(5.3 eV),C(6.8 eV),and D(8.9 eV).Peak A mainly corresponds to the transition from Se 4p VBs to the unoccupied CBs.Peak B primarily originates from the transition from Zn 3d and Se 4p VBs to Se 4p or Zn 4s CBs,for which evidence can be found in the partial density of state(Fig.3(a)). Peaks C and D are assigned to the transition of inner electrons from Se 4s orbitals to the Zn 3d or Se 4p VBs.As to Zn0.875Se,a new peak(E)occurs at 1.8 eV,which may belong to the electron transition from CBs to vacancy acceptor level and cause emission of the red photoluminescence.Similarly,the dielectric peak F(2.0 eV)of Zn0.875Cu0.125Se is attributed to the electron transition from CBs to acceptor impurity level near by the top of VBs.

    The corresponding linear absorption spectrograms are illustrated in Fig.6(b).The absorption edge of pure ZnSe starts at about 2.65 eV,in approximate agreement with the experimental data.24This originates from the transition from Se 4p electron states located at the top of the VBs to the empty Zn 3d electron states that dominate the bottom of the CBs.According to the results of calculated dielectric function,the energy of each absorption peak is almost due to the transition of electron excitation from the VBs to the CBs.Obviously,the absorption peaks show a significant redshift for both Zn0.875Se and Zn0.875Cu0.125Se.

    Fig.6 (a)Calculated imaginary parts of dielectric function,(b) optical absorption coefficients for ZnSe,Zn0.875Se,and Zn0.875Cu0.125Se

    4 Conclusions

    We have applied the GGA within the framework of plane-wave pseudopotential DFT method to investigate the defects energetics,electronic and optical properties of pure and deficient ZB structures of ZnSe.The results obtained are consistent well with other theoretical results and the available experimental data.

    The results reveal that zinc vacancy increases the lattice constants and cell volume,but Cu-doping is on the contrary,yet both acceptor states on the top of valence band,providing p-type conductance.

    By comparison,Zn0.875Cu0.125Se system is relatively more stable than Zn0.875Se system owing to its similar structure with pure ZnSe.The deep acceptor levels indicate that Cu-doped and zinc vacancy ZnSe systems are not easily ionized at working temperatures.But fortunately,due to the introduction of the defect level,the band gap is reduced and electronic transition in the visible region is obviously enhanced.As for Zn0.875Cu0.125Se,the p-d repulsion effect on top of valence band and sp hybridization in the bottom of the conduction band both take positive effects on band gap narrowing.

    (1) Lakshmikumar,S.T.;Rastogi,A.C.Thin Solid Films 1995, 259,150.doi:10.1016/0040-6090(94)06433-4

    (2)Yakimovich,V.N.J.Cryst.Growth 1999,198,975.doi: 10.1016/S0022-0248(98)01060-4

    (3) Philipose,U.;Yang,S.;Xu,T.;Ruda,H.E.Appl.Phys.Lett. 2007,90,063103.doi:10.1063/1.2457190

    (4) Colli,A.;Hofmann,S.;Ferrari,A.C.;Martelli,F.;Rubini,S.; Ducati,C.;Franciosi,A.;Robertson,J.Nanotechnology 2005, 16,S139.doi:10.1088/0957-4484/16/5/001

    (5) Zhu,Y.;Zhang,S.H.;Zhang,X.Y.;Hao,A.M.;Zhang,S.L.; Yang,F.;Yang,J.K.;Liu,R.P.Comp.Mater.Sci.2011,50, 2745.doi:10.1016/j.commatsci.2011.03.037

    (6) Desgardin,P.;Oila,J.;Saarinen,K.;Hautojarvi,P.;Tournie,E.; Faurie,J.P.;Corbel,C.Phys.Rev.B 2000,62,15711.doi: 10.1103/PhysRevB.62.15711

    (7) Gundel,S.;Faschinger,W.Phys.Rev.B 2002,65,035208.doi: 10.1103/PhysRevB.65.035208

    (8) Sanaka,K.;Pawlis,A.;Ladd,T.D.;Lischka,K.;Yamamoto,Y. Phys.Rev.Lett.2009,103,053601.doi:10.1103/PhysRevLett. 103.053601

    (9) Jana,S.;Srivastava,B.B.;Acharya,S.;Santra,P.K.Chem. Commun.2010,46,2853.doi:10.1039/b925980e

    (10) Watkins,G.D.Phys.Rev.Lett.1974,33,223.doi:10.1103/ PhysRevLett.33.223

    (11) Segall,M.D.J.Phys.:Condens.Matter 2002,14,2597.

    (12)Zhang,Z.Y.;Yang,D.L.;Liu,Y.H.;Cao,H.B.;Shao,J.X.; Jing,Q.Acta Phys.-Chim.Sin.2009,25,1731.[張子英,楊德林,劉云虎,曹海濱,邵建新,井 群.物理化學(xué)學(xué)報,2009,25, 1731.]doi:10.3866/PKU.WHXB20090819

    (13) Feng,J.;Xiao,B.;Chen,J.C.;Zhou,C,T.;Du,Y.P.;Zhou,R. Solid State Commun.2009,149,1569.doi:10.1016/j.ssc. 2009.05.042

    (14) He,K.H.;Yu,F.;Ji,G.F.;Yan,Q.L.;Zheng,S.K.Chin.J. High Pressure Phys.2006,20(1),57.[何開華,余 飛,姬廣富,顏其禮,鄭澍奎.高壓物理學(xué)報,2006,20(1),57.]

    (15) Li,J.H.;Zeng,X.H.;Ji,Z.H.;Hu,Y.P.;Chen,B.;Fan,Y.P. Acta Phys.Sin.2011,60,057101.[李建華,曾祥華,季正華,胡益培,陳 寶,范玉佩.物理學(xué)報,2011,60,057101.]

    (16)Liu,C.Y.;Wang,T.;Zha,G.Q.;Gu,Z.;Jie,W.Q.J.Mater.Sci. Technol.2012,28,373.doi:10.1016/S1005-0302(12)60070-X

    (17) Fan,S.W.;Yao,K.L.;Liu,Z.L.Appl.Phys.Lett.2009,94, 152506.doi:10.1063/1.3120277

    (18) Shakir,M.;Kushwaha,S.K.;Maurya,K.K.; Bhagavannarayana,G.;Wahab,M.A.Solid State Commun. 2009,149,2047.doi:10.1016/j.ssc.2009.08.021

    (19)Han,D.;West,D.;Li,X.B.;Xie,S.Y.;Sun,H.B.;Zhang,S.B. Phys.Rev.B 2010,82,155132.doi:10.1103/PhysRevB. 82.155132

    (20) Reuter,K.;Stampfl,C.;Scheffler,M.In Handbook of Materials Modeling,Part A Methods;Springer:Berlin,2005;pp 149-234.

    (21) Dean,J.A.Lange?s Handbook of Chemistry,14th ed.; McGraw-Hill:New York,1992;p 686.

    (22) Gao,H.X.;Xia,J.B.J.Appl.Phys.2012,111,093902.doi: 10.1063/1.4707888

    (23)Kwak,K.W.;Vanderbilt,D.;Kingsmith,R.D.Phys.Rev.B 1995,52,11912.doi:10.1103/PhysRevB.52.11912

    (24) Prete,P.;Lovergine,N.;Petroni,S.;Mele,G.;Mancini,A.M.; Vasapollo,G.Mater.Chem.Phys.2000,66,253.doi:10.1016/ S0254-0584(00)00317-5

    (25) Laref,A.;Sekkal,W.;Laref,S.;Luo,S.J.J.Appl.Phys.2008, 104,033103.doi:10.1063/1.2961311

    (26) Muscat,J.;Harrison,N.M.Phys.Rev.B 1999,59,15457.doi: 10.1103/PhysRevB.59.15457

    (27)Wei,S.H.;Zunger,A.Phys.Rev.B 1988,37,8958.doi: 10.1103/PhysRevB.37.8958

    (28)Yan,H.Y.;Li,Y.Q.;Guo,Y.R.;Song,Q.G.;Chen,Y.F. Physica B 2011,406,545.doi:10.1016/j.physb.2010.11.035

    (29) Mulliken,R.S.J.Chem.Phys.1955,23,1833.doi:10.1063/ 1.1740588

    (30) Segall,M.D.;Shah,R.;Pickard,C.J.;Payne,M.C.Phys.Rev. B 1996,54,16317.doi:10.1103/PhysRevB.54.16317

    August 22,2012;Revised:October 8,2012;Published on Web:October 8,2012.

    Defects Energetics,Electronic Structure and Optical Properties of Cu-Doping and Zn Vacancy Impurities in ZnSe

    GUO Lei HU Ge*ZHANG Sheng-Tao
    (College of Chemistry and Chemical Engineering,Chongqing University,Chongqing 400044,P.R.China)

    Based on the first-principles within the density functional theory,the geometric structures of perfect zinc blend ZnSe,that with Zn vacancies(Zn0.875Se)and Cu-doped ZnSe(Zn0.875Cu0.125Se)were optimized using the plane-wave ultrasoft pseudopotential method.The defect formation energy,band structure,density of states,Mulliken charges,and optical spectra were calculated and discussed in detail. The results demonstrated that in Zn0.875Se and Zn0.875Cu0.125Se systems,because of the introduction of the vacancy acceptor level or acceptor impurity level,the band gap is reduced,and the absorption peaks show a remarkable redshift.Cu doping into the ZnSe system was found to be relatively stable,while the monovacancy system was not.

    ZnSe;Vacancy defect;Cu doping;Electronic structure;Optical property; First-principles

    10.3866/PKU.WHXB20121083

    ?Corresponding author.Email:cqhuge@163.com;Tel:+86-23-65106756.

    The project was supported by the Fundamental Research Funds of the Central Universities,China(CDJZR11220003).

    中央高?;究蒲袠I(yè)務(wù)費(fèi)(CDJZR11220003)資助項(xiàng)目

    O641

    猜你喜歡
    第一性重慶大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    重慶大學(xué)學(xué)報征稿簡則
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計算
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Who Is The Master?
    大東方(2018年9期)2018-10-21 15:29:02
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計算
    缺陷和硫摻雜黑磷的第一性原理計算
    《化工學(xué)報》贊助單位
    国产在线免费精品| 日本vs欧美在线观看视频| 男女床上黄色一级片免费看| 精品亚洲乱码少妇综合久久| 亚洲欧美一区二区三区久久| 成人手机av| 亚洲,欧美精品.| 日韩中文字幕欧美一区二区| 一边摸一边做爽爽视频免费| 九色亚洲精品在线播放| 午夜福利视频精品| 热99re8久久精品国产| 日韩大码丰满熟妇| 欧美在线一区亚洲| 亚洲av日韩精品久久久久久密| 人妻 亚洲 视频| 亚洲第一av免费看| av视频免费观看在线观看| 一本一本久久a久久精品综合妖精| 亚洲中文av在线| 国产在线免费精品| 一级,二级,三级黄色视频| 欧美成狂野欧美在线观看| 一本—道久久a久久精品蜜桃钙片| 正在播放国产对白刺激| 精品少妇久久久久久888优播| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区国产一区二区| 一个人免费看片子| 人妻一区二区av| 91av网站免费观看| 亚洲五月婷婷丁香| 欧美黄色淫秽网站| 午夜免费鲁丝| 久久久久网色| 日韩欧美国产一区二区入口| 亚洲av美国av| 俄罗斯特黄特色一大片| 制服诱惑二区| 狂野欧美激情性xxxx| 亚洲色图综合在线观看| 久久精品亚洲熟妇少妇任你| 久热爱精品视频在线9| 丰满少妇做爰视频| 中文字幕最新亚洲高清| 国产麻豆69| 热99re8久久精品国产| 欧美一级毛片孕妇| 成人永久免费在线观看视频 | 亚洲精品国产精品久久久不卡| 最新的欧美精品一区二区| 午夜成年电影在线免费观看| 成人影院久久| 国产精品一区二区精品视频观看| 在线观看人妻少妇| 久久久久精品人妻al黑| 久久久精品国产亚洲av高清涩受| 不卡av一区二区三区| 色在线成人网| 亚洲一码二码三码区别大吗| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| 久久热在线av| 999久久久国产精品视频| 国产欧美亚洲国产| 亚洲成a人片在线一区二区| 久久精品国产综合久久久| www.自偷自拍.com| 亚洲九九香蕉| 黄色片一级片一级黄色片| 窝窝影院91人妻| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 日本撒尿小便嘘嘘汇集6| 黑人操中国人逼视频| 99久久人妻综合| 久久久水蜜桃国产精品网| 久久久国产成人免费| 99精品在免费线老司机午夜| 91成人精品电影| 精品国产乱码久久久久久男人| 欧美黄色淫秽网站| 亚洲五月色婷婷综合| 欧美午夜高清在线| 叶爱在线成人免费视频播放| 极品教师在线免费播放| 日本黄色视频三级网站网址 | 午夜福利影视在线免费观看| 一级黄色大片毛片| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 交换朋友夫妻互换小说| av福利片在线| 日韩有码中文字幕| 婷婷丁香在线五月| 精品少妇久久久久久888优播| 成年人午夜在线观看视频| 亚洲全国av大片| 久久久精品免费免费高清| 欧美激情高清一区二区三区| 两性夫妻黄色片| 久久精品国产99精品国产亚洲性色 | 午夜91福利影院| 一级黄色大片毛片| 午夜免费成人在线视频| 人人妻人人爽人人添夜夜欢视频| 黄频高清免费视频| 国产成人av教育| 欧美国产精品一级二级三级| 国产激情久久老熟女| 9热在线视频观看99| 老熟女久久久| 国产欧美日韩一区二区三| 99九九在线精品视频| 亚洲综合色网址| 大片电影免费在线观看免费| 亚洲中文日韩欧美视频| 亚洲一区中文字幕在线| 好男人电影高清在线观看| 丝瓜视频免费看黄片| 国产精品免费一区二区三区在线 | 亚洲av成人一区二区三| 日韩一区二区三区影片| 大型黄色视频在线免费观看| 男女无遮挡免费网站观看| 国产三级黄色录像| 日韩人妻精品一区2区三区| 亚洲熟女精品中文字幕| 热99re8久久精品国产| 亚洲国产av影院在线观看| 真人做人爱边吃奶动态| 亚洲国产成人一精品久久久| 国产91精品成人一区二区三区 | 国精品久久久久久国模美| 我要看黄色一级片免费的| 亚洲中文字幕日韩| 国产免费现黄频在线看| 欧美中文综合在线视频| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| √禁漫天堂资源中文www| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 精品福利永久在线观看| 中文字幕av电影在线播放| videos熟女内射| 亚洲国产欧美一区二区综合| 美女福利国产在线| 另类亚洲欧美激情| 99精品久久久久人妻精品| 精品久久久精品久久久| 国产精品二区激情视频| 婷婷丁香在线五月| 久久久久久人人人人人| 人成视频在线观看免费观看| 免费一级毛片在线播放高清视频 | 汤姆久久久久久久影院中文字幕| 精品国内亚洲2022精品成人 | 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| av在线播放免费不卡| 久久热在线av| 亚洲欧美精品综合一区二区三区| 日韩欧美一区二区三区在线观看 | 午夜两性在线视频| 精品少妇黑人巨大在线播放| 欧美成人免费av一区二区三区 | 老熟女久久久| 免费人妻精品一区二区三区视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 国产不卡av网站在线观看| 精品熟女少妇八av免费久了| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 欧美日韩亚洲国产一区二区在线观看 | netflix在线观看网站| 免费黄频网站在线观看国产| 男人操女人黄网站| 老司机在亚洲福利影院| 19禁男女啪啪无遮挡网站| 国产区一区二久久| 在线观看免费视频日本深夜| 亚洲中文av在线| 成年女人毛片免费观看观看9 | 老汉色∧v一级毛片| 国产成人精品在线电影| 最新美女视频免费是黄的| 人人妻,人人澡人人爽秒播| 亚洲七黄色美女视频| 人人澡人人妻人| 好男人电影高清在线观看| 国产福利在线免费观看视频| 丁香六月欧美| 国产欧美日韩一区二区三| 菩萨蛮人人尽说江南好唐韦庄| 色老头精品视频在线观看| 亚洲久久久国产精品| 国产97色在线日韩免费| 超碰97精品在线观看| 大陆偷拍与自拍| 免费av中文字幕在线| 在线亚洲精品国产二区图片欧美| 母亲3免费完整高清在线观看| 亚洲精品久久午夜乱码| 老汉色∧v一级毛片| 伊人久久大香线蕉亚洲五| 99精品在免费线老司机午夜| 国产精品1区2区在线观看. | 一级毛片电影观看| 一本大道久久a久久精品| 亚洲成人国产一区在线观看| 亚洲综合色网址| 国产高清视频在线播放一区| 日韩欧美免费精品| 国产免费视频播放在线视频| 欧美激情 高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 在线观看66精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 王馨瑶露胸无遮挡在线观看| 深夜精品福利| 成人18禁在线播放| 99国产极品粉嫩在线观看| 久久久久久久久久久久大奶| 亚洲av成人一区二区三| 国产欧美亚洲国产| 一本—道久久a久久精品蜜桃钙片| 色综合婷婷激情| 极品人妻少妇av视频| 久久久精品国产亚洲av高清涩受| 免费不卡黄色视频| 久久影院123| 美女福利国产在线| 一边摸一边做爽爽视频免费| 国产在线观看jvid| 国产精品二区激情视频| 18禁美女被吸乳视频| 国产极品粉嫩免费观看在线| 久久影院123| 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜一区二区| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9 | 亚洲熟妇熟女久久| 亚洲五月婷婷丁香| 搡老乐熟女国产| 久热爱精品视频在线9| tube8黄色片| 国产精品九九99| 精品欧美一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区蜜桃| 一级,二级,三级黄色视频| 黑人操中国人逼视频| 久久中文看片网| 免费不卡黄色视频| 日日摸夜夜添夜夜添小说| 亚洲专区国产一区二区| 日韩大片免费观看网站| 在线 av 中文字幕| 在线观看人妻少妇| 日韩 欧美 亚洲 中文字幕| av超薄肉色丝袜交足视频| 久久久精品94久久精品| 黑人操中国人逼视频| 免费黄频网站在线观看国产| 色精品久久人妻99蜜桃| 国产人伦9x9x在线观看| 国产男靠女视频免费网站| 电影成人av| 精品国产乱子伦一区二区三区| 国产男靠女视频免费网站| 男女边摸边吃奶| 国产av国产精品国产| 亚洲精品在线美女| 视频区欧美日本亚洲| 中文字幕av电影在线播放| 99久久人妻综合| 大型av网站在线播放| 黄片播放在线免费| 18禁观看日本| 免费观看av网站的网址| 色尼玛亚洲综合影院| 欧美日韩黄片免| 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 三级毛片av免费| 欧美日韩福利视频一区二区| 欧美性长视频在线观看| av欧美777| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 亚洲av日韩在线播放| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| 亚洲av国产av综合av卡| 9191精品国产免费久久| 18禁国产床啪视频网站| aaaaa片日本免费| 一区二区三区乱码不卡18| 一进一出好大好爽视频| 99久久精品国产亚洲精品| 亚洲精品成人av观看孕妇| 亚洲av日韩精品久久久久久密| 国产男女内射视频| 亚洲精品中文字幕在线视频| 午夜福利免费观看在线| 桃花免费在线播放| 国产精品亚洲一级av第二区| 国产免费现黄频在线看| 亚洲精品国产色婷婷电影| 新久久久久国产一级毛片| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 久久国产精品男人的天堂亚洲| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 国产伦理片在线播放av一区| 首页视频小说图片口味搜索| 国产亚洲一区二区精品| 露出奶头的视频| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 男男h啪啪无遮挡| 91麻豆精品激情在线观看国产 | 免费黄频网站在线观看国产| 成人手机av| 成年动漫av网址| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| av电影中文网址| 18禁国产床啪视频网站| 女人精品久久久久毛片| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 大片电影免费在线观看免费| 久久婷婷成人综合色麻豆| 欧美精品人与动牲交sv欧美| netflix在线观看网站| 在线永久观看黄色视频| 午夜老司机福利片| 久久国产精品影院| 美女高潮到喷水免费观看| av网站在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 电影成人av| 国产在视频线精品| 久久中文看片网| 大码成人一级视频| 欧美日韩亚洲高清精品| 最近最新免费中文字幕在线| 看免费av毛片| a级片在线免费高清观看视频| 久久久精品国产亚洲av高清涩受| 日韩一区二区三区影片| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 国产不卡一卡二| 99香蕉大伊视频| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| av不卡在线播放| 19禁男女啪啪无遮挡网站| 成人影院久久| 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说 | 色视频在线一区二区三区| 午夜精品国产一区二区电影| 一夜夜www| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 国产色视频综合| 免费在线观看视频国产中文字幕亚洲| 免费在线观看完整版高清| 日本一区二区免费在线视频| 757午夜福利合集在线观看| 捣出白浆h1v1| 欧美一级毛片孕妇| 欧美 日韩 精品 国产| 在线看a的网站| 免费一级毛片在线播放高清视频 | 纵有疾风起免费观看全集完整版| 看免费av毛片| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码| 久久久久网色| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线不卡| 国产真人三级小视频在线观看| 亚洲国产av影院在线观看| 成人国产一区最新在线观看| 日韩大片免费观看网站| 国产淫语在线视频| av天堂久久9| 人妻一区二区av| 精品午夜福利视频在线观看一区 | 午夜福利在线免费观看网站| 一本色道久久久久久精品综合| av又黄又爽大尺度在线免费看| 亚洲熟女毛片儿| 亚洲av日韩精品久久久久久密| 多毛熟女@视频| 日韩欧美国产一区二区入口| 香蕉国产在线看| 免费看a级黄色片| 久久久久久久精品吃奶| 99九九在线精品视频| 国产精品.久久久| 国产片内射在线| 自线自在国产av| 十八禁人妻一区二区| 大片电影免费在线观看免费| 成人影院久久| 丝瓜视频免费看黄片| 欧美激情高清一区二区三区| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 电影成人av| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美精品永久| 亚洲伊人色综图| 久久久国产成人免费| 久热爱精品视频在线9| 亚洲av日韩精品久久久久久密| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 夜夜爽天天搞| 怎么达到女性高潮| 十八禁高潮呻吟视频| 男女边摸边吃奶| 日日爽夜夜爽网站| 免费看a级黄色片| 一边摸一边抽搐一进一小说 | 精品国产乱码久久久久久小说| 国产日韩欧美视频二区| 91av网站免费观看| 国产欧美亚洲国产| 日韩大片免费观看网站| 精品一区二区三卡| 国产片内射在线| 欧美变态另类bdsm刘玥| 亚洲情色 制服丝袜| 亚洲视频免费观看视频| 国产一区二区 视频在线| 99在线人妻在线中文字幕 | 亚洲中文字幕日韩| 免费在线观看黄色视频的| 免费看a级黄色片| 久久久久国产一级毛片高清牌| 午夜福利一区二区在线看| 久久国产精品人妻蜜桃| 国产精品.久久久| 无限看片的www在线观看| 久久99一区二区三区| 午夜两性在线视频| 无人区码免费观看不卡 | 制服人妻中文乱码| 日本黄色日本黄色录像| 搡老熟女国产l中国老女人| cao死你这个sao货| 国产亚洲一区二区精品| 极品人妻少妇av视频| 欧美精品高潮呻吟av久久| 多毛熟女@视频| 一二三四社区在线视频社区8| 亚洲av成人一区二区三| 亚洲黑人精品在线| 丰满饥渴人妻一区二区三| 99热国产这里只有精品6| 波多野结衣av一区二区av| 国产精品久久电影中文字幕 | 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 日韩三级视频一区二区三区| 我要看黄色一级片免费的| 免费看十八禁软件| 国产成人欧美| 18禁黄网站禁片午夜丰满| 免费少妇av软件| 久久ye,这里只有精品| 国产精品.久久久| 亚洲va日本ⅴa欧美va伊人久久| 中国美女看黄片| 狠狠精品人妻久久久久久综合| 久久精品国产99精品国产亚洲性色 | 99精品欧美一区二区三区四区| 国产免费视频播放在线视频| 男女之事视频高清在线观看| 超碰97精品在线观看| aaaaa片日本免费| av欧美777| 看免费av毛片| 久久99一区二区三区| 丰满饥渴人妻一区二区三| 亚洲国产av影院在线观看| 国产淫语在线视频| 日日爽夜夜爽网站| 满18在线观看网站| 另类精品久久| 国产精品亚洲av一区麻豆| 一进一出好大好爽视频| 亚洲av片天天在线观看| 交换朋友夫妻互换小说| 美女视频免费永久观看网站| 大码成人一级视频| 十八禁网站网址无遮挡| 在线十欧美十亚洲十日本专区| 制服诱惑二区| 国产一区有黄有色的免费视频| 国产高清videossex| av有码第一页| 一二三四在线观看免费中文在| 黄色片一级片一级黄色片| 欧美在线黄色| 国产亚洲欧美精品永久| 捣出白浆h1v1| 下体分泌物呈黄色| 日本一区二区免费在线视频| 久久狼人影院| 看免费av毛片| 精品福利永久在线观看| 午夜视频精品福利| 国产单亲对白刺激| 欧美黑人欧美精品刺激| 色婷婷久久久亚洲欧美| 中文欧美无线码| 午夜福利视频在线观看免费| 国产一区二区 视频在线| 欧美激情高清一区二区三区| 国产亚洲一区二区精品| 久久精品国产99精品国产亚洲性色 | 日韩人妻精品一区2区三区| 久久久久久久大尺度免费视频| 一本色道久久久久久精品综合| 高清视频免费观看一区二区| av不卡在线播放| 成人手机av| 久久久久久久大尺度免费视频| 精品国产乱码久久久久久小说| 国产高清视频在线播放一区| 成年人黄色毛片网站| 精品国产超薄肉色丝袜足j| 又大又爽又粗| 另类精品久久| 热99re8久久精品国产| 丁香六月天网| 美女扒开内裤让男人捅视频| 另类亚洲欧美激情| 久久青草综合色| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看| 成人特级黄色片久久久久久久 | 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 国产精品国产高清国产av | 久久久精品国产亚洲av高清涩受| 极品少妇高潮喷水抽搐| 欧美另类亚洲清纯唯美| 淫妇啪啪啪对白视频| 日韩欧美一区视频在线观看| 91av网站免费观看| 在线观看舔阴道视频| 狠狠婷婷综合久久久久久88av| 亚洲av成人一区二区三| 日韩视频一区二区在线观看| 夜夜骑夜夜射夜夜干| 麻豆av在线久日| 不卡一级毛片| 热99re8久久精品国产| 国产又爽黄色视频| 一级毛片电影观看| 捣出白浆h1v1| 一本综合久久免费| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 久久九九热精品免费| 纯流量卡能插随身wifi吗| 日韩一卡2卡3卡4卡2021年| 日韩成人在线观看一区二区三区| 欧美成人免费av一区二区三区 | 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久小说| av线在线观看网站| 桃花免费在线播放| 免费少妇av软件| 亚洲精品国产色婷婷电影| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| 日韩大码丰满熟妇| 久久久久久久国产电影| 99热网站在线观看|