• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吩噻嗪-Corrole鎵(III)配合物的合成、熒光及其光斷裂DNA性質(zhì)

    2012-12-05 02:27:40江煥峰汪華華惠張計亮年劉海洋
    物理化學學報 2012年2期
    關鍵詞:華華量子產(chǎn)率噻嗪

    史 蕾 江煥峰 尹 偉 汪華華 王 惠張 雷 計亮年 劉海洋,*

    (1廣東第二師范學院化學系,廣州510303; 2華南理工大學化學與化工學院,廣州510641; 3中山大學光電材料與技術國家重點實驗室,廣州510275)

    吩噻嗪-Corrole鎵(III)配合物的合成、熒光及其光斷裂DNA性質(zhì)

    史 蕾1,2,*江煥峰2尹 偉1汪華華2王 惠3張 雷2計亮年3劉海洋2,*

    (1廣東第二師范學院化學系,廣州510303;2華南理工大學化學與化工學院,廣州510641;3中山大學光電材料與技術國家重點實驗室,廣州510275)

    合成了吩噻嗪(PTZ)-corrole二元體1-3及其鎵(III)配合物4-6.采用穩(wěn)態(tài)吸收與穩(wěn)態(tài)發(fā)射及時間分辨的瞬態(tài)光譜技術研究了這幾種化合物的光物理特性.結合熒光量子產(chǎn)率和熒光壽命計算得到它們的輻射和無輻射速率常數(shù).穩(wěn)態(tài)吸收光譜表明:幾種二元體中,corrole鎵(III)單元表現(xiàn)出更強的Soret帶和Q帶.化合物1-3的熒光量子產(chǎn)率分別是0.156、0.134和0.139,輻射速率常數(shù)分別為4.02×107、3.47×107和2.89×107s-1.化合物4-6的熒光量子產(chǎn)率分別是0.502、0.443和0.494,輻射速率常數(shù)分別為20.90×107、16.78×107和21.11× 107s-1.可見,化合物4-6的熒光量子產(chǎn)率和輻射速率常數(shù)均高于化合物1-3.然而,化合物4-6的熒光壽命分別是2.40、2.64和2.34 ns,低于自由corrole 1-3.瓊脂糖凝膠電泳實驗表明:在光照的條件下,這些吩噻嗪-corrole鎵(III)二元體化合物能夠把超螺旋DNA(form I)切割成缺刻型DNA(form II).

    Corrole;吩噻嗪;鎵(III);熒光;DNA

    1 Introduction

    Metallocorroles have been applied in catalysis,1,2medicinal applications,3-5and recently in photophysics.6-10Since the computational investigations suggest that gallium(III)may fit perfectly into the coordination core of corroles,11gallium(III)corroles have been received interest in recent ten years.The first reported corrole gallium(III)complex was synthesized by Gross,12,13its X-ray structures,electrochemical and photophysical properties were also determined.Facile synthetic methodologies and high fluorescence yield allowing for the preparation of more gallium(III)corroles and more extensively properties have been determined.14-16Amphiphilic gallium(III)corroles could form tightly bound noncovalent conjugates with human serum albumin.17In addition,it has been discovered recently that these gallium(III)corroles could also be explored for tumor detection and elimination.18Phenothiazine(PTZ)is an interesting chromophore recognized pharmaceutical compound, which has shown diverse biological activities such as neuroleptic,antiemeic,antihistamine and anthelmintic activities.19,20Recently,we21found that phenothiazine-corrole dyads 1-3 exhibited enhanced DNA photocleavage properties,high fluorescence quantum yield,and DNA binding activities.Although Ga(III)corroles exhibited potential application in medicinal chemistry,17,18no report was found on the interaction between Ga(III) corrole complexes and DNA so far.In this paper,we report the fluorescence property and DNA photocleavage activity of orth-,meso-,and para-phenthiazine-corrole gallium(III)complexes 4-6,which are derived from free base corrole dyads 1-3,respectively.

    2 Experimental

    2.1 Materials and methods

    Tetraphenylporphyrin(TPP)was synthesized by Adler?s method.22Calf thymus deoxyribonucleic acid(CT DNA)was purchased from Sigma-Aldrich Corporation and pBR 322 plasmid DNA was purchased from TaKaRa Biotechnology Co., Ltd.(TaKaRa Dalian,China).All other reagents and solvents were reagent grade and used without further purification.Silica gel(100-200 mesh)were used for column chromatography. Reactions were monitored by thin layer chromatography and spectrophotometry.Mass spectra were obtained using a Bruker Esquire HCT PLUS mass spectrometer(Bruker Company, USA).1H-NMR spectra were recorded with a VARIAN 300 MHz NMR spectrometer in CDCl3(Varian Company,USA). Absorption spectra of all samples were measured by a Perkin Elmer Lambda 850 UV-Vis Spectrometer(PE Company, USA).Fluorescence spectra were recorded by a Perkin Elmer LS55 Luminescence Spectrometer(PE Company,USA).The fluorescence decay curves were measured by a time-resolved fluorescence spectroscopic experimental setup.A Nd:YAG laser(EKSPLA PL2143)andanOPGsystem(EKSPLA PG401SH/DFG2-10)generated the laser pulse(420 nm,10 Hz)with a full width at half maximum(FWHM)of 22 ps as a light source(EKSPLA Company,Lithuania).The fluorescence was collected with a pair of lenses with big caliber.After passing through a monochromator,it was recorded by a streak camera(Hamamatsu C1587)and a CCD(Hamamatsu C4742-95). The fluorescence lifetime can be determined with a 30 ps resolution by the deconvolution procedure.Photoirradiation was carried out using a simple system consisting of an 11 W fluorescence lamp placed 10 cm away from a sample compartment thermostatted in a water jacket at 25°C.Supercoiled pBR 322 DNA(0.1 μg)was treated with phenothiazine-corrole gallium(III)complexes in 50 mmol·L-1tris-HCl,18 mmol·L-1NaCl buffer,pH=7.2,and the solutions were incubated for 1 h in the dark,then irradiated.The samples were analyzed by electrophoresis for 2 h at 50 V and 30 mA in tris-HCl buffer containing 1%(mass fraction)agarose gel.The gel was stained with 1 μg mL-1ethidium bromide and then photographed under UV light(365 nm).All measurements were carried out at room temperature.

    2.2 Synthesis

    2.2.1 Synthesis of the phenothiazine-corrole dyads

    Phenothiazine-corrole dyads 1-3 were prepared previously.21

    2.2.2 Preparation of phenothiazine-corrole gallium(III) complex(4)

    A solution of phenothiazine-corrole dyad 1(19.9 mg,21 μmol)in pyridine(10 mL)was added to a flask that contained a large excess(about 0.2 g)of flame-dried GaCl3,and the reaction mixture was heated to reflux for 1 h under N2,followed by evaporation of the solvent.The inorganic salts were separated by column chromatography on silica(Vhexane:VCH2Cl2:Vpyridine=100: 50:0.5,volume ratio),affording 17.0 mg(16.8 μmol,80.0% yield)of the pyridine gallium(III)complex of 4.1H-NMR(CDCl3,300 MHz):δ,3.18-3.19(m,2H,pyridine-H),5.48-5.49 (m,2H,pyridine-H),6.30-6.32 (m,1H,pyridine-H), 7.16-7.21(m,2H,Ph),7.28-7.33(m,2H,Ph),7.36-7.40(m, 2H,Ph),7.55-7.60(m,3H,Ph),7.64-7.66(m,1H,Ph), 7.75-7.80(m,1H,Ph),8.01-8.04(m,1H,Ph),8.62-8.64(m, 2H,Ph),8.82-8.84(m,4H,pyrrole-H),9.21-9.23(m,2H,pyrrole-H);19F-NMR(CDCl3,380 MHz):δ,-162.43--162.24 (m,4F),-153.91(t,J=44.1 Hz,2F),-138.06--137.95(m, 4F);UV-Vis(toluene),λmax,unit in nm,(relative intensity): 288.0(0.230),423.0(2.45),574.0(0.251),598.0(0.335);Atmosphericpressurechemicalionization MS (APCI-MS): 1014.1[M-pyridine+H+].

    Fig.1 Structure and synthesis of phenothiazine-corrole gallium(III)complexes

    2.2.3 Preparation of phenothiazine-corrole gallium(III) complex(5)

    A solution of phenothiazine-corrole dyad 2(19.9 mg,21 μmol)in pyridine(10 mL)was added to a flask that contained a large excess(about 0.2 g)of flame-dried GaCl3,and the reaction mixture was heated to reflux for 1 h under N2,followed by evaporation of the solvent.The inorganic salts were separated by column chromatography on silica(Vhexane:VCH2Cl2:Vpyridine=100: 70:0.5),affording 19.1 mg(18.9 μmol,90.0%yield)of the pyridine gallium(III)complex of 5.1H-NMR(CDCl3,300 MHz): δ,3.10-3.22(m,2H,pyridine-H),5.87-5.92(m,2H,pyridine-H),6.63-6.70(m,1H,pyridine-H),7.18-7.23(m,2H, Ph),7.30-7.35(m,2H,Ph),7.38(d,J=8.4 Hz,2H,Ph),7.56 (d,J=9.1 Hz,1H,Ph),7.67-7.75(m,3H,Ph),7.96(d,J=8.4 Hz,2H,Ph),8.77-8.82(m,6H,pyrrole-H),9.20-9.21(m,2H, pyrrole-H);19F-NMR(CDCl3,380 MHz):δ,-162.68--162.38 (m,4F),-154.16(t,J=44.1 Hz,2F),-138.15--137.92(m, 4F);UV-Vis(toluene),λmax,unit in nm,(relative intensity): 293.0(0.209),424.0(2.59),574.0(0.245),602.0(0.366); APCI-MS:1014.1[M-pyridine+H+].

    2.2.4 Preparation of phenothiazine-corrole gallium(III) complex(6)

    A solution of phenothiazine-corrole dyad 3(19.9 mg,21 μmol)in pyridine(10 mL)was added to a flask that contained a large excess(about 0.2 g)of flame-dried GaCl3,and the reaction mixture was heated to reflux for 1 h under N2,followed by evaporation of the solvent.The inorganic salts were separated by column chromatography on silica(Vhexane:VCH2Cl2:Vpyridine=100: 70:0.5),affording 19.1 mg(18.9 μmol,90.0%yield)of the pyridine gallium(III)complex of 6.1H-NMR(CDCl3,300 MHz): δ,2.88-2.98(m,2H,pyridine-H),5.81-5.89(m,2H,pyridine-H),6.62-6.70(m,1H,pyridine-H),7.29-7.32(m,2H, Ph),7.40-7.45(m,2H,Ph),7.48-7.51(m,2H,Ph),7.54(d,J= 8.4 Hz,2H,Ph),7.82-7.85(m,2H,Ph),8.10(d,J=8.4 Hz, 2H,Ph),8.77-8.82(m,6H,pyrrole-H),9.20-9.22(m,2H,pyrrole-H);19F-NMR(CDCl3,380 MHz):δ,-162.59--162.45 (m,4F),-154.18(t,J=44.1 Hz,2F),-138.28--138.02(m, 4F);UV-Vis(toluene),λmax,unit in nm,(relative intensity): 293.0(0.192),424.0(2.58),574.0(0.238),603.0(0.365); APCI-MS:1014.1[M-pyridine+H+].

    3 Results and discussion

    Phenothiazin-corrole dyads 1-3 was prepared according to previous published procedure in the literature.21Phenothiazine-corrole gallium(III)complexes 4-6 could efficiently be obtained(Fig.1)in yields ranging from 80.0%to 90.0%according the method reported by Gross.12Fig.2 shows the absorption spectra of phenothiazine-corrole dyad 3,PTZ,and their gallium complexes 4-6 in toluene.The absorption spectra of 4-6 reveal a band at 290 nm corresponding to the phenothiazine entity,a Soret band and a Q band related to corrole unit.The S0→S2(Soret band)and S0→S1(Q band)transition of 4-6 are obviously enhanced compared to their free base corroles.This may be explained by the fact that the corrole macrocycle intends to be more planar or the changed acidity when the gallium is introduced,12resulting in the increase of the matrix element of the π-π*electronic transitions and stronger absorption.23This phenomenon is similar to the previously reported gallium(III) corroles.13,24While the molar absorption coefficient(ε)of the PTZ is nearly identical to the phenothiazine entity of 3,4-6, which means that the phenothiazine unit can be introduced without affecting the absorption characteristics of these gallium(III)corroles.

    Fig.2 UV-Vis absorption spectra of PTZ (phenothiazine-10-carbonyl chloride),3 and 4-6 in toluene

    In our reported studies,21we found that the phenothi-azine-corrole dyads exhibited higher fluorescence quantum yields compared to their corrole units.During the metallation by gallium,we noted a stronger red fluorescence.The fluorescence spectra of 3,4-6,and TPP in toluene at room temperature upon excitation at the Q band(560 nm)are displayed in Fig.3 and the most relevant photophysical values are collected in Table 1.The luminescence peaks of our synthesized gallium complexes are all shifted to higher energies(ca 45 nm)as compared to their free base corroles,which maybe attributed to the larger energy between HOMO and LUMO of gallium(III)corroles.23The major points of interest are that three gallium(III) complexes exhibit higher fluorescence quantum yields than phenothiazine-corrole dyads,which can be explained by the more planar structure of metallic corroles.16,24,25What?s more, sample 4 exhibits the highest fluorescence quantum yields among the reported gallium(III)complexes we can find.Their lifetimes were also determined by the method described in experimental section.Samples were excitated at 420 nm and the fluorescences were focused into the spectrometer before being collected by a streak camera and the collected wavelength was 608 nm.The resultant decay profiles for all samples could be explained satisfactorily in terms of a single exponential fit (Fig.4)and the calculated lifetimes(τ)are summarized in Table 1.The fluorescence lifetime decreases when the gallium is introduced.The emission rate constant(kf)and nonemission rate constant(knr)constant can be determined from kf=Φf/τ and knr= (1-Φf)/τ.26For phenothiazine-corrole gallium(III)complexes 4-6,the values of the kfare 20.90×107,16.78×107,and 21.11× 107s-1.Note that the kfof 4 and 5 are about 5-fold more than their free base corroles,and the kfof 6 is about 7-fold more than that of 3,while the value of knrisalmost identical.

    Fig.3 Fluorescence emission spectra of TPP,complexes 3 and 4-6 in toluene at room temperature

    Table 1 Fluorescence emission peak(λmax),quantum yields(Φfl), life time(τ),radiative rate constant(kf),and nonradiative rate constant(knr)data of complexes 1-6 in toluene at 295 K

    Fig.5 Stability of supercoiled pBR 322 DNAwith irradiationReaction mixtures(10 μL)contained 0.1 μg of plasmid DNAand 5%DMF. lanes 1-8:samples with 0,30,60,90,120,150,200,250 min irradiation, respectively.c(form II):conversion of form I to form II

    Fig.6 Agarose gel electrophoresis pattern for the cleavage of supercoiled pBR 322 DNAReaction mixtures(10 μL)contained 0.1 μg of plasmid DNA,400 μmol·L-1 samples,and 5%DMF.lane 1:DNAalone(no hν);lane 2:DNA+4(no hν); lanes 3-5:complexes 4-6 with DNA,respectively(2 h hν).

    Fig.4 Fluorescence decay curves of complexes 4-6 in toluene

    The DNA photocleavage activities were examined using supercoiled pBR 322 DNA.A mixture of corrole in DMF and the plasmid DNA in tris-HCl buffer(pH=7.2)was illuminated for 2 h at room temperature in a system consisting of an 11 W fluorescent lamp light source placed 10 cm away.The stability of supercoiled pBR 322 DNA with irradiation and agarose gel electrophoresis patterns for the photocleavage of DNA are shown in Fig.5 and Fig.6,respectively.Lane 1 is the control DNA.Without illumination,all phenothiazine-corrole dyads or their gallium complexes exhibited no DNA cleavage activity (exampled by lane 2).Phenothiazine-corrole dyads 1-3 exhibited 85%-100%conversion of supercoiled DNA(form I)to nicked-circular DNA(form II)at the concentration of 100 μmol·L-1under illumination.12In contrast,their gallium complexes could cleave form I DNA to form II at the concentration of 400 μmol·L-1and the DNA photocleavage activity follows an order of 4<5=6.The descendent DNA photocleavage activities of 4-6 maybe explained by the reduction of singlet oxygen quantum yield(ФΔ)photosensitized by corroles.Phenothiazine-corrole dyads 1-3 show the ФΔof 0.89-0.93,while we can not detect the singlet oxygen luminescence spectra of 4-6 in the same experimental conditions,which maybe because of the amazing radiative transition of 4-6.

    4 Conclusions

    In summary,we synthesized three phenothiazine-corrole dyads 1-3 and their novel gallium(III)complexes 4-6.The corrole unit exhibits stronger Soret band and Q band.The steady-state emission spectra and the temporal fluorescence decay profiles reveal that the fluorescence quantum yield and radiative decay constant are enhanced when the gallium is introduced.The quantum yields are 0.502,0.443,and 0.494 for 4-6,respectively.To our knowledge,the quantum yield of sample 4 is the highest among the reported gallium(III)complexes.The radiative and nonradiative rate constants were determined using a kinetic scheme:the values of radiative rate constant are 20.90×107,16.78×107,and 21.11×107s-1for 4-6, respectively,which are obviously higher than their free base corroles,but the nonradiative rate constant is almost identical. Agarose gel electrophoresis shows that these gallium(III)corrolescould photocleave supercoiled DNA (form I)to nicked-circular DNA(form II)at the concentration of 400 μmol·L-1,which are the first observation of DNA photocleavage by corrole gallium(III)complexes.This information is of importance for potential utilization of corroles in photophysical and therapeutic applications.

    (1) Fang,H.F.;Ling,Z.;Brothers,J.P.;Fu,X.F.Chem.Commun. 2011,47,11677.

    (2) Nigel-Etinger,I.;Mahammed,A.;Gross,Z.Catal.Sci.Technol. 2011,1(4),578.

    (3)Zhai,Q.Q.;Xu,L.;Ge,Y.S.;Tian,T.;Wu,W.D.;Yan,S.Y.; Zhou,Y.Y.;Deng,M.G.;Liu,Y.;Zhou,X.Chem.Eur.J.2011, 17(32),8890.

    (4)Aviv,I.;Gross,Z.Chem.Commun.2007,1987 and references therein.

    (5)Liu,H.Y.;Yam,F.;Xie,Y.T.;Li,X.Y.;Chang,C.K.J.Am. Chem.Soc.2009,131,12890.

    (6) Flamigni,L.;Gryko,D.T.Chem.Soc.Rev.2009,38,1635.

    (7) Botoshansky,M.;Palmer,J.H.;Durrell,A.C.;Gray,H.B.; Gross,Z.J.Am.Chem.Soc.2011,133(33),12899.

    (8)Tasior,M.;Gryko,D.T.;Cembor,M.;Jaworski,J.S.;Venturac B.;Flamigni,L.New J.Chem.2007,31,247.

    (9) Tasior,M.;Gryko,D.T.;Shen,J.;Kadish,K.M.;Becherer,T.; Venturac,B.;Flamigni,L.J.Phys.Chem.C 2008,112,19699.

    (10) He,C.L.;Ren,F.L.;Zhang,X.B.;Han,Z.X.Talanta 2006, 70,364.

    (11) Ghosh,A.;Jynge,K.Chem.Eur.J.1997,3,823.

    (12) Simkhovich,L.;Goldberg,I.;Gross,Z.J.Inorg.Biochem. 2000,80(3-4),235.

    (13)Bendix,J.;Dmochowski,I.J.;Gray,H.B.;Mahammed,A.; Simkhovich,L.;Gross,Z.Angew.Chem.Int.Edit.2000,39 (22),4048.

    (14)Liu,X.;Mahammed,A.;Tripathy,U.;Gross,Z.;Steer,R.P. Chem.Phys.Lett.2008,459(1-6),113.

    (15) Saltsman,I.;Mahammed,A.;Goldberg,I.;Tkachenko,E.; Botoshansky,M.;Gross,Z.J.Am.Chem.Soc.2002,124(25), 7411.

    (16) Sorasaenee,K.;Taqavi,P.;Henling,L.M.;Gray,H.B.; Tkachenko,E.;Mahammed,A.;Gross,Z.J.Porphyr. Phthalocyanines 2007,11(3-4),189.

    (17) Mahammed,A.;Gray,H.B.;Weaver,J.J.;Sorasaenee,K.; Gross,Z.Bioconjugate Chem.2004,15(4),738.

    (18)Agadjanian,H.;Ma,J.;Rentsendorj,A.;Valluripalli,V.;Hwang, J.Y.;Mahammed,A.;Farkas,D.L.;Gray,H.B.;Gross,Z.; Medina-Kauwe,L.K.Proc.Nat.Acad.Sci.U.S.A.2009,106 (15),6105.

    (19) Motohashi,N.AntitumorActivities of Phenothiaiznes.In Phenothiazines and 1,4-Benzothiazines,Chemical and Biological Aspects,Bioactive Molecules;Gupta,R.R.Ed.; Elsevier:Amsterdam,1988;Vol.4,pp 705-770.

    (20) Viola,G.;Dall?Acqua,F.Current Drug Targets 2006,7,1135.

    (21)Shi,L.;Liu,H.Y.;Peng,K.M.;Wang,X.L.;You,L.L.;Zhang, L.;Wang,H.;Ji,L.N.;Jiang,H.F.Tetrahedron Lett.2010,51, 3439.

    (22) Adler,A.D.;Longo,F.R.;Finarelli,J.D.;Goldmacher,J.; Assour,J.;Korsakoff,L.J.Org.Chem.1967,32(2),476.

    (23)Ghosh,A.;Wondimagegn,T.;Parusel,A.B.J.J.Am.Chem. Soc.2000,122,5100.

    (24)Peng,K.M.;Shao,W.L.;Wang,H.H.;Ying,X.;Wang,H.;Ji, L.N.;Liu,H.Y.Acta Phys.-Chim.Sin.2011,27,199.[彭開美,邵文莉,汪華華,應 曉,王 惠,計亮年,劉海洋.物理化學學報,2011,27,199.]

    (25) Gross,Z.;Galili,N.;Simkhovich,L.;Saltsman,I.;Botoshansky, M.;Bl?ser,D.;Boese,R.;Goldberg,I.Org.Lett.1999,1,599.

    (26)Kowalska,D.;Liu,X.;Tripathy,U.;Mahammed,A.;Gross,Z.; Hirayama,S.;Steer,R.P.Inorg.Chem.2009,48(6),2670.

    October 13,2011;Revised:November 21,2011;Published on Web:November 29,2011.

    Synthesis,Fluorescence and DNA Photocleavage Activity of Phenothiazine-Corrole Gallium(III)Complexes

    SHI Lei1,2,*JIANG Huan-Feng2YIN Wei1WANG Hua-Hua2WANG Hui3ZHANG Lei2JI Liang-Nian3LIU Hai-Yang2,*
    (1Department of Chemistry,Guangdong University of Education,Guangzhou 510303,P.R.China;2School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,P.R.China;3State Key Laboratory of Optoelectronics Materials and Technologies,Sun Yat-Sen University,Guangzhou 510275,P.R.China)

    Phenothiazine(PTZ)-corrole dyads 1-3 and their gallium(III)complexes 4-6 have been synthesized and characterized.The steady-state absorption and emission spectra and the time-resolved fluorescence decay profiles have been measured in toluene.The radiative and nonradiative rate constants have been obtained from the fluorescence quantum yields and monoexponential fluorescence lifetimes. The absorption spectra revealed that the gallium(III)corrole dyads exhibit stronger Soret bands and Q bands than free base corrole dyads.The fluorescence quantum yields of 1-3 are 0.156,0.134,and 0.139, and the radiative rate constants are 4.02×107,3.47×107,and 2.89×107s-1,respectively.The fluorescence quantum yields of 4-6 are 0.502,0.443,and 0.494,and the radiative rate constants are 20.9×107,16.78× 107,and 21.11×107s-1,which are obviously higher than those of the corresponding free base corroles.The lifetimes of 4-6 are 2.40,2.64,and 2.34 ns,respectively,which are somewhat shorter than those of the corresponding free base corroles.Agarose gel electrophoresis shows that these gallium(III)corrole dyads could cleave supercoiled DNA(form I)to give nicked-circular DNA(form II)under irradiation.

    Corrole;Phenothiazine;Gallium(III);Fluorescence;DNA

    10.3866/PKU.WHXB201111291www.whxb.pku.edu.cn

    *Corresponding authors.SHI Lei,Email:shil@gdei.edu.cn;Tel:+86-20-34113254.LIU Hai-Yang,Email:chhyliu@scut.edu.cn; Tel:+86-20-22236805.

    The project was supported by the National Natural Science Foundation of China(20971046,21171057,61178037,11004256),Natural Science Foundation of Guangdong Province,China(10351064101000000),Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-Sen University),China,andAppropriative Researching Fund for Professors and Doctors,Guangdong University of Education,China(10ARF14).

    國家自然科學基金(20971046,21171057,61178037,11004256),廣東省自然科學基金(10351064101000000),光電材料與技術國家重點實驗室(中山大學)開放基金及廣東第二師范學院教授博士科研專項經(jīng)費研究項目(10ARF14)資助

    O644

    猜你喜歡
    華華量子產(chǎn)率噻嗪
    激發(fā)波長和溶液濃度對羅丹明6G絕對量子產(chǎn)率的影響
    積分球測量熒光量子產(chǎn)率的最優(yōu)測試條件研究
    中國測試(2021年10期)2021-11-12 02:11:10
    氫氯噻嗪聯(lián)合替米沙坦用于高血壓治療的有效性分析
    木星
    太空探索(2021年3期)2021-03-19 09:13:56
    厄貝沙坦氫氯噻嗪片在高血壓臨床治療中的應用及不良反應狀況
    狐貍華華組隊記
    國產(chǎn)絕對熒光量子產(chǎn)率測量系統(tǒng)的研制
    光學儀器(2020年3期)2020-07-10 04:04:42
    狐貍華華“分兔”記
    地球的大氣層
    太空探索(2020年2期)2020-03-09 02:15:38
    高熒光量子產(chǎn)率BODIPY衍生物的熒光性能研究
    久久久久久久久中文| 亚洲欧美日韩无卡精品| .国产精品久久| 高清午夜精品一区二区三区 | 久久午夜福利片| 欧美成人a在线观看| 97热精品久久久久久| 永久网站在线| 内射极品少妇av片p| 国产探花极品一区二区| www.av在线官网国产| h日本视频在线播放| 亚洲人成网站在线播放欧美日韩| 国产极品精品免费视频能看的| 悠悠久久av| 2022亚洲国产成人精品| 久久国产乱子免费精品| 3wmmmm亚洲av在线观看| 99久久精品热视频| 亚洲一级一片aⅴ在线观看| 丰满的人妻完整版| 丰满的人妻完整版| 九色成人免费人妻av| 成人漫画全彩无遮挡| 欧美zozozo另类| 给我免费播放毛片高清在线观看| 非洲黑人性xxxx精品又粗又长| 国产视频内射| 晚上一个人看的免费电影| 尤物成人国产欧美一区二区三区| 精品久久久久久久久久久久久| 国产色婷婷99| 久久精品国产亚洲av涩爱 | 亚洲精品粉嫩美女一区| 最近视频中文字幕2019在线8| 中文字幕熟女人妻在线| 91在线精品国自产拍蜜月| 亚洲七黄色美女视频| 亚洲欧美清纯卡通| 麻豆国产av国片精品| 久久久色成人| 亚洲精品国产av成人精品| 插阴视频在线观看视频| 国产av不卡久久| 国产精品三级大全| 我要搜黄色片| 在线观看午夜福利视频| 99久国产av精品国产电影| 成人性生交大片免费视频hd| 久久精品夜色国产| 免费看日本二区| 亚洲欧美精品综合久久99| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品国产精品| 老师上课跳d突然被开到最大视频| 色5月婷婷丁香| 高清午夜精品一区二区三区 | av女优亚洲男人天堂| 午夜爱爱视频在线播放| 久久久国产成人精品二区| 国产乱人偷精品视频| 精品久久久久久久人妻蜜臀av| 人妻制服诱惑在线中文字幕| 在线a可以看的网站| 你懂的网址亚洲精品在线观看 | 国产极品天堂在线| 黄片wwwwww| 91麻豆精品激情在线观看国产| 亚洲自偷自拍三级| 狂野欧美激情性xxxx在线观看| 日日干狠狠操夜夜爽| 亚洲va在线va天堂va国产| 久久九九热精品免费| 1024手机看黄色片| 精品人妻熟女av久视频| 久久人人爽人人片av| 夜夜夜夜夜久久久久| 亚洲一区高清亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕制服av| 老女人水多毛片| 97超碰精品成人国产| 国产免费男女视频| 中文亚洲av片在线观看爽| 国产极品精品免费视频能看的| 久久精品人妻少妇| 12—13女人毛片做爰片一| 国产三级中文精品| eeuss影院久久| 亚洲av免费在线观看| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 久久久色成人| 如何舔出高潮| 亚洲人成网站高清观看| 亚洲性久久影院| 日本成人三级电影网站| 久久人人精品亚洲av| 国产精品,欧美在线| 国产黄片视频在线免费观看| 亚洲高清免费不卡视频| 一进一出抽搐动态| 久久精品国产亚洲av天美| 国产在线男女| h日本视频在线播放| 国产乱人视频| 久久精品国产亚洲av香蕉五月| 亚洲欧洲日产国产| 性插视频无遮挡在线免费观看| 精品无人区乱码1区二区| 国产av一区在线观看免费| 在线观看免费视频日本深夜| 男人舔奶头视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产 一区精品| 中文精品一卡2卡3卡4更新| 长腿黑丝高跟| 精品免费久久久久久久清纯| 午夜老司机福利剧场| 久久精品夜色国产| 久久久a久久爽久久v久久| 日韩成人伦理影院| 国产高清不卡午夜福利| 波多野结衣高清无吗| 午夜a级毛片| 国产成人精品婷婷| av在线天堂中文字幕| 毛片一级片免费看久久久久| 亚洲四区av| 可以在线观看的亚洲视频| 女的被弄到高潮叫床怎么办| 国产 一区 欧美 日韩| 午夜免费男女啪啪视频观看| 国语自产精品视频在线第100页| 亚洲真实伦在线观看| 久久99热这里只有精品18| 亚洲av一区综合| 乱系列少妇在线播放| 国产亚洲av片在线观看秒播厂 | 久久久久久国产a免费观看| 能在线免费看毛片的网站| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频| 亚洲av二区三区四区| 自拍偷自拍亚洲精品老妇| 亚洲熟妇中文字幕五十中出| 91在线精品国自产拍蜜月| 国产中年淑女户外野战色| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av| 日本与韩国留学比较| 床上黄色一级片| 亚洲欧美清纯卡通| 精品日产1卡2卡| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 亚洲成人精品中文字幕电影| 亚洲内射少妇av| 97热精品久久久久久| 99久国产av精品| 欧美变态另类bdsm刘玥| 久久精品91蜜桃| 久久精品国产自在天天线| a级毛片a级免费在线| 亚洲精品久久国产高清桃花| 99热6这里只有精品| 日韩欧美国产在线观看| 国产精品人妻久久久久久| 日韩国内少妇激情av| 亚洲国产高清在线一区二区三| av天堂在线播放| 天堂√8在线中文| 插阴视频在线观看视频| 亚洲av不卡在线观看| 免费一级毛片在线播放高清视频| 波野结衣二区三区在线| 久久久午夜欧美精品| 精品午夜福利在线看| 一本久久精品| 亚洲av不卡在线观看| av专区在线播放| .国产精品久久| 亚洲成人中文字幕在线播放| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 精品一区二区三区视频在线| 国内久久婷婷六月综合欲色啪| 人妻制服诱惑在线中文字幕| 人人妻人人澡欧美一区二区| 麻豆国产97在线/欧美| 日韩欧美精品免费久久| 中文字幕免费在线视频6| 久久久久久久久久成人| 亚洲精品日韩在线中文字幕 | 日韩视频在线欧美| 你懂的网址亚洲精品在线观看 | 有码 亚洲区| 久久午夜亚洲精品久久| 国产大屁股一区二区在线视频| 欧美不卡视频在线免费观看| 亚洲精品日韩av片在线观看| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区 | 国产极品天堂在线| 淫秽高清视频在线观看| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 国产成人影院久久av| 在线播放国产精品三级| av福利片在线观看| 美女国产视频在线观看| 丝袜美腿在线中文| 午夜精品国产一区二区电影 | 26uuu在线亚洲综合色| 国产精品三级大全| 国产日本99.免费观看| 欧美+日韩+精品| 亚洲欧洲国产日韩| 男人的好看免费观看在线视频| 免费观看在线日韩| 美女国产视频在线观看| 最近手机中文字幕大全| 久久久a久久爽久久v久久| ponron亚洲| 狠狠狠狠99中文字幕| 久久精品国产鲁丝片午夜精品| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 亚洲图色成人| ponron亚洲| 亚洲av熟女| 精品久久久久久久久久久久久| 在线观看av片永久免费下载| 一级二级三级毛片免费看| 国产久久久一区二区三区| 成人亚洲欧美一区二区av| 哪里可以看免费的av片| 久久久久性生活片| 大香蕉久久网| av免费在线看不卡| 麻豆成人午夜福利视频| 亚洲无线观看免费| 国产精品久久久久久精品电影| 日本av手机在线免费观看| 蜜桃亚洲精品一区二区三区| 国产免费男女视频| 草草在线视频免费看| 久久久国产成人免费| 欧美日韩国产亚洲二区| www.色视频.com| 久久午夜福利片| 免费人成在线观看视频色| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 午夜免费激情av| 色哟哟·www| 禁无遮挡网站| 亚洲三级黄色毛片| 欧美精品一区二区大全| 日日撸夜夜添| 天天躁日日操中文字幕| 内地一区二区视频在线| 在线a可以看的网站| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 人妻久久中文字幕网| 国产精品国产高清国产av| 亚洲欧美日韩无卡精品| 亚洲最大成人av| 日本撒尿小便嘘嘘汇集6| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 美女大奶头视频| 久久6这里有精品| 又爽又黄a免费视频| 色哟哟哟哟哟哟| 九九热线精品视视频播放| 亚洲一区高清亚洲精品| 岛国毛片在线播放| 国产精品,欧美在线| 亚洲欧美中文字幕日韩二区| 中文字幕av在线有码专区| 日本-黄色视频高清免费观看| 国产一区二区激情短视频| 青春草国产在线视频 | 久久精品91蜜桃| 久久久久久大精品| 麻豆av噜噜一区二区三区| 国产毛片a区久久久久| 亚洲av男天堂| 久久久色成人| 亚洲人成网站在线观看播放| 久久人人精品亚洲av| 国产精品久久久久久av不卡| av在线老鸭窝| 欧美+亚洲+日韩+国产| 国产精品三级大全| 啦啦啦啦在线视频资源| 黄色一级大片看看| 丰满的人妻完整版| 国产精品久久久久久精品电影小说 | 美女脱内裤让男人舔精品视频 | 99久久精品国产国产毛片| 国产精品麻豆人妻色哟哟久久 | 亚洲av电影不卡..在线观看| 国产精品一区二区在线观看99 | 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 高清毛片免费看| 麻豆久久精品国产亚洲av| 成年女人永久免费观看视频| 成人av在线播放网站| 亚洲,欧美,日韩| 99久久精品热视频| 毛片女人毛片| 国产日韩欧美在线精品| 男的添女的下面高潮视频| 国产一区二区三区在线臀色熟女| 午夜激情福利司机影院| 国产探花极品一区二区| 国产精品一及| 麻豆成人午夜福利视频| 91狼人影院| 日韩欧美一区二区三区在线观看| 久久久久网色| 久久久欧美国产精品| 26uuu在线亚洲综合色| 久久国内精品自在自线图片| 国产欧美日韩精品一区二区| 深夜a级毛片| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 男的添女的下面高潮视频| 亚洲av一区综合| 亚洲国产精品国产精品| 久久热精品热| 偷拍熟女少妇极品色| 美女高潮的动态| 久久鲁丝午夜福利片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产美女午夜福利| 人人妻人人看人人澡| 国产一区二区三区av在线 | 黄色配什么色好看| 日韩欧美一区二区三区在线观看| 春色校园在线视频观看| 天堂网av新在线| 神马国产精品三级电影在线观看| 亚洲七黄色美女视频| 国产久久久一区二区三区| 人体艺术视频欧美日本| 男女边吃奶边做爰视频| 蜜桃亚洲精品一区二区三区| 国产毛片a区久久久久| 久久久久久伊人网av| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 18禁黄网站禁片免费观看直播| 久久九九热精品免费| 人人妻人人看人人澡| av国产免费在线观看| 男人的好看免费观看在线视频| 亚洲成av人片在线播放无| 爱豆传媒免费全集在线观看| 国产视频内射| 国产精品一区二区在线观看99 | 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 亚洲七黄色美女视频| 大又大粗又爽又黄少妇毛片口| 18禁黄网站禁片免费观看直播| 男人和女人高潮做爰伦理| 两性午夜刺激爽爽歪歪视频在线观看| 深夜精品福利| 成人鲁丝片一二三区免费| 午夜福利在线观看免费完整高清在 | 国产精品美女特级片免费视频播放器| 看免费成人av毛片| 国产高清视频在线观看网站| 蜜桃亚洲精品一区二区三区| 麻豆久久精品国产亚洲av| 丝袜美腿在线中文| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 一级黄片播放器| 国产熟女欧美一区二区| 国产精品女同一区二区软件| 国产高清三级在线| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 国产精品乱码一区二三区的特点| 波多野结衣高清作品| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 国产精品伦人一区二区| 欧美精品一区二区大全| 亚洲av一区综合| 成人综合一区亚洲| 日韩中字成人| 亚洲国产色片| 人体艺术视频欧美日本| 一级二级三级毛片免费看| 久久久久久久亚洲中文字幕| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 国产毛片a区久久久久| 一级毛片电影观看 | 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验 | 国内久久婷婷六月综合欲色啪| av天堂在线播放| 欧美xxxx黑人xx丫x性爽| 麻豆成人av视频| 亚洲精品粉嫩美女一区| 99久久成人亚洲精品观看| 亚洲精品日韩av片在线观看| 欧美色欧美亚洲另类二区| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 亚洲中文字幕日韩| 卡戴珊不雅视频在线播放| 大香蕉久久网| 精品免费久久久久久久清纯| 久久久久久久久久成人| 一级二级三级毛片免费看| 真实男女啪啪啪动态图| 国产不卡一卡二| 极品教师在线视频| 久久人人精品亚洲av| 午夜激情福利司机影院| 悠悠久久av| 亚洲va在线va天堂va国产| 国产精品乱码一区二三区的特点| 综合色av麻豆| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 免费看日本二区| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 嫩草影院新地址| 亚洲国产日韩欧美精品在线观看| 国产av不卡久久| 久久人妻av系列| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| 只有这里有精品99| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 日本一二三区视频观看| 欧美最新免费一区二区三区| 最好的美女福利视频网| 国产中年淑女户外野战色| av国产免费在线观看| 99久久成人亚洲精品观看| 国产av不卡久久| 久久久久免费精品人妻一区二区| 18禁在线无遮挡免费观看视频| 国产极品精品免费视频能看的| 三级毛片av免费| 我的老师免费观看完整版| 禁无遮挡网站| 女同久久另类99精品国产91| 国产精品女同一区二区软件| 国产在线男女| 波多野结衣高清作品| 亚洲不卡免费看| 免费观看a级毛片全部| 久久精品国产亚洲网站| 日韩一本色道免费dvd| 能在线免费观看的黄片| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| av福利片在线观看| 好男人视频免费观看在线| 看十八女毛片水多多多| 91久久精品国产一区二区成人| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| 伦精品一区二区三区| 国产淫片久久久久久久久| 国内精品美女久久久久久| 给我免费播放毛片高清在线观看| 亚洲人成网站在线播放欧美日韩| av卡一久久| 免费无遮挡裸体视频| 最近中文字幕高清免费大全6| 少妇的逼水好多| 亚洲精品国产成人久久av| www.av在线官网国产| 99久国产av精品国产电影| 国产精品福利在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 国国产精品蜜臀av免费| 久久久久国产网址| 亚洲欧美日韩高清专用| 哪个播放器可以免费观看大片| 国产高清三级在线| 我要搜黄色片| 欧美日韩一区二区视频在线观看视频在线 | 成年av动漫网址| 长腿黑丝高跟| 国内精品一区二区在线观看| 好男人在线观看高清免费视频| 自拍偷自拍亚洲精品老妇| 亚洲国产精品国产精品| 日韩强制内射视频| 女同久久另类99精品国产91| 麻豆乱淫一区二区| 91麻豆精品激情在线观看国产| 在线国产一区二区在线| videossex国产| 男女啪啪激烈高潮av片| 亚洲人成网站在线播| 亚洲内射少妇av| 岛国毛片在线播放| 久99久视频精品免费| 黄片wwwwww| 一级毛片aaaaaa免费看小| 99国产精品一区二区蜜桃av| 欧美精品一区二区大全| 99热这里只有精品一区| 久久久久久久午夜电影| 亚洲经典国产精华液单| 99热6这里只有精品| 色综合亚洲欧美另类图片| 看片在线看免费视频| 毛片一级片免费看久久久久| 亚洲精品自拍成人| av黄色大香蕉| av在线天堂中文字幕| 在线天堂最新版资源| 麻豆av噜噜一区二区三区| 在线免费观看的www视频| 中文资源天堂在线| 99久久精品国产国产毛片| 精品人妻视频免费看| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 一区二区三区高清视频在线| 精品日产1卡2卡| 国产精品三级大全| av福利片在线观看| 桃色一区二区三区在线观看| av免费在线看不卡| 久久精品国产亚洲av涩爱 | 深夜a级毛片| 午夜精品一区二区三区免费看| 日日干狠狠操夜夜爽| 成人毛片a级毛片在线播放| 成年av动漫网址| 欧美性猛交黑人性爽| 在线观看66精品国产| 国产精品一二三区在线看| 97超视频在线观看视频| 亚洲在久久综合| av女优亚洲男人天堂| 精品国产三级普通话版| 免费av观看视频| 国产精华一区二区三区| 美女大奶头视频| 成人一区二区视频在线观看| 嫩草影院入口| 日本与韩国留学比较| 国内精品久久久久精免费| 丝袜美腿在线中文| 神马国产精品三级电影在线观看| 老女人水多毛片| а√天堂www在线а√下载| 欧美一区二区精品小视频在线| 日本在线视频免费播放| 亚洲精品国产成人久久av| 日韩国内少妇激情av| 一边摸一边抽搐一进一小说| 亚洲精品日韩在线中文字幕 | 麻豆国产97在线/欧美| 国产午夜精品论理片| 六月丁香七月| 亚洲精品久久久久久婷婷小说 | 亚洲性久久影院| 久久久久网色| 久久久成人免费电影| 国产亚洲精品av在线| 男人和女人高潮做爰伦理| 一区福利在线观看| 亚洲国产日韩欧美精品在线观看| 男人和女人高潮做爰伦理| 一区福利在线观看| 国产精品不卡视频一区二区| 午夜精品在线福利| 国产精品av视频在线免费观看| av在线亚洲专区| 欧美色视频一区免费| 99久久精品热视频| 亚洲在久久综合| 欧美xxxx性猛交bbbb| 99热只有精品国产| 欧美激情久久久久久爽电影| 99热全是精品| 中文精品一卡2卡3卡4更新| 国产精品一区二区在线观看99 | 亚洲国产精品成人综合色| 国产三级中文精品| 久久久久久久亚洲中文字幕| 免费人成视频x8x8入口观看| 国产三级在线视频| 啦啦啦韩国在线观看视频|