• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    光還原催化劑Pt/TiO2富氫條件下CO優(yōu)先氧化反應(yīng)

    2012-12-05 02:26:56王彩紅劉國霞
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:富氫濱州優(yōu)先

    王 芳 王彩紅 劉國霞

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    光還原催化劑Pt/TiO2富氫條件下CO優(yōu)先氧化反應(yīng)

    王 芳*王彩紅 劉國霞

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    用光還原法來提高富氫條件下CO優(yōu)先氧化(PROX)催化活性和CO2選擇性,分別對有無氫氣時(shí)CO氧化反應(yīng)參數(shù)進(jìn)行了詳盡研究.X射線光電子能譜(XPS)表征結(jié)果顯示,在光還原催化劑表面產(chǎn)生了部分氧空穴,可為化學(xué)吸附H提供活性中心.針對光還原Pt/TiO2催化劑上CO優(yōu)先氧化反應(yīng)提出了一種可能的雙功能反應(yīng)機(jī)理.

    CO優(yōu)先氧化;Pt催化劑;光還原;浸漬

    1 Introduction

    Currently,the CO oxidation in the absence and presence of H2has attracted extensive attention because of its potential application in indoor or cabin air cleanup and in the purification of hydrogen streams used in proton exchange membrane (PEM)fuel cells.1,2Considerable efforts have been devoted to design the suitable catalysts for the competitive oxidation of CO in the presence of hydrogen.Supported noble metals,such as Au,3,4Pt,5-10Pd,11-13and Rh,14were found applicable for the PROX reaction.Platinum catalysts are by far the most extensively studied catalysts owing to their superior performance in photocatalytic and thermal CO oxidation.Nevertheless,the most commonly used Pt/TiO2catalysts prepared by impregnation method are unsuitable for the reaction of CO preferential oxidation since they require high operation temperature in the range of 150-200°C.In the meantime,significant H2consumption can be observed in the temperature range to work effectively.Furthermore,the impregnated Pt/TiO2catalyst used to be pretreated by oxidation or reduction under an appropriate temperature prior to the catalytic activity tests.15-18This gives an incentive for the development of a highly active and selective catalyst for CO preferential oxidation.

    By comparison,the photoreduction method exhibits many advantages,such as simple operation and environment-friendly etc.In this study,we mainly focus on the preparation of Pt/ TiO2catalysts by a photoreduction method.The optimum reaction parameters for CO oxidation in the presence and absence of H2have been investigated in detail.Based on the data of catalytic activity tests and the characterization of catalysts,a possible reaction mechanism for the PROX reaction over the photoreduced Pt/TiO2catalyst has been proposed.

    2 Experimental

    2.1 Catalyst preparation

    Degussa P25 TiO2powder(Degussa,70%-30%anatase) was used as a support.Before deposition,raw TiO2was pretreated at 773 K for 4 h in air to stabilize its surface area and the anatase crystal form.Platinum was directly photodeposited on TiO2in an aqueous solution of chloroplatinic acid(1 mmol· L-1)and methanol(0.1 mol·L-1)under UV illumination(250 W medium-pressure mercury lamp).The samples were dried in air at 120°C for 12 h and had no thermal treatment anymore. The theoretical mass loading amount was 1.5%(w).In order to compare with the photoreduced Pt/TiO2catalysts,the impregnated catalyst was reduced in H2stream at 300°C for 1 h prior to the catalytic activity tests.We denoted the Pt/TiO2catalysts photoreduced for 12,24,and 36 h as Pt/TiO2(PR12),Pt/TiO2(PR24)and Pt/TiO2(PR36),respectively.And the impregnated one was denoted as Pt/TiO2(IM).

    2.2 Characterization of catalysts

    X-ray diffraction(XRD)patterns of the samples were recorded on a Rigaku D/MAX-RB X-ray diffractometer with a Cu Kαtarget operated at 50 kV and 40 mA with a scanning speed of 0.5(°)·min-1and a scanning angle(2θ)range of 10°-90°. Chemical states of the Pt species on the catalyst surface were investigated by X-ray photoelectron spectroscopy(XPS)on a VG ESCALAB 210 Electron Spectrometer(Mg Kαradiation; hν=1253.6 eV).

    2.3 Activity measurement

    Catalytic test was carried out at atmospheric pressure in a fixed bed continuous flow quartz reactor(inside diameter is 8mm),consisting of a flow controller unit,a reactor unit,and an analysis unit.A schematic diagram of the experimental system is shown in Fig.1.Typically,the temperature increased from 80 to 300°C at a 5°C increment,and a sample was taken for analysis after stabilizing for 30 min at each investigated temperature.Then 0.1 g catalyst diluted with equal amount of quartz was used in each run.Prior to the experiment,the impregnated catalyst was reduced in situ at 300°C(heating rate: 10°C·min-1)for 3 h with a 50%(volume fraction)H2/N2mixture(flow rate:60 mL·min-1).The feed gas consisted of 2.5% CO and 20%O2in N2balance.In the process of PROX,a gas mixture containing 50%H2,1%CO,and 2%O2in N2was fed at the flow rate of 30 mL·min-1.The gas phase effluents were analyzed on-line chromatographs equipped with thermal conductivity detector(TCD).At the end of the catalytic tests,the catalyst was cooled under an N2stream and stored for characterizations.The catalytic activities were defined in terms of conversion of CO(η),conversion of O2,and selectivity to CO2(S),which were denoted as ηCO,ηO2and SCO2,respectively,and were calculated according to the following equations:

    3 Results and discussion

    3.1 XRD analysis

    Fig.1 Diagram of apparatus for the test of catalytic activity

    XRD patterns of various Pt/TiO2catalysts were shown in Fig.2.No obvious crystallite formation of the Pt species could be found in the XRD patterns of Pt/TiO2(PR12)and Pt/TiO2(PR24)catalysts,which indicated that the low metal content might lead to a high dispersion of Pt and,therefore,that the Pt particles were too small to be detected by XRD analysis.However,only a broader diffraction peak of Pt appeared at 39.68ofor Pt/TiO2(PR36)and Pt/TiO2(IM)catalysts,which could be attributed to Pt(111).10Therefore,the average crystallite sizes of Pt particles could be calculated by applying the Scherrer equation on the Pt(111)diffraction peaks.The calculated average crystallite sizes of Pt particles in Pt/TiO2(PR36)and Pt/ TiO2(IM)samples were 16 and 10 nm,respectively.According to previous report,10the concentrations of chlorine ions could be decreased by photoreduction,resulted in a highly dispersion of active component.These results suggested that the distribution of Pt species on the support surface could be improved by adjusting photoreducation time and the longer time will be detrimental to the enhancement of CO oxidation activity.

    Fig.2 XRD patterns of various catalysts(a)Pt/TiO2(PR12),(b)Pt/TiO2(PR24),(c)Pt/TiO2(PR36),(d)Pt/TiO2

    3.2 XPS analysis

    XPS analyses were carried out to determine the surface concentration and valence state of Pt in Pt/TiO2catalysts.The binding energies of Pt 4f and the derived atomic contents in the different catalysts were summarized in Fig.3 and Table 1.From Fig.3 we found that the line shape and the width of Pt(4f7/2,4f5/2) over the impregnated catalyst matched well with that of the metallic Pt.By comparison,the Pt 4f features obtained from the photoreduced catalysts were quite broad,both zerovalence and cationic Pt could be found.According to previous reports,19,20the Pt 4f bands at 70.9 eV could be related to metallic Pt,while those at 73.2 eV could be assigned to Pt2+,respectively.Therefore,the relative atomic ratios of[Pt]/[Pt2+]decreased with the increase of photoreduction time.These results indicated that the valence state of Pt particles on the catalysts surface could be changed by adjusting photoreduction time.In addition,the atomic content on the support surface in the impregnated catalyst was much higher than those in the photoreduced catalysts, indicating that just partial Pt species could be deposited by photoreduction.

    Fig.3 XPS spectra of Pt in various catalysts(A)Pt/TiO2(PR12),(B)Pt/TiO2(PR24),(C)Pt/TiO2(PR36),(D)Pt/TiO2(IM)

    Table 1 XPS data of the catalysts Pt/TiO2(PR12),Pt/TiO2(PR24), Pt/TiO2(PR36),and Pt/TiO2(IM)

    The XPS spectra of TiO2were also detected in order to investigate the strong metal-support interaction(SMSI)for precious metal on reducible support.It is widely accepted that such effects may be crucial in many aspects of heterogeneous catalysis.The binding energies of TiO22p in various Pt/TiO2catalysts were shown in Fig.4.From Fig.4(a)we can find that the line shape and the width of TiO2(2p3/2,2p1/2)over the impregnated catalyst matched well with those of the Ti4+,which indicated that TiO2could not be reduced by H2pretreatment.This result also suggested that there was a weak interaction between active center Pt and reducible support TiO2.However,the binding energies of TiO2in photoreducted Pt/TiO2catalysts moved towards higher binding energy,maybe due to the production of part of Ti3+.According to previous report,21the stoichiometric surface exists,in principle,as an oxygen vacancy and two Ti3+.

    3.3 Activity tests

    CO oxidation in the absence of hydrogen was carried out in a temperature region of 100-260°C with a CO/O2molar ratio of 0.125.For comparison,CO conversions over different catalysts versus reaction temperature were summarized in Fig.5.It can be found that the catalytic activities for CO oxidation are very sensitive to preparation method.Performance of the impregnated catalyst is superior to those of photoreduced ones, which maybe due to the partial deposition of the Pt species resulted from photoreduction.Although both the nature of the active Pt phase and the elucidation of the mechanism for CO oxidation are still debated,herein,we consider that the Pt oxides are major active sites.Comparing the photoreduced catalysts, we found that their catalytic performance could be significantly promoted by adjusting the photoredution time.An optimum photoreduction time was 24 h and the longer time will be detrimental to the enhancement of CO oxidation activity.From Table 1 it can be found that the concentration of chlorine ions can be decreased from 1.5 to 0.4 when we increased photoreduction time from 12 to 36 h.Whereas the excessive photoreduction can result in the aggregation of the Pt species as shown in XRD results above.This result is consistent with previous report.22Therefore,the Pt/TiO2(PR24)catalyst exhibited the best activity for CO oxidation.

    Fig.4 XPS spectra of TiO2for various catalysts(a)Pt/TiO2(IM),(b)Pt/TiO2(PR12),(c)Pt/TiO2(PR24),(d)Pt/TiO2(PR36)

    Fig.6 Activity comparison of the CO selective oxidation between Pt/TiO2(PR24)(1)and Pt/TiO2(IM)(2)catalysts

    Fig.5 CO conversion vs reaction temperature over various catalysts(a)Pt/TiO2(IM),(b)Pt/TiO2(PR12),(c)Pt/TiO2(PR24),(d)Pt/TiO2(PR36)

    Furthermore,in order to investigate the effects of H2,a comparison of the catalytic activities for CO preferential oxidation in the presence of H2between Pt/TiO2(IM)and Pt/TiO2(PR24) was made.The maximum CO conversions,the corresponding O2conversions and selectivities of CO2were shown in Fig.6. Our results showed that the maximum CO conversion of 61.4%on Pt/TiO2(PR24)was achieved at 180°C,the corresponding O2conversion and selectivity of CO2were 40.0%and 43.0%,respectively.However,the maximum CO conversion of 33.7%over the Pt/TiO2(IM)catalyst could not be obtained until the reaction temperature increased to 240°C.Furthermore,the higher O2conversion of 91.4%resulted in a lower selectivity of CO2of 11.2%.

    It has been reported that the electron transfer occurs between oxide support and Au nanoparticles or adsorbates,and influences the CO thermocatalytic oxidation.23-25So,it can be proposed that the presence of H2may also play a similar effect on the CO oxidation via electron transfer.These results indicate that the dissociative chemisorption H at surface oxygen vacancy sites of TiO2deduced by photoreduction can act as both the electron-acceptors for the photogeneration electrons and the electron-donors for the chemisorbed O2at TiO2.26We consider that a bi-function reaction mechanism maybe involved in CO preferential oxidation over the photoreduced Pt/TiO2catalysts, where CO adsorbs on the Pt species and H2adsorbs at surface oxygen vacancy sites of TiO2.Therefore,the bi-function reaction mechanism weakens the competitive adsorption between CO and active oxygen on the Pt species,and subsequently enhances the activity for CO preferential oxidation in the presence of H2.

    4 Conclusions

    In summary,the photoreduction is an effective method to enhance the catalytic activity and selectivity of CO2for the reaction of PROX in H2-rich stream.In photoreduction process,the dissociative chemisorption H at surface oxygen vacancy sites of TiO2can act as the electron-donors for the chemisorbed O2at TiO2,resulted in a bi-function reaction mechanism for CO preferential oxidation in H2-rich stream.In addition,a further research is in progress owing to the numerous influence factors on the photoreduction,such as the irradiate intensity,the pH value,and concentration of solution,etc.

    (1)Du,W.P.;Li,Z.;Leng,W.H.;Xu,Y.M.Acta Phys.-Chim.Sin. 2009,25,1530.[杜衛(wèi)平,李 臻,冷文華,許宜銘.物理化學(xué)學(xué)報(bào),2009,25,1530.]

    (2) Liu,D.;Xu,Y.M.Acta Phys.-Chim.Sin.2008,24,1584. [劉 鼎,許宜銘.物理化學(xué)學(xué)報(bào),2008,24,1584.]

    (3)Wang,F.;Lu,G.X.Catal.Lett.2007,115,46

    (4)Wang,F.;Lu,G.X.Catal.Lett.2010,134,72.

    (5) Oh,S.H.;Sinkevitch,R.M.J.Catal.1993,142,254.

    (6) Kahlich,M.J.;Gasteiger,H.A.;Behm,R.J.J.Catal.1997, 171,93.

    (7) Zkara,S.?.;Aksoylu,A.E.Appl.Catal.A-Gen.2003,251,75.

    (8) Geng,D.S.;Chen,L.;Lu,G.X.J.Mol.Catal.A 2007,265,42.

    (9)Tang,Z.C.;Geng,D.S.;Lu,G.X.Thin Solid Films 2006,497, 309.

    (10) Wang,F.;Lu,G.X.J.Power Sources 2008,181,120.

    (11) Wang,F.;Lu,G.X.Int.J.Hydrog.Energy 2010,35,7253.

    (12)Wang,F.;Lu,G.X.J.Phys.Chem.C 2009,113,4161

    (13)Wang,F.;Lu,G.X.J.Phys.Chem.C 2009,113,17070.

    (14) Wang,F.;Lu,G.X.Chin.J.Catal.2007,28,27.[王 芳,呂功煊.催化學(xué)報(bào),2007,28,27.]

    (15) Zhang,M.;Jin,Z.S.;Zhang,Z.J.;Dang,H.X.Appl.Surf.Sci. 2005,250,29.

    (16) Zhang,M.;Jin,Z.S.;Zhang,Z.J.;Dang,H.X.J.Mol.Catal. A-Chem.2005,225,59.

    (17) Zhang,M.;Feng,C.X.;Jin,Z.S.;Chen,G.;Du,Z.L.Chin.J. Catal.2005,26,508.[張 敏,馮彩霞,金振聲,程 剛,杜祖亮.催化學(xué)報(bào),2005,26,508.]

    (18) Nishiyama,N.;Ichioka,K.;Park,D.H.;Egashira,Y.;Ueyama, K.;Gora,L.;Zhu,W.D.;Kapteijn,F.;Moulijn,J.Ind.Eng. Chem.Res.2004,43,1211.

    (19)Kim,K.S.;Winorgrad,N.;Davis,R.E.J.Am.Chem.Soc. 1971,93,6296.

    (20) Bornsten,L.In Zahlenwerte und Funktionen aus Naturwissenschaft und Technik;Springer:Berlin,1982.

    (21) Robert,G.;Peter,M.;Michael,B.Catal.Lett.2004,98,129.

    (22)Yang,J.C.;Kim,Y.C.;Shul,Y.G.;Shin,C.H.;Lee,T.K.Appl. Surf.Sci.1997,121,525.

    (23) Lopez,N.;Janssens,T.V.W.;Clausen,B.S.;Xu,Y.; Mavrikakis,M.;Bligaard,T.;N?skov,J.K.J.Catal.2004,223, 232.

    (24) Giordano,L.;Goniakowski,J.;Pacchioni,G.Phys.Rev.B 2001, 64,075417.

    (25) Molina,L.M.;Hammer,B.Phys.Rev.Lett.2003,90,206102.

    (26) Dai,W.X.;Chen,X.;Wang,X.X.;Liu,P.;Li,D.Z.;Li,G.S.; Fu,X.Z.Phys.Chem.Chem.Phys.2008,10,3256.

    August 11,2011;Revised:November 2,2011;Published on Web:November 24,2011.

    Preferential Oxidation of CO over Photoreduced Pt/TiO2Catalysts in H2-Rich Stream

    WANG Fang*WANG Cai-Hong LIU Guo-Xia
    (Department of Chemistry&Chemical Engineering,BinzhouUniversity,Binzhou 256603,Shandong Province,P.R.China)

    The optimum reaction parameters for CO oxidation in the presence and absence of H2have been investigated by photoreduction method to enhance the catalytic activity and selectivity of CO2for CO preferential oxidation(PROX)in H2-rich stream in detail.X-ray photoelectron spectroscoopy(XPS)results showed that part oxygen vacancies produced on the surface of photoreduced catalysts,which maybe the activity site for the chemisorbed H.Therefore,a possible bi-function reaction mechanism for CO preferential oxidation over the photoreduced Pt/TiO2catalyst has been proposed.

    CO preferential oxidation;Pt catalyst;Photoreduction;Impregnation

    10.3866/PKU.WHXB201111244www.whxb.pku.edu.cn

    *Corresponding author.Email:wangfangosso@yahoo.cn;Tel:+86-18763029669.

    The project was supported by the Research Fund of Binzhou University,China(2010Y06).

    濱州學(xué)院科研基金(2010Y06)資助項(xiàng)目

    O643

    猜你喜歡
    富氫濱州優(yōu)先
    燒結(jié)工序降低固體燃耗節(jié)能減碳的措施
    生物質(zhì)化學(xué)工程(2023年5期)2023-10-09 09:41:22
    山東濱州沃華生物工程有限公司
    飛閱濱州
    金橋(2020年11期)2020-12-14 07:52:50
    40年,教育優(yōu)先
    商周刊(2018年25期)2019-01-08 03:31:08
    多端傳播,何者優(yōu)先?
    傳媒評論(2018年5期)2018-07-09 06:05:26
    站在“健康優(yōu)先”的風(fēng)口上
    生物質(zhì)化學(xué)工程(2016年2期)2016-06-23 08:35:17
    因戶制宜 一戶一策 濱州結(jié)對幫扶注重“造血”
    濱州淺海海域浮游植物豐度及其多樣性
    在线a可以看的网站| 欧美日韩福利视频一区二区| 欧美日韩亚洲综合一区二区三区_| 中文字幕熟女人妻在线| 婷婷精品国产亚洲av| 91在线观看av| 午夜久久久久精精品| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 国产精品 欧美亚洲| 99久久精品国产亚洲精品| 51午夜福利影视在线观看| 999久久久国产精品视频| 99久久99久久久精品蜜桃| 国产免费男女视频| 脱女人内裤的视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产乱码久久久久久男人| 草草在线视频免费看| 人人妻人人澡欧美一区二区| 白带黄色成豆腐渣| 国产成人精品久久二区二区免费| www.熟女人妻精品国产| 成人av在线播放网站| 亚洲七黄色美女视频| 国产精品日韩av在线免费观看| 亚洲中文av在线| 免费一级毛片在线播放高清视频| 欧美久久黑人一区二区| 天堂影院成人在线观看| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 日韩成人在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 国产精品av久久久久免费| 久久天躁狠狠躁夜夜2o2o| 欧美日韩一级在线毛片| 国产aⅴ精品一区二区三区波| svipshipincom国产片| 久久伊人香网站| 精品久久久久久久久久久久久| 一本精品99久久精品77| 国产成人啪精品午夜网站| 亚洲欧洲精品一区二区精品久久久| 真人做人爱边吃奶动态| 国产一区二区三区视频了| 99re在线观看精品视频| 91av网站免费观看| 免费在线观看成人毛片| www.熟女人妻精品国产| 欧美日韩瑟瑟在线播放| 亚洲av成人不卡在线观看播放网| 亚洲国产欧洲综合997久久,| 亚洲一码二码三码区别大吗| 精品日产1卡2卡| 午夜精品一区二区三区免费看| 又黄又爽又免费观看的视频| 在线视频色国产色| 亚洲精品美女久久av网站| 亚洲欧美日韩高清专用| 日韩欧美在线二视频| 黑人欧美特级aaaaaa片| 欧美精品亚洲一区二区| 91麻豆精品激情在线观看国产| 少妇裸体淫交视频免费看高清 | 日韩有码中文字幕| 国产精品久久电影中文字幕| 不卡av一区二区三区| 久久久久久九九精品二区国产 | 久久精品国产99精品国产亚洲性色| 久久久精品大字幕| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| 舔av片在线| 99riav亚洲国产免费| 人妻久久中文字幕网| 中文字幕av在线有码专区| 国产亚洲精品久久久久久毛片| 国产不卡一卡二| 亚洲av电影在线进入| 欧美成人一区二区免费高清观看 | 中文字幕人妻丝袜一区二区| 性色av乱码一区二区三区2| 99久久无色码亚洲精品果冻| 亚洲黑人精品在线| 国产精品美女特级片免费视频播放器 | 丰满人妻一区二区三区视频av | 精品国内亚洲2022精品成人| 亚洲人成网站在线播放欧美日韩| 亚洲自拍偷在线| 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| 最近在线观看免费完整版| 狂野欧美白嫩少妇大欣赏| 最新美女视频免费是黄的| 超碰成人久久| 精品人妻1区二区| 亚洲精品美女久久av网站| 99久久无色码亚洲精品果冻| 首页视频小说图片口味搜索| netflix在线观看网站| 国产成+人综合+亚洲专区| 国产亚洲av高清不卡| 97人妻精品一区二区三区麻豆| 老汉色av国产亚洲站长工具| 1024手机看黄色片| 午夜精品一区二区三区免费看| 在线a可以看的网站| 欧美又色又爽又黄视频| 精品久久久久久久毛片微露脸| 后天国语完整版免费观看| √禁漫天堂资源中文www| 亚洲欧美精品综合一区二区三区| 一区福利在线观看| 在线观看美女被高潮喷水网站 | 夜夜躁狠狠躁天天躁| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 亚洲五月婷婷丁香| 久久久精品大字幕| 大型黄色视频在线免费观看| 女生性感内裤真人,穿戴方法视频| 嫁个100分男人电影在线观看| 亚洲男人的天堂狠狠| 好看av亚洲va欧美ⅴa在| 午夜福利在线在线| av有码第一页| 国产熟女午夜一区二区三区| 午夜久久久久精精品| 久久久久久久久中文| 国产一区二区三区视频了| 美女黄网站色视频| 色精品久久人妻99蜜桃| 婷婷丁香在线五月| 中文资源天堂在线| 午夜福利在线在线| 亚洲欧美一区二区三区黑人| 色综合欧美亚洲国产小说| 成人精品一区二区免费| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 亚洲成av人片免费观看| 日本一本二区三区精品| 夜夜看夜夜爽夜夜摸| 久久人人精品亚洲av| 日韩欧美三级三区| 听说在线观看完整版免费高清| 国内毛片毛片毛片毛片毛片| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 免费在线观看影片大全网站| 深夜精品福利| 国产真实乱freesex| 精品久久久久久久久久免费视频| 成人国产综合亚洲| 少妇被粗大的猛进出69影院| 欧美黑人巨大hd| 午夜福利成人在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 99精品在免费线老司机午夜| 身体一侧抽搐| 国产精品日韩av在线免费观看| 麻豆成人午夜福利视频| 亚洲av成人精品一区久久| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 午夜激情福利司机影院| 不卡av一区二区三区| 欧美黑人精品巨大| 久久中文字幕人妻熟女| 成人av在线播放网站| 欧美中文日本在线观看视频| 老司机午夜福利在线观看视频| 欧美乱妇无乱码| www国产在线视频色| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 毛片女人毛片| 国产99久久九九免费精品| 少妇粗大呻吟视频| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| 欧美久久黑人一区二区| 国产精品影院久久| 色播亚洲综合网| 免费看日本二区| 无限看片的www在线观看| av国产免费在线观看| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合久久99| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆 | 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 国产精品,欧美在线| 男女视频在线观看网站免费 | 特级一级黄色大片| 欧美三级亚洲精品| 男人舔女人下体高潮全视频| 黄片小视频在线播放| 十八禁人妻一区二区| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 国产精品九九99| 国产成人aa在线观看| 亚洲欧美激情综合另类| 亚洲精品av麻豆狂野| 午夜福利高清视频| 日本免费a在线| 国产亚洲欧美98| 9191精品国产免费久久| 在线观看一区二区三区| 久久午夜亚洲精品久久| 免费观看精品视频网站| 18禁观看日本| 91av网站免费观看| 无人区码免费观看不卡| 超碰成人久久| 深夜精品福利| 嫁个100分男人电影在线观看| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 欧美性猛交黑人性爽| 97超级碰碰碰精品色视频在线观看| netflix在线观看网站| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| 亚洲av成人av| 99久久精品国产亚洲精品| 国内精品一区二区在线观看| 亚洲av美国av| 精品无人区乱码1区二区| 搡老熟女国产l中国老女人| 国产精品久久久av美女十八| 青草久久国产| 欧美乱码精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久国产高清桃花| 国产激情欧美一区二区| 日韩欧美国产一区二区入口| 男女视频在线观看网站免费 | 日韩欧美精品v在线| 中文字幕人妻丝袜一区二区| 免费在线观看成人毛片| 久久久久久久久中文| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区| 成人亚洲精品av一区二区| 91字幕亚洲| a级毛片在线看网站| 亚洲中文日韩欧美视频| 久久精品影院6| 日本撒尿小便嘘嘘汇集6| 成人高潮视频无遮挡免费网站| 久久精品aⅴ一区二区三区四区| 在线观看免费日韩欧美大片| netflix在线观看网站| 亚洲精品在线观看二区| 人成视频在线观看免费观看| 国产av麻豆久久久久久久| 97人妻精品一区二区三区麻豆| 久久精品91无色码中文字幕| 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 精品无人区乱码1区二区| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 国产一级毛片七仙女欲春2| 亚洲国产欧美人成| 精品日产1卡2卡| 欧美三级亚洲精品| 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| 此物有八面人人有两片| 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| av中文乱码字幕在线| 色播亚洲综合网| 国产成人av激情在线播放| 亚洲真实伦在线观看| 最近最新中文字幕大全免费视频| 91老司机精品| 亚洲自拍偷在线| 岛国在线免费视频观看| 免费在线观看日本一区| 国产真人三级小视频在线观看| 午夜免费激情av| 黑人操中国人逼视频| 国产不卡一卡二| 麻豆国产av国片精品| 看黄色毛片网站| 五月伊人婷婷丁香| 国产真实乱freesex| 欧美性长视频在线观看| 九色成人免费人妻av| 成年免费大片在线观看| 国产精品1区2区在线观看.| АⅤ资源中文在线天堂| 国产97色在线日韩免费| 免费在线观看影片大全网站| 亚洲精华国产精华精| 久久久久久久久中文| 久久精品国产亚洲av香蕉五月| 久久香蕉激情| www日本在线高清视频| 亚洲国产欧洲综合997久久,| 国产激情久久老熟女| 身体一侧抽搐| 男女视频在线观看网站免费 | 国产野战对白在线观看| 最近最新免费中文字幕在线| 国产激情偷乱视频一区二区| 男人舔奶头视频| 69av精品久久久久久| 50天的宝宝边吃奶边哭怎么回事| 欧美日本亚洲视频在线播放| 麻豆国产av国片精品| 岛国在线观看网站| 少妇被粗大的猛进出69影院| 国产区一区二久久| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 91老司机精品| 午夜福利18| a在线观看视频网站| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放 | 欧美黑人巨大hd| 757午夜福利合集在线观看| 亚洲九九香蕉| 超碰成人久久| av视频在线观看入口| 韩国av一区二区三区四区| 91成年电影在线观看| 国产成人av激情在线播放| 村上凉子中文字幕在线| 成年人黄色毛片网站| 久久久久免费精品人妻一区二区| 丰满人妻一区二区三区视频av | 国产熟女xx| 少妇被粗大的猛进出69影院| 狂野欧美激情性xxxx| 亚洲中文字幕一区二区三区有码在线看 | 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 久久久久九九精品影院| 成人永久免费在线观看视频| 国产私拍福利视频在线观看| 日韩欧美免费精品| 日日夜夜操网爽| 国产又色又爽无遮挡免费看| 很黄的视频免费| 欧美精品啪啪一区二区三区| 一个人免费在线观看的高清视频| 欧美久久黑人一区二区| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 岛国在线观看网站| 叶爱在线成人免费视频播放| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 国产成人av教育| 久久精品91蜜桃| 日本一二三区视频观看| 日本熟妇午夜| 舔av片在线| 久久伊人香网站| 最好的美女福利视频网| 一进一出抽搐动态| 午夜视频精品福利| 十八禁人妻一区二区| 激情在线观看视频在线高清| av在线天堂中文字幕| 国内精品久久久久精免费| 男女下面进入的视频免费午夜| xxxwww97欧美| 嫩草影视91久久| 亚洲五月婷婷丁香| 一级黄色大片毛片| 亚洲精品美女久久久久99蜜臀| 中文字幕精品亚洲无线码一区| 欧美3d第一页| 国产日本99.免费观看| 99国产精品一区二区三区| 18禁观看日本| 亚洲国产精品合色在线| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看的高清视频| 午夜激情福利司机影院| 99国产精品一区二区三区| avwww免费| 久久久久久久久久黄片| 18禁裸乳无遮挡免费网站照片| 午夜精品一区二区三区免费看| 婷婷亚洲欧美| 国产av在哪里看| 久久中文字幕人妻熟女| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 亚洲成人国产一区在线观看| 两性夫妻黄色片| 国产麻豆成人av免费视频| 欧美乱色亚洲激情| 草草在线视频免费看| 久9热在线精品视频| 禁无遮挡网站| 欧美乱码精品一区二区三区| 国产不卡一卡二| 国产精华一区二区三区| 欧美久久黑人一区二区| 午夜福利在线在线| cao死你这个sao货| 男男h啪啪无遮挡| 99热只有精品国产| 免费人成视频x8x8入口观看| 久久 成人 亚洲| 两个人免费观看高清视频| 少妇的丰满在线观看| 日韩欧美国产一区二区入口| 欧美日韩一级在线毛片| 成人特级黄色片久久久久久久| 国产精品久久久久久人妻精品电影| 麻豆一二三区av精品| 1024香蕉在线观看| av福利片在线| 一二三四在线观看免费中文在| 69av精品久久久久久| 老司机深夜福利视频在线观看| 亚洲狠狠婷婷综合久久图片| 精品国产乱子伦一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| xxxwww97欧美| 欧美又色又爽又黄视频| 国产成人aa在线观看| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 成人三级做爰电影| 国产日本99.免费观看| 精品国内亚洲2022精品成人| 亚洲成人中文字幕在线播放| 午夜福利视频1000在线观看| 99国产精品99久久久久| 国产一区二区在线观看日韩 | 最近最新中文字幕大全免费视频| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 久久中文看片网| 黄色片一级片一级黄色片| 1024手机看黄色片| 91老司机精品| 男女下面进入的视频免费午夜| 久久久精品欧美日韩精品| 色综合欧美亚洲国产小说| 亚洲精品在线美女| 亚洲男人天堂网一区| 国产97色在线日韩免费| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 一个人免费在线观看电影 | 男女床上黄色一级片免费看| 可以在线观看的亚洲视频| 午夜激情av网站| 久久久久久久久久黄片| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 丁香欧美五月| 国产真实乱freesex| 男男h啪啪无遮挡| 亚洲男人天堂网一区| 色尼玛亚洲综合影院| 久久草成人影院| 日本免费一区二区三区高清不卡| 青草久久国产| 欧美 亚洲 国产 日韩一| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 亚洲国产欧洲综合997久久,| 国产又黄又爽又无遮挡在线| 亚洲精品久久成人aⅴ小说| 国产成人啪精品午夜网站| av欧美777| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 久久国产乱子伦精品免费另类| 三级毛片av免费| 黄色 视频免费看| 亚洲欧美日韩高清专用| 在线观看www视频免费| 给我免费播放毛片高清在线观看| 亚洲午夜精品一区,二区,三区| 欧美日韩乱码在线| 中文资源天堂在线| 亚洲av美国av| 日日夜夜操网爽| 日韩三级视频一区二区三区| www.熟女人妻精品国产| 香蕉av资源在线| 欧美极品一区二区三区四区| 亚洲国产精品999在线| 国内精品久久久久久久电影| 麻豆成人av在线观看| 一边摸一边抽搐一进一小说| 老司机在亚洲福利影院| 亚洲七黄色美女视频| 欧美性长视频在线观看| 51午夜福利影视在线观看| 国产成+人综合+亚洲专区| 丝袜美腿诱惑在线| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 精品欧美一区二区三区在线| www日本黄色视频网| 国产日本99.免费观看| 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| 久久久久久免费高清国产稀缺| 日韩高清综合在线| 久久婷婷成人综合色麻豆| 男女之事视频高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产黄色小视频在线观看| 一级毛片精品| 90打野战视频偷拍视频| 人人妻人人看人人澡| 亚洲国产欧洲综合997久久,| 91老司机精品| 免费看a级黄色片| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩 | 亚洲欧美日韩高清在线视频| 午夜福利免费观看在线| 久久久久久久久中文| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 日韩三级视频一区二区三区| 亚洲精品av麻豆狂野| 老汉色av国产亚洲站长工具| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 看免费av毛片| 国产成年人精品一区二区| 国产人伦9x9x在线观看| 国产成年人精品一区二区| 日韩大尺度精品在线看网址| 免费高清视频大片| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 精品日产1卡2卡| 黄色女人牲交| 国产又黄又爽又无遮挡在线| 深夜精品福利| 国产在线精品亚洲第一网站| 波多野结衣高清作品| 成人18禁高潮啪啪吃奶动态图| 99久久精品热视频| 欧美最黄视频在线播放免费| 丝袜美腿诱惑在线| www日本在线高清视频| 色播亚洲综合网| 婷婷亚洲欧美| 搡老岳熟女国产| 欧美黑人巨大hd| 又紧又爽又黄一区二区| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 在线观看美女被高潮喷水网站 | 色精品久久人妻99蜜桃| 久久久久久免费高清国产稀缺| 欧美人与性动交α欧美精品济南到| 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 成年版毛片免费区| 久久久久久久午夜电影| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 欧美黑人巨大hd| 成人国产一区最新在线观看| 制服人妻中文乱码| 丝袜美腿诱惑在线| 国产精品免费视频内射| e午夜精品久久久久久久| 深夜精品福利| 一级毛片精品| 高清毛片免费观看视频网站| www日本黄色视频网| 脱女人内裤的视频| 国产亚洲精品久久久久5区| 悠悠久久av| 国产高清videossex| 极品教师在线免费播放| 亚洲欧美日韩东京热| tocl精华| 五月伊人婷婷丁香| 日本在线视频免费播放| 亚洲九九香蕉| 国产爱豆传媒在线观看 | 久久精品91蜜桃| 成年女人毛片免费观看观看9| 亚洲av成人av| 国产成人精品久久二区二区免费|