• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米粒子/共聚物混合體系結(jié)構(gòu)的Monte Carlo模擬

    2012-12-05 02:27:50劉觀峰黃建花
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:體系結(jié)構(gòu)珠子共聚物

    劉觀峰 黃建花

    (浙江理工大學(xué)化學(xué)系,杭州310018)

    納米粒子/共聚物混合體系結(jié)構(gòu)的Monte Carlo模擬

    劉觀峰 黃建花*

    (浙江理工大學(xué)化學(xué)系,杭州310018)

    基于簡立方格點(diǎn)模型,對納米粒子/共聚物混合體系進(jìn)行了動(dòng)力學(xué)Monte Carlo模擬研究.每一共聚物鏈均由一個(gè)A珠子和三個(gè)B珠子組成,表示為A1B3.A1B3鏈的兩親性體現(xiàn)為B-B之間的相互吸引作用,同時(shí)憎水性的納米粒子之間也存在相互吸引.通過適當(dāng)選取納米粒子與B珠子之間的吸引作用勢,觀察到兩種結(jié)構(gòu):納米粒子/A1B3鏈的核-殼結(jié)構(gòu)和納米粒子分散在憎水殼層中的A1B3囊泡結(jié)構(gòu).還研究了這兩種結(jié)構(gòu)的動(dòng)力學(xué)演化過程,模擬結(jié)果表明在納米粒子分散于囊泡殼層的過程中A1B3囊泡起模板作用.

    動(dòng)力學(xué)Monte Carlo模擬;共聚物;納米粒子;囊泡

    1 Introduction

    Amphiphilic block copolymers in aqueous solution are known to self-assemble into a variety of supermolecular structures such as micelles,vesicles,cylinders,and lamellae.Vesicles are of special interest since they are important model systems for biological cells and show potential applications in many areas such as microreactors,microcapsules,and drug delivery systems.1-5They have been successfully used as templates for preparing inorganic hollow spheres.For instance,silica hollow spheres were obtained by adding silicon alkoxide to an aqueous solution of amphiphiles,such as cationic,catanionic,or mixed surfactant vesicles,followed by hydrolysis and polycondensation,or a fast silicification.6-9Sub-micrometer hollow metallic spheres of Ni-P alloy were produced by the chemical reduction over anionic surfactant vesicle templates.10

    Encapsulation of hydrophobic nanoparticles,such as hydrophobic Au and CdSe nanoparticles,into the vesicle shell through hydrophobic interactions has been achieved.11,12Be-sides,amphiphilic copolymers can form micelle and hydrophobic nanoparticles can thus be loaded into the micelle to form a core-shell structure.13It can improve the stability and surface chemistry of the nanoparticle core and access unique physical properties that are not possible for nanomaterial alone.14,15

    Drug delivery is mainly based on successful encapsulation of drugs with different solubility parameters.Two hydrophobic model materials,fluorescent Dye Nile Red representing the molecular size regime and fluorescent quantum dots representing the nano size regime,were successfully encapsulated into the hydrophobic shell of poly(butadiene)-b-poly(ethylene oxide)vesicles.And the quantum dots were observed to be centered inside the double layer of the vesicle shell.16The comblike poly(ethylene glycol)(CPEG)-g-cholesterol vesicle and the cross-linked vesicle of CPEG and CPEG-g-cholesterol were found to be able to entrap considerably hydrophobic doxorubicin(a general anti-cancer drug)in the shell,which showed a great potential as a cargo of the hydrophobic drug.17

    Computer simulations play important roles in understanding the formation mechanism of block copolymer vesicle.18-22The phase behavior of nanoparticle/block copolymer mixed system as well as the distribution of nanoparticles in the microdomain of lamellar copolymers have been simulated.23-28The nanoparticle volume fraction,size,and the interaction strength between nanoparticle and copolymer were found to strongly affect the phase behavior of the mixed system.However,we learn little from simulations about the loading process of nanoparticles into vesicles.

    In the present work,we studied the phase behavior of nanoparticle/copolymer vesicle mixed system using dynamic Monte Carlo simulation.Hydrophobic nanoparticles were added into the solution containing a single copolymer vesicle.By changing the interaction between nanoparticle and copolymer chain,two structures,nanoparticle/copolymer core-shell structure and copolymer vesicle with nanoparticles dispersed in the shell,were observed.Their formation processes were investigated in detail.

    2 Model and simulation method

    Simulations were carried out in a simulation box with size 40×40×40 buried in the simple cubic(SC)lattice.The unit of length in this paper was one lattice size of the SC lattice.Periodic boundary conditions were used in all the three dimensions.Each nanoparticle consisted of one single bead(n),and a diblock copolymer A1B3chain was composed of one hydrophilic bead(A)and three hydrophobic beads(B).Self-avoiding was considered,that is,each bead occupied one lattice site and every lattice site could not be simultaneously occupied by more than one bead.The void lattice sites were considered as solvents(S).For polymer chains,the bond length between sequentially linked beads ranged from 1 to 3on the SC lattice, which was originally proposed by Carmesin and Kremer29.The bond between successive beads along a chain was taken from 26 allowed bond vectors obtained from symmetry operations on the set of{(1,0,0),(1,1,0),(1,1,1)}.In this bond-fluctuation model,the beads did not correspond to specific atoms in a polymer chain but rather to small groups of atoms,and the bonds did not represent specific covalent bonds between two atoms but the linkages between beads instead.

    Pairwise nearest-neighbor and next nearest-neighbor interactions with the same strength were considered.The amphiphilic property of A1B3chain was represented by interaction energy εBB=-1 for B-B pair and εAA=εAB=0 for A-A and A-B pairs.This model had been successfully used to study the self-assembly behavior of block copolymer in solution.30,31The choice of these effective pairwise interactions implies a generally accepted assumption that the hydrophobic interaction should be much stronger than other attractive forces between amphiphile beads.32The hydrophobic property of nanoparticles was represented by an attractive interaction between nanoparticles (εnn=-1.5),thus they precipitated from the solution in the absence of copolymers.The interaction for solvent-solvent pair was set as εSS=0,which served as a background.Nanoparticles had an affinity toward B-block.So an attraction εnBbetween nanoparticle and B bead was introduced to investigate the mixture of A1B3vesicle and naoparticles.Other interactions,including εAS,εBS,εnS,and εnA,were fixed to be zero.Similar interaction model was used in the simulation of thermodynamic behavior of particle/diblock copolymer mixtures.33The system temperature was fixed at kBT=1.25 in which kBis the Boltzmann constant.Only εnBwas variable in the simulation.

    The volume fraction of A1B3chains,φp,and that of nanoparticles,φn,were defined as φp=4Np/V and φn=Nn/V,respectively. Here V was the total sites of the simulation box,Npwas the number of A1B3chains,and Nnwas the number of nanoparticles.The dynamic simulation was achieved by randomly choosing one bead and randomly moving to one of its six nearest neighbor sites.This trial move was accepted if the following conditions were satisfied:(1)the self-avoidance was obeyed, which meant that it could only exchange with a vacancy;and (2)the Boltzmann factor exp(-ΔE/kBT)was greater than a random number uniformly distributed in the interval(0,1),where ΔE was the change in energy due to the trial move.The second criterion,i.e.,the Metropolis criterion,ensured that the system obeyed Boltzmann statistics.For A1B3chain,two additional conditions should be satisfied:(1)the new bond vector still belonged to the allowed bond set;and(2)two bonds did not intersect.Each trial move is called a bead cycle,one Monte Carlo step(MCS)consists of(4Np+Nn)bead cycles.

    In the present work,we studied the mixed system containing 7%A1B3chains and 3%hydrophobic nanoparticles.Due to the attraction between B-B beads,A1B3chains self-assembled into vesicles at the volume fraction of A1B3in the range of 4%-15%,22as that used in other simulations.30This was one reason why we chose A1B3in this work.This diblock copolymer A1B3mimics poly(styrene)-b-poly(acrylic acid)(PS-b-PAA)used in experiments.3The size of one bead was taken as the Kuhn length of polyacrylic acid,which is about 1.5 nm or approximately the length of 6 monomers.34The effect of the attraction εnBbetween nanoparticle and B bead on the structure of mixed system was studied from the same start situation.Simulations were carried out as follows:A1B3chains were first randomly put into the system and one single vesicle was formed after a long time of movement.Then nanoparticles were randomly added into the A1B3vesicle system.The simulation time was set as t=0 MCS at this moment.In addition,the attraction εnBbetween nanoparticle and B bead was taken into account. We found different kinds of complex structures by varying the attraction value of εnB,and discussed the mechanism for forming different structures.

    3 Results and discussion

    Fig.1(a)presents A1B3vesicle formed at φp=7%.It is fabricated by two layers of A1B3chains with A bead locating at the inner and outer surfaces to prevent the contact between B bead and solvent.The vesicular core is filled with solvent.The shell thickness is about 5,while hydrophobic nanoparticles aggregate into a compact sphere to avoid solvent contact.Fig.1(b) presents the compact sphere aggregated at φn=3%in the absence of block copolymer.The radius of sphere is about 8.

    3.1 Structures of nanoparticle/A1B3chain system

    The structures of A1B3vesicle and hydrophobic nanoparticles mixed system were studied by varying εnBvalues.Fig.2 shows the final structures formed at different εnBvalues.We first consider a limit case that the attraction between nanoparticle and B bead is weak.In this case,nanoparticles assemble into a compact aggregate without any contacts with the vesicle. It is formed by fusion of small aggregates as we previously reported.35Fig.2(a)shows the final structure of the system at εnB=-0.5.Because the attraction εnB(-0.5)is weak,it cannot overcome the attractions between nanopaticles and that between B-B beads.ThusA1B3vesicle remains unchanged.

    Fig.1 (a)Vesicle formed byA1B3chains at φp=7%with εBB=-1, (b)aggregate formed in pure nanoparticle/solvent system at φn=3%with εnn=-1.5Blue and red beads representAand B beads ofA1B3chain,respectively,and green ones represent nanoparticles.The same symbols are used in the remaining figures.

    Fig.2 Five structures formed with different εnBvaluesεnB:(a)-0.5,(b)-0.6,(c)-0.9,(d)-1.2,(e)-1.6

    Turning to the other limit case with εnBclose to or beyond εnn=-1.5,we find that nanoparticles fully enter into the shell of A1B3vesicle as shown in Fig.2(e)at εnB=-1.6.This structure is consistent with experimental observation.11,12,16Therefore one may obtain a hollow sphere after removing copolymers.6-8In this case,nanoparticles can either disperse into the vesicle shell or aggregate into a sphere in the view of energy.However,dispersion into the shell gets more contacts between nanoparticle and B bead,thus leading to the decrease of the system energy.

    Three other kinds of structures are formed at moderate εnB=-0.6,-0.9,-1.2.At εnB=-0.6,though nanoparticles still assemble into a compact aggregate,there are a number of contacts between nanoparticle and B bead.Such contacts break the vesicle as shown in Fig.2(b).When εnBis close to εBB,B beads like to contact with nanoparticles as well as with themselves. Since εnnis more negative than both εnBand εBB,nanoparticles still assemble into a compact aggregate.In this case,the nanoparticle aggregate is fully enveloped by A1B3chains, which prevents the contact between nanoparticle and solvent and lowers the system energy.A perfect core-shell structure is presented in Fig.2(c)at εnB=-0.9.With a further increase of the attraction between nanoparticle and B bead to the case|εBB|<|εnB|<|εnn|,B bead favors to contact with nanoparticle,but nanoparticles still favor to aggregate with themselves.Thus it is observed that nanoparticles are not well dispersed but aggregate together irregularly in the vesicle shell,as shown in Fig.2 (d)with εnB=-1.2.The irregular aggregate has a large surface to balance the n-B interaction and n-n interaction.In all these three structures,nanoparticles always aggregate together with themselves since the attraction strength|εnB|is smaller than|εnn|.

    It is clear that the final structures are dependent on the interactions that we take into account in the system.These structures are controlled by the competition among three attraction strengths εBB,εnn,and εnB.In the present model with εBB=-1 and εnn=-1.5,we observe five structures at different εnBvalues.At small εnBclose to 0,we observe separate nanoparticle aggregate and A1B3vesicle.With the increase of|εnB|,nanoparticle aggre-gate and A1B3irregular aggregate,nanoparticle/A1B3core-shell structure,and A1B3vesicle with nanoparticles aggregate in the shell are observed.And at εnBclose to-2,we observe A1B3vesicle with nanoparticles well-dispersed in the shell.We have also studied the influence of the nanoparticle volume fraction φnon the structure of nanoparticle/A1B3vesicle system.For the case φp=7%,all the five structures can be formed at φn<10%, and the boundaries between different structures are roughly independent of φn.

    Among these five structures,we find that the core-shell structure and nanoparticle-dispersed vesicle are of most interesting.These two structures are widely observed and discussed in experiments,since they are of great potential to carry drug, magnetic and optical particles.11-17It will increase the compatibility and stabilization of nanoparticles after being loaded into copolymer superstructures.In the present simulation,the coreshell structure is obtained by adding nanoparticles into a vesicle system,which is different from experiment where nanoparticles were added into a micellar system.13The evolutions of core-shell structure and nanoparticle-dispersed vesicle are studied in the following.

    3.2 Evolution of nanoparticle/A1B3complex structures

    We first investigated the evolution of core-shell structure at εnB=-0.9 shown in Fig.2(c).Fig.3 presents the snapshots captured at different periods.Due to the attraction between nanoparticles,they quickly assemble into small aggregates upon addition into A1B3vesicle system.Because of the attraction between nanoparticle and B bead,some nanoparticle aggregates contact with the vesicle,as shown in Fig.3(a)captured at t=0.1×106MCS.Then nanoparticle aggregates become larger with the time going,while the vesicle becomes smaller because more and more A1B3chains are adsorbed onto nanoparticle aggregates(see Fig.3(b-e)).At t=8×106MCS,A1B3vesicle disappears and all A1B3chains envelop around one big nanoparticle aggregate,forming a perfect nanoparticle/A1B3chain core-shell structure,Fig.3(f)shows the final structure formed at t=9×106MCS.

    Fig.3 Snapshots of the evolution of nanoparticle/A1B3core-shell structures at different time10-6t/MCS:(a)0.1,(b)1,(c)2,(d)4,(e)7,(f)9;εnB=-0.9.To clearly see the core-shell structure,we shift 7 lattices along z direction in(f).

    Fig.4 (a)Evolution of the system energy(E)during the formation of nanoparticle/A1B3core-shell structure,(b)variation of the densities(ρ)ofAbead,B bead,nanoparticle,and solvent with the distance(r)to the mass centerThe snapshots of a-f are presented in Fig.3.

    Fig.5 Snapshots captured at different time10-5t/MCS:(a)0,(b)0.1,(c)1,(d)5;εnB=-1.6

    Fig.4(a)presents the evolution of system energy during the formation of core-shell structure.At early time t<106MCS,the system energy decreases quickly because nanoparticles rapidly form small aggregates followed by the fast growth of aggregates.During a long time interval from 1×106to 6×106MCS, the system energy varies little but the configuration changes obviously.During this period there is a competition between the following two tendencies:(1)The shrink of vesicle causes an increase in energy;while(2)the adsorption of A1B3chains on nanoparticle aggregates decreases the system energy.Their competition leads to the fluctuation of the system energy and the configuration evolution.However,the energy decreases gradually from 6×106MCS,indicating that the second tendency becomes dominating and the vesicle becomes smaller and smaller.At t=8×106MCS,A1B3vesicle disappears and the coreshell structure is formed instead,and the system reaches an equilibrium.

    Fig.6 (a)Time evolution of the system energy E during the formation of nanoparticle-dispersed vesicle,(b)variation of the densities ofA, B beads,nanoparticle,and solvent with the distance(r)to the mass center of vesicleThe snapshots of a-d are presented in Fig.5.

    The core-shell structure is characterized using the density distributions of different components with respect to the mass center,as shown in Fig.4(b).It shows that the core is occupied by nanoparticles within r<8.The core size is comparable to the nanoparticle aggregate formed in the absence of block copolymer(Fig.1(b)).The peaks of A and B beads locate at about 10 and 9,respectively,indicating that A1B3chains form the shell with A bead on outer surface of the core-shell structure.The shell is fabricated by one layer of copolymers.

    We have also investigated the evolution of nanoparticle-dispersed vesicle structure at εnB=-1.6(Fig.2(e)).Snapshots for the loading of nanoparticles in the vesicle shell are shown in Fig.5.Initially,nanoparticles are randomly put into the simulation box(Fig.5(a)).They quickly assemble into small aggregates due to their hydrophobic property.Meanwhile some nanoparticles diffuse into the vesicle shell owing to the attraction between nanoparticle and B bead,see Fig.5(b).Number of nanoparticle aggregates decreases with the time,more and more nanoparticles diffuse into the vesicle shell,as shown in Fig.5(b,c).At time t=1.5×105MCS,all nanoparticles are located in the vesicle shell.Fig.5(d)shows the snapshot captured at t=5×105MCS.This structure remains stable in the following 15×105MCS simulation.During the evolution,the system energy E drops monotonously(Fig.6(a)),indicating the evolution is determinatively controlled by energy.E reaches an equilibrium value at t~1.5×105MCS.Afterwards,the system energy roughly remains constant,indicating that the final structure is stable.

    In order to obtain the detailed information on the final structure,the density distributions of different components with respect to the mass center of the vesicle are plotted in Fig.6(b). The vesicular core is occupied by solvent within r<3.A beads locate at inner and outer surfaces of the vesicle showing two peaks at r~4.5 and~11.5 in the density profile,respectively.B beads form the vesicle shell.The shell thickness is about 7,bigger than that of the initial A1B3vesicle(Fig.1(a)).The peak position of nanoparticle distribution is symmetric with respective to the center of the shell,while the density profile of B beads shows two peaks separated by nanoparticles,suggesting that nanoparticles localize in the center of the vesicle shell.The result is consistent with the experimental report.16

    4 Conclusions

    In this work,the structures of nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulation.The amphiphilic property of A1B3chain is represented by an attraction between hydrophobic B-B beads,while nanoparticle is hydrophobic with attraction among nanoparticles.A1B3chains with εBB=-1 form a vesicle in solution at φp=7%,while nanoparticles with εBB=-1.5 assemble into a compact aggregate at φn=3%.In the simulation,nanoparticles are added into the vesicle solution.By tuning the attraction εnBbetween nanoparticle and B bead,we obtain two interesting structures:nanoparticle/A1B3core-shell structure and A1B3vesicle with nanoparticles dispersed in the shell.They are in agreement with experimental findings.

    The evolutions of these two structures were investigated. The core-shell structure is developed through destroying the vesicle.While for the nanoparticle-dispersed vesicle,A1B3vesicle acts as a template and nanoparticles diffuse into the hydrophobic shell.The formation of the core-shell structure is a very time-consuming process,since it has to overcome an energy barrier to destroy the vesicle.Therefore,it is much slower than nanoparticle-dispersed vesicle.Our simulation provides a new way to load hydrophobic nanoparticles into A1B3micelle through breakingA1B3vesicle.

    (1) Lipowsky,R.Nature 1991,349,475.

    (2)Discher,B.M.;Won,Y.Y.;Ege,D.S.;Lee,J.C.M.;Bates,F. S.;Discher,D.E.;Hammer,D.A.Science 1999,284,1143.

    (3) Zhang,L.F.;Eisenberg,A.J.Am.Chem.Soc.1996,118,3168.

    (4) Zhu,J.T.;Jiang,Y.;Liang,H.J.;Jiang,W.J.Phys.Chem.B 2005,109,8619.

    (5) Yang,Z.G.;Yuan,J.J.;Chen,S.Y.J.Funct.Poly.2003,16, 287.[楊子剛,袁建軍,程時(shí)遠(yuǎn).功能高分子學(xué)報(bào),2003,16, 287.]

    (6)Hubert,D.H.W.;Jung,M.;Frederik,P.M.;Bomans,P.H.H.; Meuldijk,J.;German,A.L.Adv.Mater.2000,12,1286.

    (7) Hentze,H.P.;Raghavan,S.R.;McKelvey,C.A.;Kaler,E.W. Langmuir 2003,19,1069.

    (8)Yeh,Y.Q.;Chen,B.C.;Lin,H.P.;Tang,C.Y.Langmuir 2006, 22,6.

    (9) Li,L.Y.;Wang,J.G.;Sun,P.C.;Liu,X.H.;Ding,D.T.;Chen, T.H.Acta Phys.-Chim.Sin.2008,24,359. [李麗穎,王金桂,孫平川,劉曉航,丁大同,陳鐵紅.物理化學(xué)學(xué)報(bào),2008,24, 359.]

    (10) Bernardi,C.;Drago,V.;Bernardo,F.L.;Girardi,D.;Klein,A. N.J.Mater.Sci.2008,43,469.

    (11) Binder,W.H.;Sachsenhofer,R.;Farnik,D.;Blaas,D.Phys. Chem.Chem.Phys.2007,9,6435.

    (12)Binder,W.H.;Sachsenhofer,R.Macromol.Rapid Commun. 2008,29,1097.

    (13) Lecommandoux,S.;Sandre,O.;Chécot,F.;Perzynski,R.Prog. Solid State Chem.2006,34,171.

    (14) Kang,Y.J.;Taton,T.A.Angew.Chem.Int.Edit.2005,44,409.

    (15) Mu,D.;Zhou,Y.H.Acta Phys.-Chim.Sin.2011,27,374. [牟 丹,周亦含.物理化學(xué)學(xué)報(bào),2011,27,374.]

    (16) Mueller,W.;Koynov,K.;Fischer,K.;Hartmann,S.;Pierrat,S.; Basche,T.;Maskos,M.Macromolecules 2009,42,357.

    (17) Li,X.L.;Ji,J.;Wang,X.L.;Wang,Y.X.;Shen,J.C. Macromol.Rapid Commun.2007,28,660.

    (18) Noguchi,H.;Takasu,M.Phys.Rev.E 2001,64,041913.

    (19)Yamamoto,S.;Maruyama,Y.;Hyodo,S.J.Chem.Phys.2002, 116,5842.

    (20) Marrink,S.J.;Mark,A.E.J.Am.Chem.Soc.2003,125,15233.

    (21) Vries,A.H.;Mark,A.E.;Marrink,S.J.J.Am.Chem.Soc. 2004,126,4488.

    (22)Huang,J.H.;Wang,Y.;Qian,C.J.J.Chem.Phys.2009,13, 234902.

    (23)Thompson,R.B.;Ginzburg,V.V.;Matsen,M.W.;Balazs,A.C. Science 2001,292,2469.

    (24) Wang,Q.;Nealey,P.F.;Pablo,J.J.J.Chem.Phys.2003,118, 11278.

    (25) Schultz,A.J.;Hall,C.K.;Genzer,J.Macromolecules 2005,38, 3007.

    (26) Ginzburg,V.V.;Qiu,F.;Balazs,A.C.Polymer 2002,43,461.

    (27)Liu,D.H.;Zhong,C.L.Macromol.Rapid Commun.2006,27, 458.

    (28) He,L.;Zhang,L.;Liang,H.J.J.Phys.Chem.B 2008,112, 4194.

    (29) Carmesin,I.;Kremer,K.Macromolecules 1988,21,2819.

    (30) Ji,S.C.;Ding,J.D.Langmuir 2006,22,553.

    (31) Romiszowski,P.;Sikorski,A.Macromol.Symp.2008,267,105.

    (32) Zehl,T.;Wahab,M.;Mogel,H.J.;Schiller,P.Langmuir 2006, 22,2523.

    (33)Huh,J.;Ginzburg,V.V.;Balazs,A.C.Macromolecules 2000, 33,8085.

    (34) Mannng,G.S.Biophys.J.2006,91,3607.

    (35) Huang,J.H.;Sun,D.C.J.Colloid Interface Sci.2007,315,355.

    August 29,2011;Revised:November 16,2011;Published on Web:November 21,2011.

    Monte Carlo Simulation on the Structures of a Nanoparticle/ Copolymer Mixed System

    LIU Guan-Feng HUANG Jian-Hua*
    (Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,P.R.China)

    The structures of a nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulations.Each copolymer chain consisted of one A bead and three B beads,and the amphiphilic property of the A1B3chains was represented by an attraction between B-B beads. Nanoparticles were hydrophobic with an attraction amongst themselves.By properly choosing the attraction between the nanoparticle and the B beads,we observe two interesting structures:a nanoparticle/ A1B3chain core-shell structure and an A1B3vesicle with nanoparticles dispersed in the hydrophobic shell. The evolutions of these two structures were investigated.Our results show that the A1B3vesicle acts as a template for the formation of the nanoparticle-dispersed vesicle.

    Dynamic Monte Carlo simulation;Copolymer;Nanoparticle;Vesicle

    10.3866/PKU.WHXB201111211 www.whxb.pku.edu.cn

    *Corresponding author.Email:jhhuang@zstu.edu.cn;Tel:+86-571-86843233.

    The project was supported by the National Natural Science Foundation of China(21171145)and Natural Science Foundation of Zhejiang Province, China(Y4110422).

    國家自然科學(xué)基金(21171145)和浙江省自然科學(xué)基金(Y4110422)資助項(xiàng)目

    O641;O648

    猜你喜歡
    體系結(jié)構(gòu)珠子共聚物
    兩嵌段共聚物軟受限自組裝行為研究
    與樹一樣大的珠子
    擺珠子
    紙珠子
    基于粒計(jì)算的武器裝備體系結(jié)構(gòu)超網(wǎng)絡(luò)模型
    作戰(zhàn)體系結(jié)構(gòu)穩(wěn)定性突變分析
    基于DODAF的裝備體系結(jié)構(gòu)設(shè)計(jì)
    雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
    猜珠子
    讀寫算(上)(2015年6期)2015-11-07 07:17:55
    DADMAC-AA兩性共聚物的合成及應(yīng)用
    久久草成人影院| 成人三级黄色视频| 成人一区二区视频在线观看| 一级av片app| 久久久成人免费电影| 亚洲,欧美,日韩| 别揉我奶头 嗯啊视频| 中文字幕精品亚洲无线码一区| 麻豆国产97在线/欧美| 亚洲中文字幕日韩| 国产精品电影一区二区三区| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩卡通动漫| 久久人人精品亚洲av| 亚洲,欧美,日韩| 午夜久久久久精精品| 国产国拍精品亚洲av在线观看| 熟妇人妻久久中文字幕3abv| 欧美国产日韩亚洲一区| 国产精品伦人一区二区| 精品欧美国产一区二区三| 变态另类丝袜制服| 99久久精品热视频| 免费av观看视频| 少妇熟女欧美另类| 狂野欧美白嫩少妇大欣赏| 综合色丁香网| 国产亚洲精品av在线| 成人av在线播放网站| 天天躁日日操中文字幕| 一级毛片电影观看 | 精品一区二区三区av网在线观看| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 亚洲国产精品国产精品| 最近手机中文字幕大全| or卡值多少钱| 国产午夜精品久久久久久一区二区三区 | 精品午夜福利在线看| 亚洲乱码一区二区免费版| 亚洲精品日韩在线中文字幕 | 真实男女啪啪啪动态图| 亚洲人与动物交配视频| 97超视频在线观看视频| 看非洲黑人一级黄片| 国产午夜精品久久久久久一区二区三区 | 一级黄片播放器| 日日干狠狠操夜夜爽| 国产精品日韩av在线免费观看| 国内少妇人妻偷人精品xxx网站| 真实男女啪啪啪动态图| 日本撒尿小便嘘嘘汇集6| 国产精华一区二区三区| av在线天堂中文字幕| 国产一区二区在线观看日韩| 亚洲国产精品合色在线| 国产激情偷乱视频一区二区| 99热全是精品| av在线天堂中文字幕| 日韩欧美三级三区| 精品不卡国产一区二区三区| 国产精品爽爽va在线观看网站| 天堂动漫精品| 九九热线精品视视频播放| 香蕉av资源在线| 久久精品国产亚洲av天美| 99热这里只有是精品在线观看| 插阴视频在线观看视频| 日日干狠狠操夜夜爽| 丝袜美腿在线中文| 男女边吃奶边做爰视频| 最新中文字幕久久久久| 日本 av在线| 波多野结衣高清无吗| 国产极品精品免费视频能看的| 日本熟妇午夜| 午夜精品一区二区三区免费看| 亚洲av电影不卡..在线观看| 国产视频内射| av女优亚洲男人天堂| 亚洲国产精品成人综合色| 18禁在线播放成人免费| 久久久久久久午夜电影| 亚洲av成人av| 少妇丰满av| 在线观看av片永久免费下载| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人精品欧美一级黄| 免费观看的影片在线观看| 好男人在线观看高清免费视频| 校园人妻丝袜中文字幕| 久久久久久久久大av| 人妻夜夜爽99麻豆av| 插逼视频在线观看| 夜夜看夜夜爽夜夜摸| 人妻夜夜爽99麻豆av| 99久久久亚洲精品蜜臀av| 久久久久国产精品人妻aⅴ院| 国产色婷婷99| 一本精品99久久精品77| 亚洲欧美精品综合久久99| 蜜桃亚洲精品一区二区三区| 久久久久精品国产欧美久久久| 国产v大片淫在线免费观看| а√天堂www在线а√下载| 国产一区二区在线av高清观看| 九九热线精品视视频播放| 黄色视频,在线免费观看| 色吧在线观看| 久久精品久久久久久噜噜老黄 | 乱系列少妇在线播放| 欧美色视频一区免费| 51国产日韩欧美| 男插女下体视频免费在线播放| 亚洲精品久久国产高清桃花| 国产v大片淫在线免费观看| 色播亚洲综合网| 变态另类丝袜制服| 亚洲无线在线观看| 日本a在线网址| 国产精品久久视频播放| 插阴视频在线观看视频| 欧美成人一区二区免费高清观看| 午夜免费激情av| 99久久无色码亚洲精品果冻| 日韩高清综合在线| 一本一本综合久久| 国产69精品久久久久777片| 亚洲av电影不卡..在线观看| 简卡轻食公司| 国产成人影院久久av| 午夜福利在线观看吧| 久久久色成人| 免费在线观看成人毛片| 午夜精品在线福利| 18禁裸乳无遮挡免费网站照片| 一本久久中文字幕| 俺也久久电影网| 最近手机中文字幕大全| 午夜精品在线福利| 免费搜索国产男女视频| 天天躁日日操中文字幕| 最近手机中文字幕大全| 中国美女看黄片| 亚洲性夜色夜夜综合| 久久久精品94久久精品| 精品免费久久久久久久清纯| 午夜免费激情av| 色视频www国产| 中出人妻视频一区二区| 晚上一个人看的免费电影| 观看免费一级毛片| 精品久久久噜噜| 免费黄网站久久成人精品| 国产乱人偷精品视频| 国产欧美日韩精品一区二区| 成熟少妇高潮喷水视频| 日本欧美国产在线视频| 精品欧美国产一区二区三| 两个人视频免费观看高清| av视频在线观看入口| 亚洲最大成人手机在线| 国产单亲对白刺激| 中文字幕精品亚洲无线码一区| 在线看三级毛片| 免费看日本二区| 99热这里只有精品一区| 国产av一区在线观看免费| 午夜精品一区二区三区免费看| 日韩一区二区视频免费看| 99久久精品一区二区三区| 可以在线观看毛片的网站| 国产伦在线观看视频一区| 国产伦一二天堂av在线观看| 免费一级毛片在线播放高清视频| 内地一区二区视频在线| 成人一区二区视频在线观看| 看免费成人av毛片| 亚洲第一区二区三区不卡| 精品人妻偷拍中文字幕| 男女下面进入的视频免费午夜| 国产亚洲91精品色在线| 色综合站精品国产| 免费观看人在逋| 一本一本综合久久| 99久国产av精品| 欧美一级a爱片免费观看看| 俺也久久电影网| 国产成人a∨麻豆精品| 国产亚洲av嫩草精品影院| 91精品国产九色| av在线老鸭窝| 99精品在免费线老司机午夜| 国产精品野战在线观看| 特级一级黄色大片| 欧美日韩综合久久久久久| 在线观看av片永久免费下载| 美女大奶头视频| 亚洲成人中文字幕在线播放| 亚州av有码| 国产黄a三级三级三级人| 久久99热这里只有精品18| 亚洲av美国av| 亚洲国产欧美人成| 亚洲婷婷狠狠爱综合网| 欧美丝袜亚洲另类| 亚洲精品乱码久久久v下载方式| 免费黄网站久久成人精品| 国产色婷婷99| 特级一级黄色大片| 日本成人三级电影网站| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄 | 免费观看人在逋| av视频在线观看入口| 天堂影院成人在线观看| 国产人妻一区二区三区在| 精品久久久久久久久久久久久| 99热精品在线国产| 日韩成人伦理影院| 国产精品国产高清国产av| 国产高清不卡午夜福利| 日日啪夜夜撸| 99久久中文字幕三级久久日本| 欧美性猛交╳xxx乱大交人| 国产精品久久视频播放| 可以在线观看的亚洲视频| 99久久成人亚洲精品观看| 免费观看精品视频网站| 伊人久久精品亚洲午夜| 免费在线观看影片大全网站| 国内揄拍国产精品人妻在线| 国产成人福利小说| av在线播放精品| 亚洲av熟女| av卡一久久| 干丝袜人妻中文字幕| 欧美潮喷喷水| 伊人久久精品亚洲午夜| 成人特级黄色片久久久久久久| 欧美+亚洲+日韩+国产| 99久久精品热视频| 最近视频中文字幕2019在线8| 97热精品久久久久久| 色视频www国产| 国内精品久久久久精免费| 亚洲,欧美,日韩| 国产精品一区二区三区四区免费观看 | 人妻夜夜爽99麻豆av| 波多野结衣高清无吗| 91av网一区二区| 久久中文看片网| 最近视频中文字幕2019在线8| 欧美性猛交黑人性爽| 69人妻影院| 欧美色欧美亚洲另类二区| 可以在线观看毛片的网站| 精品一区二区三区视频在线观看免费| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 国产黄色小视频在线观看| 亚洲欧美日韩高清专用| 一级av片app| 日日摸夜夜添夜夜添av毛片| 22中文网久久字幕| 国产成年人精品一区二区| 久久午夜福利片| 午夜爱爱视频在线播放| 亚洲av第一区精品v没综合| 亚洲欧美清纯卡通| 日本在线视频免费播放| 国产探花极品一区二区| 国产极品精品免费视频能看的| 午夜福利18| 亚洲国产欧洲综合997久久,| 欧美zozozo另类| 一进一出抽搐动态| 国产 一区 欧美 日韩| 国产激情偷乱视频一区二区| 日本成人三级电影网站| 日韩欧美 国产精品| 国内揄拍国产精品人妻在线| 亚洲av第一区精品v没综合| 国产精华一区二区三区| 久99久视频精品免费| 干丝袜人妻中文字幕| 国内精品久久久久精免费| 中文亚洲av片在线观看爽| 香蕉av资源在线| 99riav亚洲国产免费| 亚洲第一电影网av| 免费一级毛片在线播放高清视频| 国产老妇女一区| 国产男人的电影天堂91| 久久午夜亚洲精品久久| 国产精品一二三区在线看| 真人做人爱边吃奶动态| 国产高潮美女av| 床上黄色一级片| 亚洲欧美中文字幕日韩二区| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久成人av| 天堂av国产一区二区熟女人妻| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 亚洲欧美日韩卡通动漫| 国产成人aa在线观看| 久久久a久久爽久久v久久| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 乱人视频在线观看| 国产真实乱freesex| 亚洲av成人精品一区久久| 网址你懂的国产日韩在线| 老熟妇仑乱视频hdxx| 久久久久久伊人网av| 99riav亚洲国产免费| 亚洲久久久久久中文字幕| 亚洲图色成人| 免费观看精品视频网站| 99热6这里只有精品| 国产色婷婷99| 精品人妻偷拍中文字幕| or卡值多少钱| 亚洲一区高清亚洲精品| a级一级毛片免费在线观看| 身体一侧抽搐| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 日本撒尿小便嘘嘘汇集6| 久久久久免费精品人妻一区二区| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 精品日产1卡2卡| 欧美日韩国产亚洲二区| 国产精品乱码一区二三区的特点| 啦啦啦啦在线视频资源| 国产色婷婷99| 久久精品国产亚洲av涩爱 | 不卡视频在线观看欧美| 亚洲av中文av极速乱| 国产一区二区激情短视频| 午夜精品在线福利| 亚洲在线观看片| 永久网站在线| 亚洲18禁久久av| 精品一区二区三区视频在线| 精品久久久噜噜| 亚洲电影在线观看av| 最新中文字幕久久久久| 丝袜美腿在线中文| 蜜桃久久精品国产亚洲av| 在线天堂最新版资源| 亚洲精品日韩av片在线观看| 欧美精品国产亚洲| 午夜福利在线观看吧| 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 国产成人aa在线观看| 精品久久久噜噜| 亚洲第一区二区三区不卡| 97在线视频观看| 久久久色成人| 99精品在免费线老司机午夜| 日本免费一区二区三区高清不卡| 亚洲最大成人av| aaaaa片日本免费| 国产精品野战在线观看| 不卡一级毛片| 亚洲精品色激情综合| 久久久国产成人免费| 免费看光身美女| 久久久午夜欧美精品| 中国国产av一级| 亚洲一区高清亚洲精品| 免费看光身美女| 日韩精品有码人妻一区| 丝袜美腿在线中文| av黄色大香蕉| 亚洲国产高清在线一区二区三| 日韩三级伦理在线观看| 精品人妻熟女av久视频| 久久久久久久久中文| 亚洲自拍偷在线| 国产精品久久久久久av不卡| 老女人水多毛片| 日韩欧美 国产精品| 噜噜噜噜噜久久久久久91| 秋霞在线观看毛片| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 色播亚洲综合网| 91精品国产九色| 国产成人freesex在线 | 成人av在线播放网站| 国产精品99久久久久久久久| 久久婷婷人人爽人人干人人爱| 在线免费十八禁| 国产av麻豆久久久久久久| 日产精品乱码卡一卡2卡三| 亚洲av一区综合| 日本在线视频免费播放| 国产极品精品免费视频能看的| 亚洲熟妇熟女久久| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av| 男女边吃奶边做爰视频| 欧美极品一区二区三区四区| 亚洲中文字幕日韩| 国国产精品蜜臀av免费| 国产麻豆成人av免费视频| 国产午夜精品论理片| 成人国产麻豆网| 久久久国产成人免费| 91在线观看av| 久久久久久久久大av| 男人和女人高潮做爰伦理| 亚洲精华国产精华液的使用体验 | 在线观看av片永久免费下载| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 日韩欧美 国产精品| 综合色丁香网| 老师上课跳d突然被开到最大视频| 日韩欧美 国产精品| 18禁在线播放成人免费| 一卡2卡三卡四卡精品乱码亚洲| 两个人的视频大全免费| 一区二区三区四区激情视频 | 成人鲁丝片一二三区免费| 久久亚洲国产成人精品v| 国产一区二区在线观看日韩| 亚洲精品国产av成人精品 | 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 国产乱人视频| 两个人视频免费观看高清| 男女那种视频在线观看| 午夜影院日韩av| 国产精品久久久久久av不卡| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 99久国产av精品国产电影| 久久久久久久久久成人| 国产精品免费一区二区三区在线| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 亚洲av五月六月丁香网| 一级黄色大片毛片| a级毛片a级免费在线| 三级毛片av免费| 网址你懂的国产日韩在线| 女生性感内裤真人,穿戴方法视频| 一级av片app| 国产精品久久久久久久电影| 欧美性感艳星| 99热这里只有是精品50| 2021天堂中文幕一二区在线观| 18禁裸乳无遮挡免费网站照片| 欧美日本视频| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 三级经典国产精品| 欧美一区二区亚洲| 成人精品一区二区免费| 国产极品精品免费视频能看的| 激情 狠狠 欧美| 精品久久久久久久久久免费视频| 日韩中字成人| 少妇人妻精品综合一区二区 | 在线免费观看不下载黄p国产| 国产精品1区2区在线观看.| 综合色av麻豆| 国产成人a区在线观看| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 亚洲专区国产一区二区| 嫩草影院精品99| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 成人高潮视频无遮挡免费网站| 国产一区二区在线av高清观看| 欧美国产日韩亚洲一区| 亚洲精品一区av在线观看| 日本欧美国产在线视频| 人妻制服诱惑在线中文字幕| 免费高清视频大片| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩av片在线观看| 最近的中文字幕免费完整| 国产成人精品久久久久久| 99riav亚洲国产免费| 搞女人的毛片| 97在线视频观看| 国产精品一区二区免费欧美| 美女大奶头视频| 国产成人aa在线观看| 波野结衣二区三区在线| 国产精品精品国产色婷婷| 国产在线精品亚洲第一网站| 午夜a级毛片| 成年免费大片在线观看| 在线观看av片永久免费下载| 日本欧美国产在线视频| 国产高清不卡午夜福利| 日韩av在线大香蕉| 特级一级黄色大片| 丰满乱子伦码专区| 国产成人a区在线观看| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 免费看a级黄色片| 国内精品宾馆在线| 白带黄色成豆腐渣| 少妇裸体淫交视频免费看高清| 中文字幕av在线有码专区| 欧美精品国产亚洲| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 免费看日本二区| 国产三级在线视频| 在线免费观看不下载黄p国产| 亚洲中文字幕一区二区三区有码在线看| 免费搜索国产男女视频| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 精品少妇黑人巨大在线播放 | 国产黄片美女视频| 欧美zozozo另类| 日本熟妇午夜| 综合色丁香网| 日韩,欧美,国产一区二区三区 | 两个人的视频大全免费| 久久久色成人| 午夜福利在线在线| 亚洲欧美精品综合久久99| 国产蜜桃级精品一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久| 中文在线观看免费www的网站| 五月伊人婷婷丁香| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 亚洲国产色片| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 天美传媒精品一区二区| 赤兔流量卡办理| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 99热只有精品国产| 淫妇啪啪啪对白视频| 国产一区亚洲一区在线观看| 午夜久久久久精精品| 亚洲美女视频黄频| 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 中出人妻视频一区二区| 无遮挡黄片免费观看| 成年免费大片在线观看| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 91午夜精品亚洲一区二区三区| 亚洲国产色片| av在线蜜桃| 日本欧美国产在线视频| 日本-黄色视频高清免费观看| 男插女下体视频免费在线播放| 插逼视频在线观看| 日韩欧美精品免费久久| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 一本久久中文字幕| 久久久久久久午夜电影| 人妻丰满熟妇av一区二区三区| 日韩三级伦理在线观看| 精品久久久久久成人av| 日本 av在线| 亚洲久久久久久中文字幕| 亚洲精品一区av在线观看| 啦啦啦啦在线视频资源| av国产免费在线观看| 成年女人毛片免费观看观看9| 午夜a级毛片| 高清毛片免费看| 久久久久久久久久黄片| 日韩一区二区视频免费看| 亚洲国产欧美人成| 午夜日韩欧美国产| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看美女被高潮喷水网站| 国产精品99久久久久久久久| 成人午夜高清在线视频| 久久久久国产精品人妻aⅴ院| 国产成人a∨麻豆精品| 九九在线视频观看精品| 国内精品宾馆在线| 1000部很黄的大片| 可以在线观看的亚洲视频| 蜜臀久久99精品久久宅男| 国产视频内射| 欧美bdsm另类| 国产大屁股一区二区在线视频| 国产精品,欧美在线| 男女那种视频在线观看| 女生性感内裤真人,穿戴方法视频| 久久亚洲国产成人精品v| av在线播放精品| 黄色日韩在线| 国产精华一区二区三区|