• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米粒子/共聚物混合體系結(jié)構(gòu)的Monte Carlo模擬

    2012-12-05 02:27:50劉觀峰黃建花
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:體系結(jié)構(gòu)珠子共聚物

    劉觀峰 黃建花

    (浙江理工大學(xué)化學(xué)系,杭州310018)

    納米粒子/共聚物混合體系結(jié)構(gòu)的Monte Carlo模擬

    劉觀峰 黃建花*

    (浙江理工大學(xué)化學(xué)系,杭州310018)

    基于簡立方格點(diǎn)模型,對納米粒子/共聚物混合體系進(jìn)行了動(dòng)力學(xué)Monte Carlo模擬研究.每一共聚物鏈均由一個(gè)A珠子和三個(gè)B珠子組成,表示為A1B3.A1B3鏈的兩親性體現(xiàn)為B-B之間的相互吸引作用,同時(shí)憎水性的納米粒子之間也存在相互吸引.通過適當(dāng)選取納米粒子與B珠子之間的吸引作用勢,觀察到兩種結(jié)構(gòu):納米粒子/A1B3鏈的核-殼結(jié)構(gòu)和納米粒子分散在憎水殼層中的A1B3囊泡結(jié)構(gòu).還研究了這兩種結(jié)構(gòu)的動(dòng)力學(xué)演化過程,模擬結(jié)果表明在納米粒子分散于囊泡殼層的過程中A1B3囊泡起模板作用.

    動(dòng)力學(xué)Monte Carlo模擬;共聚物;納米粒子;囊泡

    1 Introduction

    Amphiphilic block copolymers in aqueous solution are known to self-assemble into a variety of supermolecular structures such as micelles,vesicles,cylinders,and lamellae.Vesicles are of special interest since they are important model systems for biological cells and show potential applications in many areas such as microreactors,microcapsules,and drug delivery systems.1-5They have been successfully used as templates for preparing inorganic hollow spheres.For instance,silica hollow spheres were obtained by adding silicon alkoxide to an aqueous solution of amphiphiles,such as cationic,catanionic,or mixed surfactant vesicles,followed by hydrolysis and polycondensation,or a fast silicification.6-9Sub-micrometer hollow metallic spheres of Ni-P alloy were produced by the chemical reduction over anionic surfactant vesicle templates.10

    Encapsulation of hydrophobic nanoparticles,such as hydrophobic Au and CdSe nanoparticles,into the vesicle shell through hydrophobic interactions has been achieved.11,12Be-sides,amphiphilic copolymers can form micelle and hydrophobic nanoparticles can thus be loaded into the micelle to form a core-shell structure.13It can improve the stability and surface chemistry of the nanoparticle core and access unique physical properties that are not possible for nanomaterial alone.14,15

    Drug delivery is mainly based on successful encapsulation of drugs with different solubility parameters.Two hydrophobic model materials,fluorescent Dye Nile Red representing the molecular size regime and fluorescent quantum dots representing the nano size regime,were successfully encapsulated into the hydrophobic shell of poly(butadiene)-b-poly(ethylene oxide)vesicles.And the quantum dots were observed to be centered inside the double layer of the vesicle shell.16The comblike poly(ethylene glycol)(CPEG)-g-cholesterol vesicle and the cross-linked vesicle of CPEG and CPEG-g-cholesterol were found to be able to entrap considerably hydrophobic doxorubicin(a general anti-cancer drug)in the shell,which showed a great potential as a cargo of the hydrophobic drug.17

    Computer simulations play important roles in understanding the formation mechanism of block copolymer vesicle.18-22The phase behavior of nanoparticle/block copolymer mixed system as well as the distribution of nanoparticles in the microdomain of lamellar copolymers have been simulated.23-28The nanoparticle volume fraction,size,and the interaction strength between nanoparticle and copolymer were found to strongly affect the phase behavior of the mixed system.However,we learn little from simulations about the loading process of nanoparticles into vesicles.

    In the present work,we studied the phase behavior of nanoparticle/copolymer vesicle mixed system using dynamic Monte Carlo simulation.Hydrophobic nanoparticles were added into the solution containing a single copolymer vesicle.By changing the interaction between nanoparticle and copolymer chain,two structures,nanoparticle/copolymer core-shell structure and copolymer vesicle with nanoparticles dispersed in the shell,were observed.Their formation processes were investigated in detail.

    2 Model and simulation method

    Simulations were carried out in a simulation box with size 40×40×40 buried in the simple cubic(SC)lattice.The unit of length in this paper was one lattice size of the SC lattice.Periodic boundary conditions were used in all the three dimensions.Each nanoparticle consisted of one single bead(n),and a diblock copolymer A1B3chain was composed of one hydrophilic bead(A)and three hydrophobic beads(B).Self-avoiding was considered,that is,each bead occupied one lattice site and every lattice site could not be simultaneously occupied by more than one bead.The void lattice sites were considered as solvents(S).For polymer chains,the bond length between sequentially linked beads ranged from 1 to 3on the SC lattice, which was originally proposed by Carmesin and Kremer29.The bond between successive beads along a chain was taken from 26 allowed bond vectors obtained from symmetry operations on the set of{(1,0,0),(1,1,0),(1,1,1)}.In this bond-fluctuation model,the beads did not correspond to specific atoms in a polymer chain but rather to small groups of atoms,and the bonds did not represent specific covalent bonds between two atoms but the linkages between beads instead.

    Pairwise nearest-neighbor and next nearest-neighbor interactions with the same strength were considered.The amphiphilic property of A1B3chain was represented by interaction energy εBB=-1 for B-B pair and εAA=εAB=0 for A-A and A-B pairs.This model had been successfully used to study the self-assembly behavior of block copolymer in solution.30,31The choice of these effective pairwise interactions implies a generally accepted assumption that the hydrophobic interaction should be much stronger than other attractive forces between amphiphile beads.32The hydrophobic property of nanoparticles was represented by an attractive interaction between nanoparticles (εnn=-1.5),thus they precipitated from the solution in the absence of copolymers.The interaction for solvent-solvent pair was set as εSS=0,which served as a background.Nanoparticles had an affinity toward B-block.So an attraction εnBbetween nanoparticle and B bead was introduced to investigate the mixture of A1B3vesicle and naoparticles.Other interactions,including εAS,εBS,εnS,and εnA,were fixed to be zero.Similar interaction model was used in the simulation of thermodynamic behavior of particle/diblock copolymer mixtures.33The system temperature was fixed at kBT=1.25 in which kBis the Boltzmann constant.Only εnBwas variable in the simulation.

    The volume fraction of A1B3chains,φp,and that of nanoparticles,φn,were defined as φp=4Np/V and φn=Nn/V,respectively. Here V was the total sites of the simulation box,Npwas the number of A1B3chains,and Nnwas the number of nanoparticles.The dynamic simulation was achieved by randomly choosing one bead and randomly moving to one of its six nearest neighbor sites.This trial move was accepted if the following conditions were satisfied:(1)the self-avoidance was obeyed, which meant that it could only exchange with a vacancy;and (2)the Boltzmann factor exp(-ΔE/kBT)was greater than a random number uniformly distributed in the interval(0,1),where ΔE was the change in energy due to the trial move.The second criterion,i.e.,the Metropolis criterion,ensured that the system obeyed Boltzmann statistics.For A1B3chain,two additional conditions should be satisfied:(1)the new bond vector still belonged to the allowed bond set;and(2)two bonds did not intersect.Each trial move is called a bead cycle,one Monte Carlo step(MCS)consists of(4Np+Nn)bead cycles.

    In the present work,we studied the mixed system containing 7%A1B3chains and 3%hydrophobic nanoparticles.Due to the attraction between B-B beads,A1B3chains self-assembled into vesicles at the volume fraction of A1B3in the range of 4%-15%,22as that used in other simulations.30This was one reason why we chose A1B3in this work.This diblock copolymer A1B3mimics poly(styrene)-b-poly(acrylic acid)(PS-b-PAA)used in experiments.3The size of one bead was taken as the Kuhn length of polyacrylic acid,which is about 1.5 nm or approximately the length of 6 monomers.34The effect of the attraction εnBbetween nanoparticle and B bead on the structure of mixed system was studied from the same start situation.Simulations were carried out as follows:A1B3chains were first randomly put into the system and one single vesicle was formed after a long time of movement.Then nanoparticles were randomly added into the A1B3vesicle system.The simulation time was set as t=0 MCS at this moment.In addition,the attraction εnBbetween nanoparticle and B bead was taken into account. We found different kinds of complex structures by varying the attraction value of εnB,and discussed the mechanism for forming different structures.

    3 Results and discussion

    Fig.1(a)presents A1B3vesicle formed at φp=7%.It is fabricated by two layers of A1B3chains with A bead locating at the inner and outer surfaces to prevent the contact between B bead and solvent.The vesicular core is filled with solvent.The shell thickness is about 5,while hydrophobic nanoparticles aggregate into a compact sphere to avoid solvent contact.Fig.1(b) presents the compact sphere aggregated at φn=3%in the absence of block copolymer.The radius of sphere is about 8.

    3.1 Structures of nanoparticle/A1B3chain system

    The structures of A1B3vesicle and hydrophobic nanoparticles mixed system were studied by varying εnBvalues.Fig.2 shows the final structures formed at different εnBvalues.We first consider a limit case that the attraction between nanoparticle and B bead is weak.In this case,nanoparticles assemble into a compact aggregate without any contacts with the vesicle. It is formed by fusion of small aggregates as we previously reported.35Fig.2(a)shows the final structure of the system at εnB=-0.5.Because the attraction εnB(-0.5)is weak,it cannot overcome the attractions between nanopaticles and that between B-B beads.ThusA1B3vesicle remains unchanged.

    Fig.1 (a)Vesicle formed byA1B3chains at φp=7%with εBB=-1, (b)aggregate formed in pure nanoparticle/solvent system at φn=3%with εnn=-1.5Blue and red beads representAand B beads ofA1B3chain,respectively,and green ones represent nanoparticles.The same symbols are used in the remaining figures.

    Fig.2 Five structures formed with different εnBvaluesεnB:(a)-0.5,(b)-0.6,(c)-0.9,(d)-1.2,(e)-1.6

    Turning to the other limit case with εnBclose to or beyond εnn=-1.5,we find that nanoparticles fully enter into the shell of A1B3vesicle as shown in Fig.2(e)at εnB=-1.6.This structure is consistent with experimental observation.11,12,16Therefore one may obtain a hollow sphere after removing copolymers.6-8In this case,nanoparticles can either disperse into the vesicle shell or aggregate into a sphere in the view of energy.However,dispersion into the shell gets more contacts between nanoparticle and B bead,thus leading to the decrease of the system energy.

    Three other kinds of structures are formed at moderate εnB=-0.6,-0.9,-1.2.At εnB=-0.6,though nanoparticles still assemble into a compact aggregate,there are a number of contacts between nanoparticle and B bead.Such contacts break the vesicle as shown in Fig.2(b).When εnBis close to εBB,B beads like to contact with nanoparticles as well as with themselves. Since εnnis more negative than both εnBand εBB,nanoparticles still assemble into a compact aggregate.In this case,the nanoparticle aggregate is fully enveloped by A1B3chains, which prevents the contact between nanoparticle and solvent and lowers the system energy.A perfect core-shell structure is presented in Fig.2(c)at εnB=-0.9.With a further increase of the attraction between nanoparticle and B bead to the case|εBB|<|εnB|<|εnn|,B bead favors to contact with nanoparticle,but nanoparticles still favor to aggregate with themselves.Thus it is observed that nanoparticles are not well dispersed but aggregate together irregularly in the vesicle shell,as shown in Fig.2 (d)with εnB=-1.2.The irregular aggregate has a large surface to balance the n-B interaction and n-n interaction.In all these three structures,nanoparticles always aggregate together with themselves since the attraction strength|εnB|is smaller than|εnn|.

    It is clear that the final structures are dependent on the interactions that we take into account in the system.These structures are controlled by the competition among three attraction strengths εBB,εnn,and εnB.In the present model with εBB=-1 and εnn=-1.5,we observe five structures at different εnBvalues.At small εnBclose to 0,we observe separate nanoparticle aggregate and A1B3vesicle.With the increase of|εnB|,nanoparticle aggre-gate and A1B3irregular aggregate,nanoparticle/A1B3core-shell structure,and A1B3vesicle with nanoparticles aggregate in the shell are observed.And at εnBclose to-2,we observe A1B3vesicle with nanoparticles well-dispersed in the shell.We have also studied the influence of the nanoparticle volume fraction φnon the structure of nanoparticle/A1B3vesicle system.For the case φp=7%,all the five structures can be formed at φn<10%, and the boundaries between different structures are roughly independent of φn.

    Among these five structures,we find that the core-shell structure and nanoparticle-dispersed vesicle are of most interesting.These two structures are widely observed and discussed in experiments,since they are of great potential to carry drug, magnetic and optical particles.11-17It will increase the compatibility and stabilization of nanoparticles after being loaded into copolymer superstructures.In the present simulation,the coreshell structure is obtained by adding nanoparticles into a vesicle system,which is different from experiment where nanoparticles were added into a micellar system.13The evolutions of core-shell structure and nanoparticle-dispersed vesicle are studied in the following.

    3.2 Evolution of nanoparticle/A1B3complex structures

    We first investigated the evolution of core-shell structure at εnB=-0.9 shown in Fig.2(c).Fig.3 presents the snapshots captured at different periods.Due to the attraction between nanoparticles,they quickly assemble into small aggregates upon addition into A1B3vesicle system.Because of the attraction between nanoparticle and B bead,some nanoparticle aggregates contact with the vesicle,as shown in Fig.3(a)captured at t=0.1×106MCS.Then nanoparticle aggregates become larger with the time going,while the vesicle becomes smaller because more and more A1B3chains are adsorbed onto nanoparticle aggregates(see Fig.3(b-e)).At t=8×106MCS,A1B3vesicle disappears and all A1B3chains envelop around one big nanoparticle aggregate,forming a perfect nanoparticle/A1B3chain core-shell structure,Fig.3(f)shows the final structure formed at t=9×106MCS.

    Fig.3 Snapshots of the evolution of nanoparticle/A1B3core-shell structures at different time10-6t/MCS:(a)0.1,(b)1,(c)2,(d)4,(e)7,(f)9;εnB=-0.9.To clearly see the core-shell structure,we shift 7 lattices along z direction in(f).

    Fig.4 (a)Evolution of the system energy(E)during the formation of nanoparticle/A1B3core-shell structure,(b)variation of the densities(ρ)ofAbead,B bead,nanoparticle,and solvent with the distance(r)to the mass centerThe snapshots of a-f are presented in Fig.3.

    Fig.5 Snapshots captured at different time10-5t/MCS:(a)0,(b)0.1,(c)1,(d)5;εnB=-1.6

    Fig.4(a)presents the evolution of system energy during the formation of core-shell structure.At early time t<106MCS,the system energy decreases quickly because nanoparticles rapidly form small aggregates followed by the fast growth of aggregates.During a long time interval from 1×106to 6×106MCS, the system energy varies little but the configuration changes obviously.During this period there is a competition between the following two tendencies:(1)The shrink of vesicle causes an increase in energy;while(2)the adsorption of A1B3chains on nanoparticle aggregates decreases the system energy.Their competition leads to the fluctuation of the system energy and the configuration evolution.However,the energy decreases gradually from 6×106MCS,indicating that the second tendency becomes dominating and the vesicle becomes smaller and smaller.At t=8×106MCS,A1B3vesicle disappears and the coreshell structure is formed instead,and the system reaches an equilibrium.

    Fig.6 (a)Time evolution of the system energy E during the formation of nanoparticle-dispersed vesicle,(b)variation of the densities ofA, B beads,nanoparticle,and solvent with the distance(r)to the mass center of vesicleThe snapshots of a-d are presented in Fig.5.

    The core-shell structure is characterized using the density distributions of different components with respect to the mass center,as shown in Fig.4(b).It shows that the core is occupied by nanoparticles within r<8.The core size is comparable to the nanoparticle aggregate formed in the absence of block copolymer(Fig.1(b)).The peaks of A and B beads locate at about 10 and 9,respectively,indicating that A1B3chains form the shell with A bead on outer surface of the core-shell structure.The shell is fabricated by one layer of copolymers.

    We have also investigated the evolution of nanoparticle-dispersed vesicle structure at εnB=-1.6(Fig.2(e)).Snapshots for the loading of nanoparticles in the vesicle shell are shown in Fig.5.Initially,nanoparticles are randomly put into the simulation box(Fig.5(a)).They quickly assemble into small aggregates due to their hydrophobic property.Meanwhile some nanoparticles diffuse into the vesicle shell owing to the attraction between nanoparticle and B bead,see Fig.5(b).Number of nanoparticle aggregates decreases with the time,more and more nanoparticles diffuse into the vesicle shell,as shown in Fig.5(b,c).At time t=1.5×105MCS,all nanoparticles are located in the vesicle shell.Fig.5(d)shows the snapshot captured at t=5×105MCS.This structure remains stable in the following 15×105MCS simulation.During the evolution,the system energy E drops monotonously(Fig.6(a)),indicating the evolution is determinatively controlled by energy.E reaches an equilibrium value at t~1.5×105MCS.Afterwards,the system energy roughly remains constant,indicating that the final structure is stable.

    In order to obtain the detailed information on the final structure,the density distributions of different components with respect to the mass center of the vesicle are plotted in Fig.6(b). The vesicular core is occupied by solvent within r<3.A beads locate at inner and outer surfaces of the vesicle showing two peaks at r~4.5 and~11.5 in the density profile,respectively.B beads form the vesicle shell.The shell thickness is about 7,bigger than that of the initial A1B3vesicle(Fig.1(a)).The peak position of nanoparticle distribution is symmetric with respective to the center of the shell,while the density profile of B beads shows two peaks separated by nanoparticles,suggesting that nanoparticles localize in the center of the vesicle shell.The result is consistent with the experimental report.16

    4 Conclusions

    In this work,the structures of nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulation.The amphiphilic property of A1B3chain is represented by an attraction between hydrophobic B-B beads,while nanoparticle is hydrophobic with attraction among nanoparticles.A1B3chains with εBB=-1 form a vesicle in solution at φp=7%,while nanoparticles with εBB=-1.5 assemble into a compact aggregate at φn=3%.In the simulation,nanoparticles are added into the vesicle solution.By tuning the attraction εnBbetween nanoparticle and B bead,we obtain two interesting structures:nanoparticle/A1B3core-shell structure and A1B3vesicle with nanoparticles dispersed in the shell.They are in agreement with experimental findings.

    The evolutions of these two structures were investigated. The core-shell structure is developed through destroying the vesicle.While for the nanoparticle-dispersed vesicle,A1B3vesicle acts as a template and nanoparticles diffuse into the hydrophobic shell.The formation of the core-shell structure is a very time-consuming process,since it has to overcome an energy barrier to destroy the vesicle.Therefore,it is much slower than nanoparticle-dispersed vesicle.Our simulation provides a new way to load hydrophobic nanoparticles into A1B3micelle through breakingA1B3vesicle.

    (1) Lipowsky,R.Nature 1991,349,475.

    (2)Discher,B.M.;Won,Y.Y.;Ege,D.S.;Lee,J.C.M.;Bates,F. S.;Discher,D.E.;Hammer,D.A.Science 1999,284,1143.

    (3) Zhang,L.F.;Eisenberg,A.J.Am.Chem.Soc.1996,118,3168.

    (4) Zhu,J.T.;Jiang,Y.;Liang,H.J.;Jiang,W.J.Phys.Chem.B 2005,109,8619.

    (5) Yang,Z.G.;Yuan,J.J.;Chen,S.Y.J.Funct.Poly.2003,16, 287.[楊子剛,袁建軍,程時(shí)遠(yuǎn).功能高分子學(xué)報(bào),2003,16, 287.]

    (6)Hubert,D.H.W.;Jung,M.;Frederik,P.M.;Bomans,P.H.H.; Meuldijk,J.;German,A.L.Adv.Mater.2000,12,1286.

    (7) Hentze,H.P.;Raghavan,S.R.;McKelvey,C.A.;Kaler,E.W. Langmuir 2003,19,1069.

    (8)Yeh,Y.Q.;Chen,B.C.;Lin,H.P.;Tang,C.Y.Langmuir 2006, 22,6.

    (9) Li,L.Y.;Wang,J.G.;Sun,P.C.;Liu,X.H.;Ding,D.T.;Chen, T.H.Acta Phys.-Chim.Sin.2008,24,359. [李麗穎,王金桂,孫平川,劉曉航,丁大同,陳鐵紅.物理化學(xué)學(xué)報(bào),2008,24, 359.]

    (10) Bernardi,C.;Drago,V.;Bernardo,F.L.;Girardi,D.;Klein,A. N.J.Mater.Sci.2008,43,469.

    (11) Binder,W.H.;Sachsenhofer,R.;Farnik,D.;Blaas,D.Phys. Chem.Chem.Phys.2007,9,6435.

    (12)Binder,W.H.;Sachsenhofer,R.Macromol.Rapid Commun. 2008,29,1097.

    (13) Lecommandoux,S.;Sandre,O.;Chécot,F.;Perzynski,R.Prog. Solid State Chem.2006,34,171.

    (14) Kang,Y.J.;Taton,T.A.Angew.Chem.Int.Edit.2005,44,409.

    (15) Mu,D.;Zhou,Y.H.Acta Phys.-Chim.Sin.2011,27,374. [牟 丹,周亦含.物理化學(xué)學(xué)報(bào),2011,27,374.]

    (16) Mueller,W.;Koynov,K.;Fischer,K.;Hartmann,S.;Pierrat,S.; Basche,T.;Maskos,M.Macromolecules 2009,42,357.

    (17) Li,X.L.;Ji,J.;Wang,X.L.;Wang,Y.X.;Shen,J.C. Macromol.Rapid Commun.2007,28,660.

    (18) Noguchi,H.;Takasu,M.Phys.Rev.E 2001,64,041913.

    (19)Yamamoto,S.;Maruyama,Y.;Hyodo,S.J.Chem.Phys.2002, 116,5842.

    (20) Marrink,S.J.;Mark,A.E.J.Am.Chem.Soc.2003,125,15233.

    (21) Vries,A.H.;Mark,A.E.;Marrink,S.J.J.Am.Chem.Soc. 2004,126,4488.

    (22)Huang,J.H.;Wang,Y.;Qian,C.J.J.Chem.Phys.2009,13, 234902.

    (23)Thompson,R.B.;Ginzburg,V.V.;Matsen,M.W.;Balazs,A.C. Science 2001,292,2469.

    (24) Wang,Q.;Nealey,P.F.;Pablo,J.J.J.Chem.Phys.2003,118, 11278.

    (25) Schultz,A.J.;Hall,C.K.;Genzer,J.Macromolecules 2005,38, 3007.

    (26) Ginzburg,V.V.;Qiu,F.;Balazs,A.C.Polymer 2002,43,461.

    (27)Liu,D.H.;Zhong,C.L.Macromol.Rapid Commun.2006,27, 458.

    (28) He,L.;Zhang,L.;Liang,H.J.J.Phys.Chem.B 2008,112, 4194.

    (29) Carmesin,I.;Kremer,K.Macromolecules 1988,21,2819.

    (30) Ji,S.C.;Ding,J.D.Langmuir 2006,22,553.

    (31) Romiszowski,P.;Sikorski,A.Macromol.Symp.2008,267,105.

    (32) Zehl,T.;Wahab,M.;Mogel,H.J.;Schiller,P.Langmuir 2006, 22,2523.

    (33)Huh,J.;Ginzburg,V.V.;Balazs,A.C.Macromolecules 2000, 33,8085.

    (34) Mannng,G.S.Biophys.J.2006,91,3607.

    (35) Huang,J.H.;Sun,D.C.J.Colloid Interface Sci.2007,315,355.

    August 29,2011;Revised:November 16,2011;Published on Web:November 21,2011.

    Monte Carlo Simulation on the Structures of a Nanoparticle/ Copolymer Mixed System

    LIU Guan-Feng HUANG Jian-Hua*
    (Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,P.R.China)

    The structures of a nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulations.Each copolymer chain consisted of one A bead and three B beads,and the amphiphilic property of the A1B3chains was represented by an attraction between B-B beads. Nanoparticles were hydrophobic with an attraction amongst themselves.By properly choosing the attraction between the nanoparticle and the B beads,we observe two interesting structures:a nanoparticle/ A1B3chain core-shell structure and an A1B3vesicle with nanoparticles dispersed in the hydrophobic shell. The evolutions of these two structures were investigated.Our results show that the A1B3vesicle acts as a template for the formation of the nanoparticle-dispersed vesicle.

    Dynamic Monte Carlo simulation;Copolymer;Nanoparticle;Vesicle

    10.3866/PKU.WHXB201111211 www.whxb.pku.edu.cn

    *Corresponding author.Email:jhhuang@zstu.edu.cn;Tel:+86-571-86843233.

    The project was supported by the National Natural Science Foundation of China(21171145)and Natural Science Foundation of Zhejiang Province, China(Y4110422).

    國家自然科學(xué)基金(21171145)和浙江省自然科學(xué)基金(Y4110422)資助項(xiàng)目

    O641;O648

    猜你喜歡
    體系結(jié)構(gòu)珠子共聚物
    兩嵌段共聚物軟受限自組裝行為研究
    與樹一樣大的珠子
    擺珠子
    紙珠子
    基于粒計(jì)算的武器裝備體系結(jié)構(gòu)超網(wǎng)絡(luò)模型
    作戰(zhàn)體系結(jié)構(gòu)穩(wěn)定性突變分析
    基于DODAF的裝備體系結(jié)構(gòu)設(shè)計(jì)
    雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
    猜珠子
    讀寫算(上)(2015年6期)2015-11-07 07:17:55
    DADMAC-AA兩性共聚物的合成及應(yīng)用
    高清在线国产一区| 久久国产乱子伦精品免费另类| 日本 av在线| 亚洲性夜色夜夜综合| 麻豆国产av国片精品| 免费久久久久久久精品成人欧美视频| 在线十欧美十亚洲十日本专区| 日韩精品青青久久久久久| 免费在线观看完整版高清| 亚洲国产欧美一区二区综合| 久久久久精品国产欧美久久久| 亚洲专区字幕在线| 丁香欧美五月| 精品免费久久久久久久清纯| 91麻豆av在线| 欧美日韩国产mv在线观看视频| 老熟妇仑乱视频hdxx| 国产成年人精品一区二区 | 丝袜美足系列| 婷婷精品国产亚洲av在线| 美女高潮喷水抽搐中文字幕| 一边摸一边抽搐一进一小说| 欧美大码av| 欧美不卡视频在线免费观看 | svipshipincom国产片| 日韩国内少妇激情av| av中文乱码字幕在线| 女性生殖器流出的白浆| 一进一出抽搐动态| 黄色毛片三级朝国网站| 国产99白浆流出| 久久天堂一区二区三区四区| 国产精品成人在线| 国产在线精品亚洲第一网站| 黄网站色视频无遮挡免费观看| 国产高清激情床上av| 亚洲精品中文字幕一二三四区| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 在线视频色国产色| 亚洲精华国产精华精| 校园春色视频在线观看| 黄色成人免费大全| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区精品| 99久久99久久久精品蜜桃| 日本免费一区二区三区高清不卡 | 亚洲人成电影免费在线| 国产亚洲精品综合一区在线观看 | 91国产中文字幕| svipshipincom国产片| 97人妻天天添夜夜摸| 精品一品国产午夜福利视频| 麻豆av在线久日| 精品久久久久久成人av| www日本在线高清视频| 国产成人系列免费观看| 国产成人精品久久二区二区91| 性少妇av在线| 人人澡人人妻人| 麻豆一二三区av精品| 色播在线永久视频| 午夜91福利影院| 在线十欧美十亚洲十日本专区| 国产一区二区三区视频了| 日韩欧美一区视频在线观看| 嫁个100分男人电影在线观看| 高清在线国产一区| 女人被躁到高潮嗷嗷叫费观| 成在线人永久免费视频| 精品欧美一区二区三区在线| 久久国产精品影院| 国产免费av片在线观看野外av| 亚洲五月天丁香| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 国产一区二区三区综合在线观看| 久99久视频精品免费| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠躁躁| 女性生殖器流出的白浆| 精品无人区乱码1区二区| 久久精品国产综合久久久| 婷婷精品国产亚洲av在线| 国产av精品麻豆| 久久久久久亚洲精品国产蜜桃av| 女性被躁到高潮视频| 亚洲国产看品久久| 国产精品偷伦视频观看了| 9色porny在线观看| 久久久久亚洲av毛片大全| 黄色视频,在线免费观看| 久9热在线精品视频| 日日夜夜操网爽| 18禁观看日本| 亚洲精品中文字幕一二三四区| 国产亚洲欧美精品永久| 久热爱精品视频在线9| 亚洲激情在线av| 又大又爽又粗| 国产人伦9x9x在线观看| 成人永久免费在线观看视频| 亚洲精品国产区一区二| 国产成人精品在线电影| 母亲3免费完整高清在线观看| av网站在线播放免费| 九色亚洲精品在线播放| 欧美日本中文国产一区发布| av福利片在线| 久久精品亚洲熟妇少妇任你| 岛国视频午夜一区免费看| 久久午夜亚洲精品久久| 麻豆一二三区av精品| 神马国产精品三级电影在线观看 | 一二三四在线观看免费中文在| av欧美777| 1024视频免费在线观看| 久久青草综合色| www.自偷自拍.com| cao死你这个sao货| 看免费av毛片| 欧美在线黄色| 久久久国产成人免费| 欧美久久黑人一区二区| 亚洲少妇的诱惑av| 夜夜爽天天搞| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 啦啦啦 在线观看视频| 极品人妻少妇av视频| 日韩国内少妇激情av| 午夜福利一区二区在线看| 青草久久国产| 无限看片的www在线观看| 美女午夜性视频免费| 最近最新免费中文字幕在线| 亚洲在线自拍视频| 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 人妻丰满熟妇av一区二区三区| 91字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 一级片'在线观看视频| 国产精品99久久99久久久不卡| 国产91精品成人一区二区三区| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 欧美午夜高清在线| 免费在线观看亚洲国产| 亚洲人成网站在线播放欧美日韩| 黑丝袜美女国产一区| 成人亚洲精品av一区二区 | 精品无人区乱码1区二区| 欧美性长视频在线观看| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 欧美人与性动交α欧美软件| 亚洲熟妇中文字幕五十中出 | av视频免费观看在线观看| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 国产91精品成人一区二区三区| 免费在线观看黄色视频的| 高清欧美精品videossex| 婷婷六月久久综合丁香| 老司机午夜十八禁免费视频| 亚洲人成网站在线播放欧美日韩| 黑丝袜美女国产一区| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜 | xxxhd国产人妻xxx| 天天影视国产精品| 69精品国产乱码久久久| 不卡av一区二区三区| 国产精品免费一区二区三区在线| 亚洲免费av在线视频| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 国产成人欧美在线观看| 日韩中文字幕欧美一区二区| 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕大全电影3 | 日韩免费高清中文字幕av| 久久精品aⅴ一区二区三区四区| 男人操女人黄网站| 欧洲精品卡2卡3卡4卡5卡区| 久久人人97超碰香蕉20202| 亚洲欧美一区二区三区黑人| 一级毛片精品| 国产av一区二区精品久久| 一区在线观看完整版| av电影中文网址| 国产主播在线观看一区二区| 波多野结衣一区麻豆| 香蕉久久夜色| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 亚洲全国av大片| 欧美激情高清一区二区三区| 99久久精品国产亚洲精品| 成人国语在线视频| 久久热在线av| 一本综合久久免费| 丝袜在线中文字幕| 亚洲视频免费观看视频| 在线看a的网站| 女人精品久久久久毛片| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸 | 午夜免费激情av| 国产片内射在线| 97人妻天天添夜夜摸| 国产在线观看jvid| 极品教师在线免费播放| 两人在一起打扑克的视频| 在线观看舔阴道视频| 伊人久久大香线蕉亚洲五| 欧美激情极品国产一区二区三区| 这个男人来自地球电影免费观看| 成人国语在线视频| 真人做人爱边吃奶动态| 一进一出抽搐gif免费好疼 | 一级片'在线观看视频| 久久国产精品影院| 久久中文看片网| 麻豆国产av国片精品| 色播在线永久视频| 精品久久久久久,| cao死你这个sao货| av天堂久久9| 精品一区二区三区视频在线观看免费 | 欧美午夜高清在线| tocl精华| 精品国内亚洲2022精品成人| 国产精品亚洲一级av第二区| 国产精品久久久av美女十八| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 日本三级黄在线观看| av免费在线观看网站| 丰满的人妻完整版| 18美女黄网站色大片免费观看| 狂野欧美激情性xxxx| 91在线观看av| 国产高清视频在线播放一区| 91精品三级在线观看| 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 久久亚洲精品不卡| 一个人观看的视频www高清免费观看 | 91大片在线观看| 久久久久国产精品人妻aⅴ院| 欧美av亚洲av综合av国产av| 香蕉丝袜av| aaaaa片日本免费| 久久精品国产综合久久久| 亚洲国产精品999在线| 亚洲黑人精品在线| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费 | 成人免费观看视频高清| 人人妻人人澡人人看| 看黄色毛片网站| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 久久影院123| 国产成人欧美| 女生性感内裤真人,穿戴方法视频| 免费在线观看亚洲国产| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 99久久久亚洲精品蜜臀av| 久久精品91无色码中文字幕| 岛国在线观看网站| 亚洲av第一区精品v没综合| 91精品国产国语对白视频| 亚洲视频免费观看视频| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 操出白浆在线播放| 妹子高潮喷水视频| 超色免费av| 免费日韩欧美在线观看| 中文字幕人妻丝袜制服| 黑人操中国人逼视频| 美女高潮喷水抽搐中文字幕| 国产日韩一区二区三区精品不卡| 精品国产美女av久久久久小说| 精品欧美一区二区三区在线| 美女大奶头视频| 国产欧美日韩一区二区精品| 不卡一级毛片| 亚洲五月天丁香| 日韩国内少妇激情av| 一个人免费在线观看的高清视频| 亚洲色图综合在线观看| 91精品三级在线观看| 天堂影院成人在线观看| 免费av毛片视频| 成人亚洲精品av一区二区 | 男女高潮啪啪啪动态图| 两个人免费观看高清视频| 亚洲欧美激情综合另类| 美女国产高潮福利片在线看| 丝袜在线中文字幕| 欧美日韩亚洲高清精品| videosex国产| 国产成人啪精品午夜网站| 国产一区二区三区视频了| 亚洲人成77777在线视频| 最新在线观看一区二区三区| 搡老熟女国产l中国老女人| 丁香欧美五月| 久久天躁狠狠躁夜夜2o2o| 我的亚洲天堂| 99国产极品粉嫩在线观看| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 日日干狠狠操夜夜爽| 少妇粗大呻吟视频| 国产一区二区三区综合在线观看| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 一级作爱视频免费观看| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 久久国产精品影院| 高清毛片免费观看视频网站 | 免费av毛片视频| 午夜久久久在线观看| 日本五十路高清| 午夜福利在线观看吧| 亚洲免费av在线视频| 色婷婷av一区二区三区视频| 91精品国产国语对白视频| 亚洲av成人不卡在线观看播放网| 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 免费高清在线观看日韩| 国产成人啪精品午夜网站| 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 亚洲在线自拍视频| 婷婷精品国产亚洲av在线| 一级,二级,三级黄色视频| 成人精品一区二区免费| av视频免费观看在线观看| 国产成人av教育| 国产精品国产高清国产av| 国产精品日韩av在线免费观看 | 欧美久久黑人一区二区| 国产精品二区激情视频| 可以在线观看毛片的网站| 亚洲久久久国产精品| 久久人妻av系列| 亚洲,欧美精品.| 91大片在线观看| 男女下面进入的视频免费午夜 | 1024视频免费在线观看| 亚洲三区欧美一区| 欧美色视频一区免费| 国产成人欧美| 三级毛片av免费| 男人舔女人的私密视频| 18美女黄网站色大片免费观看| 国产片内射在线| www.熟女人妻精品国产| 九色亚洲精品在线播放| 999久久久国产精品视频| 黄频高清免费视频| 美女福利国产在线| 精品一区二区三卡| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 国产色视频综合| 色婷婷久久久亚洲欧美| 亚洲激情在线av| 操美女的视频在线观看| 又紧又爽又黄一区二区| 亚洲成人国产一区在线观看| 成年女人毛片免费观看观看9| 每晚都被弄得嗷嗷叫到高潮| 亚洲性夜色夜夜综合| 制服人妻中文乱码| 人人妻,人人澡人人爽秒播| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 国产单亲对白刺激| 亚洲精品在线美女| 久久久久久久精品吃奶| 看片在线看免费视频| 1024香蕉在线观看| 少妇的丰满在线观看| 色哟哟哟哟哟哟| 久久久久九九精品影院| 色婷婷久久久亚洲欧美| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 久久国产乱子伦精品免费另类| 国产欧美日韩综合在线一区二区| 侵犯人妻中文字幕一二三四区| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 长腿黑丝高跟| 久久久国产一区二区| 午夜激情av网站| 人人妻人人爽人人添夜夜欢视频| 久9热在线精品视频| 水蜜桃什么品种好| 日本a在线网址| 黄色怎么调成土黄色| 丰满的人妻完整版| 亚洲男人的天堂狠狠| 亚洲少妇的诱惑av| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 久久久久国内视频| 欧美 亚洲 国产 日韩一| 国产精品自产拍在线观看55亚洲| 最近最新中文字幕大全电影3 | 欧美日韩亚洲综合一区二区三区_| 黄色怎么调成土黄色| 午夜免费观看网址| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 日本一区二区免费在线视频| 老汉色∧v一级毛片| 男人操女人黄网站| 又紧又爽又黄一区二区| а√天堂www在线а√下载| 91在线观看av| 淫秽高清视频在线观看| 一级毛片高清免费大全| 91精品三级在线观看| 伦理电影免费视频| 国产野战对白在线观看| 久9热在线精品视频| 国产精品一区二区精品视频观看| 他把我摸到了高潮在线观看| cao死你这个sao货| 99久久99久久久精品蜜桃| 亚洲av成人av| 国产精品一区二区在线不卡| 亚洲国产精品999在线| 免费在线观看黄色视频的| 日韩中文字幕欧美一区二区| 夜夜爽天天搞| 欧美乱色亚洲激情| 国产精品九九99| xxxhd国产人妻xxx| 宅男免费午夜| svipshipincom国产片| 亚洲第一av免费看| 免费在线观看亚洲国产| 999精品在线视频| 中亚洲国语对白在线视频| 成人永久免费在线观看视频| videosex国产| 午夜免费鲁丝| 91麻豆精品激情在线观看国产 | 丁香欧美五月| aaaaa片日本免费| 午夜精品国产一区二区电影| 香蕉国产在线看| 天堂√8在线中文| 欧美久久黑人一区二区| 两个人免费观看高清视频| 久久久国产一区二区| 美女大奶头视频| 性欧美人与动物交配| av天堂在线播放| 人人妻人人澡人人看| 18禁观看日本| 99热国产这里只有精品6| 麻豆久久精品国产亚洲av | 日韩精品免费视频一区二区三区| 黄色a级毛片大全视频| 黑丝袜美女国产一区| 欧美乱色亚洲激情| 国内毛片毛片毛片毛片毛片| av网站在线播放免费| 国产亚洲精品综合一区在线观看 | 久久久国产欧美日韩av| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 精品福利观看| 久久久久久久久久久久大奶| 日韩精品中文字幕看吧| 51午夜福利影视在线观看| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女 | 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 在线天堂中文资源库| 黄色怎么调成土黄色| 一二三四社区在线视频社区8| 精品国产乱子伦一区二区三区| 亚洲久久久国产精品| 人妻丰满熟妇av一区二区三区| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| a级片在线免费高清观看视频| 欧美大码av| 视频区欧美日本亚洲| 精品福利观看| 人人妻人人澡人人看| 午夜a级毛片| 啦啦啦在线免费观看视频4| 日本免费a在线| 国产精品亚洲一级av第二区| 免费不卡黄色视频| 宅男免费午夜| 亚洲欧美一区二区三区久久| 高清毛片免费观看视频网站 | 在线观看日韩欧美| 免费少妇av软件| 日韩大尺度精品在线看网址 | 成人亚洲精品av一区二区 | 在线十欧美十亚洲十日本专区| 久久九九热精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 淫妇啪啪啪对白视频| 久久人妻熟女aⅴ| 国产一区二区三区视频了| 国产单亲对白刺激| 免费高清视频大片| 岛国在线观看网站| 欧美日韩福利视频一区二区| 精品一品国产午夜福利视频| 精品高清国产在线一区| 国产黄色免费在线视频| 亚洲伊人色综图| 伦理电影免费视频| 国产精品av久久久久免费| 一边摸一边做爽爽视频免费| 十分钟在线观看高清视频www| 99热只有精品国产| 国产精品久久久久成人av| 制服诱惑二区| 美女大奶头视频| 黄色怎么调成土黄色| 国产成人精品久久二区二区91| 亚洲成人久久性| x7x7x7水蜜桃| 国产又爽黄色视频| 制服人妻中文乱码| 日本免费a在线| 色老头精品视频在线观看| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 欧美日本中文国产一区发布| 91精品国产国语对白视频| videosex国产| 91九色精品人成在线观看| 天堂中文最新版在线下载| 欧美精品亚洲一区二区| 国产黄色免费在线视频| 999精品在线视频| 99热国产这里只有精品6| 久久人人精品亚洲av| 老司机福利观看| 亚洲成人国产一区在线观看| 久久 成人 亚洲| 天堂中文最新版在线下载| 精品少妇一区二区三区视频日本电影| 波多野结衣一区麻豆| 最好的美女福利视频网| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 久久性视频一级片| 黑人巨大精品欧美一区二区蜜桃| 成年女人毛片免费观看观看9| 午夜福利一区二区在线看| 免费观看精品视频网站| 国产一区二区三区在线臀色熟女 | 久久久久久久久久久久大奶| 国产99白浆流出| 国产精品秋霞免费鲁丝片| 在线视频色国产色| 亚洲avbb在线观看| 国产精品免费一区二区三区在线| 亚洲精品国产色婷婷电影| 人人妻人人爽人人添夜夜欢视频| 欧美最黄视频在线播放免费 | 日本wwww免费看| 国产真人三级小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 国产成年人精品一区二区 | 88av欧美| 国产99久久九九免费精品| 亚洲成av片中文字幕在线观看| 99精品在免费线老司机午夜| 免费高清在线观看日韩| 不卡av一区二区三区| 久久精品成人免费网站| 少妇粗大呻吟视频| 亚洲成a人片在线一区二区| 国产又色又爽无遮挡免费看| 成人三级做爰电影| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 岛国视频午夜一区免费看| 人妻丰满熟妇av一区二区三区| 久久久国产精品麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产亚洲av香蕉五月| 久久青草综合色| 少妇裸体淫交视频免费看高清 |