• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米粒子/共聚物混合體系結(jié)構(gòu)的Monte Carlo模擬

    2012-12-05 02:27:50劉觀峰黃建花
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:體系結(jié)構(gòu)珠子共聚物

    劉觀峰 黃建花

    (浙江理工大學(xué)化學(xué)系,杭州310018)

    納米粒子/共聚物混合體系結(jié)構(gòu)的Monte Carlo模擬

    劉觀峰 黃建花*

    (浙江理工大學(xué)化學(xué)系,杭州310018)

    基于簡立方格點(diǎn)模型,對納米粒子/共聚物混合體系進(jìn)行了動(dòng)力學(xué)Monte Carlo模擬研究.每一共聚物鏈均由一個(gè)A珠子和三個(gè)B珠子組成,表示為A1B3.A1B3鏈的兩親性體現(xiàn)為B-B之間的相互吸引作用,同時(shí)憎水性的納米粒子之間也存在相互吸引.通過適當(dāng)選取納米粒子與B珠子之間的吸引作用勢,觀察到兩種結(jié)構(gòu):納米粒子/A1B3鏈的核-殼結(jié)構(gòu)和納米粒子分散在憎水殼層中的A1B3囊泡結(jié)構(gòu).還研究了這兩種結(jié)構(gòu)的動(dòng)力學(xué)演化過程,模擬結(jié)果表明在納米粒子分散于囊泡殼層的過程中A1B3囊泡起模板作用.

    動(dòng)力學(xué)Monte Carlo模擬;共聚物;納米粒子;囊泡

    1 Introduction

    Amphiphilic block copolymers in aqueous solution are known to self-assemble into a variety of supermolecular structures such as micelles,vesicles,cylinders,and lamellae.Vesicles are of special interest since they are important model systems for biological cells and show potential applications in many areas such as microreactors,microcapsules,and drug delivery systems.1-5They have been successfully used as templates for preparing inorganic hollow spheres.For instance,silica hollow spheres were obtained by adding silicon alkoxide to an aqueous solution of amphiphiles,such as cationic,catanionic,or mixed surfactant vesicles,followed by hydrolysis and polycondensation,or a fast silicification.6-9Sub-micrometer hollow metallic spheres of Ni-P alloy were produced by the chemical reduction over anionic surfactant vesicle templates.10

    Encapsulation of hydrophobic nanoparticles,such as hydrophobic Au and CdSe nanoparticles,into the vesicle shell through hydrophobic interactions has been achieved.11,12Be-sides,amphiphilic copolymers can form micelle and hydrophobic nanoparticles can thus be loaded into the micelle to form a core-shell structure.13It can improve the stability and surface chemistry of the nanoparticle core and access unique physical properties that are not possible for nanomaterial alone.14,15

    Drug delivery is mainly based on successful encapsulation of drugs with different solubility parameters.Two hydrophobic model materials,fluorescent Dye Nile Red representing the molecular size regime and fluorescent quantum dots representing the nano size regime,were successfully encapsulated into the hydrophobic shell of poly(butadiene)-b-poly(ethylene oxide)vesicles.And the quantum dots were observed to be centered inside the double layer of the vesicle shell.16The comblike poly(ethylene glycol)(CPEG)-g-cholesterol vesicle and the cross-linked vesicle of CPEG and CPEG-g-cholesterol were found to be able to entrap considerably hydrophobic doxorubicin(a general anti-cancer drug)in the shell,which showed a great potential as a cargo of the hydrophobic drug.17

    Computer simulations play important roles in understanding the formation mechanism of block copolymer vesicle.18-22The phase behavior of nanoparticle/block copolymer mixed system as well as the distribution of nanoparticles in the microdomain of lamellar copolymers have been simulated.23-28The nanoparticle volume fraction,size,and the interaction strength between nanoparticle and copolymer were found to strongly affect the phase behavior of the mixed system.However,we learn little from simulations about the loading process of nanoparticles into vesicles.

    In the present work,we studied the phase behavior of nanoparticle/copolymer vesicle mixed system using dynamic Monte Carlo simulation.Hydrophobic nanoparticles were added into the solution containing a single copolymer vesicle.By changing the interaction between nanoparticle and copolymer chain,two structures,nanoparticle/copolymer core-shell structure and copolymer vesicle with nanoparticles dispersed in the shell,were observed.Their formation processes were investigated in detail.

    2 Model and simulation method

    Simulations were carried out in a simulation box with size 40×40×40 buried in the simple cubic(SC)lattice.The unit of length in this paper was one lattice size of the SC lattice.Periodic boundary conditions were used in all the three dimensions.Each nanoparticle consisted of one single bead(n),and a diblock copolymer A1B3chain was composed of one hydrophilic bead(A)and three hydrophobic beads(B).Self-avoiding was considered,that is,each bead occupied one lattice site and every lattice site could not be simultaneously occupied by more than one bead.The void lattice sites were considered as solvents(S).For polymer chains,the bond length between sequentially linked beads ranged from 1 to 3on the SC lattice, which was originally proposed by Carmesin and Kremer29.The bond between successive beads along a chain was taken from 26 allowed bond vectors obtained from symmetry operations on the set of{(1,0,0),(1,1,0),(1,1,1)}.In this bond-fluctuation model,the beads did not correspond to specific atoms in a polymer chain but rather to small groups of atoms,and the bonds did not represent specific covalent bonds between two atoms but the linkages between beads instead.

    Pairwise nearest-neighbor and next nearest-neighbor interactions with the same strength were considered.The amphiphilic property of A1B3chain was represented by interaction energy εBB=-1 for B-B pair and εAA=εAB=0 for A-A and A-B pairs.This model had been successfully used to study the self-assembly behavior of block copolymer in solution.30,31The choice of these effective pairwise interactions implies a generally accepted assumption that the hydrophobic interaction should be much stronger than other attractive forces between amphiphile beads.32The hydrophobic property of nanoparticles was represented by an attractive interaction between nanoparticles (εnn=-1.5),thus they precipitated from the solution in the absence of copolymers.The interaction for solvent-solvent pair was set as εSS=0,which served as a background.Nanoparticles had an affinity toward B-block.So an attraction εnBbetween nanoparticle and B bead was introduced to investigate the mixture of A1B3vesicle and naoparticles.Other interactions,including εAS,εBS,εnS,and εnA,were fixed to be zero.Similar interaction model was used in the simulation of thermodynamic behavior of particle/diblock copolymer mixtures.33The system temperature was fixed at kBT=1.25 in which kBis the Boltzmann constant.Only εnBwas variable in the simulation.

    The volume fraction of A1B3chains,φp,and that of nanoparticles,φn,were defined as φp=4Np/V and φn=Nn/V,respectively. Here V was the total sites of the simulation box,Npwas the number of A1B3chains,and Nnwas the number of nanoparticles.The dynamic simulation was achieved by randomly choosing one bead and randomly moving to one of its six nearest neighbor sites.This trial move was accepted if the following conditions were satisfied:(1)the self-avoidance was obeyed, which meant that it could only exchange with a vacancy;and (2)the Boltzmann factor exp(-ΔE/kBT)was greater than a random number uniformly distributed in the interval(0,1),where ΔE was the change in energy due to the trial move.The second criterion,i.e.,the Metropolis criterion,ensured that the system obeyed Boltzmann statistics.For A1B3chain,two additional conditions should be satisfied:(1)the new bond vector still belonged to the allowed bond set;and(2)two bonds did not intersect.Each trial move is called a bead cycle,one Monte Carlo step(MCS)consists of(4Np+Nn)bead cycles.

    In the present work,we studied the mixed system containing 7%A1B3chains and 3%hydrophobic nanoparticles.Due to the attraction between B-B beads,A1B3chains self-assembled into vesicles at the volume fraction of A1B3in the range of 4%-15%,22as that used in other simulations.30This was one reason why we chose A1B3in this work.This diblock copolymer A1B3mimics poly(styrene)-b-poly(acrylic acid)(PS-b-PAA)used in experiments.3The size of one bead was taken as the Kuhn length of polyacrylic acid,which is about 1.5 nm or approximately the length of 6 monomers.34The effect of the attraction εnBbetween nanoparticle and B bead on the structure of mixed system was studied from the same start situation.Simulations were carried out as follows:A1B3chains were first randomly put into the system and one single vesicle was formed after a long time of movement.Then nanoparticles were randomly added into the A1B3vesicle system.The simulation time was set as t=0 MCS at this moment.In addition,the attraction εnBbetween nanoparticle and B bead was taken into account. We found different kinds of complex structures by varying the attraction value of εnB,and discussed the mechanism for forming different structures.

    3 Results and discussion

    Fig.1(a)presents A1B3vesicle formed at φp=7%.It is fabricated by two layers of A1B3chains with A bead locating at the inner and outer surfaces to prevent the contact between B bead and solvent.The vesicular core is filled with solvent.The shell thickness is about 5,while hydrophobic nanoparticles aggregate into a compact sphere to avoid solvent contact.Fig.1(b) presents the compact sphere aggregated at φn=3%in the absence of block copolymer.The radius of sphere is about 8.

    3.1 Structures of nanoparticle/A1B3chain system

    The structures of A1B3vesicle and hydrophobic nanoparticles mixed system were studied by varying εnBvalues.Fig.2 shows the final structures formed at different εnBvalues.We first consider a limit case that the attraction between nanoparticle and B bead is weak.In this case,nanoparticles assemble into a compact aggregate without any contacts with the vesicle. It is formed by fusion of small aggregates as we previously reported.35Fig.2(a)shows the final structure of the system at εnB=-0.5.Because the attraction εnB(-0.5)is weak,it cannot overcome the attractions between nanopaticles and that between B-B beads.ThusA1B3vesicle remains unchanged.

    Fig.1 (a)Vesicle formed byA1B3chains at φp=7%with εBB=-1, (b)aggregate formed in pure nanoparticle/solvent system at φn=3%with εnn=-1.5Blue and red beads representAand B beads ofA1B3chain,respectively,and green ones represent nanoparticles.The same symbols are used in the remaining figures.

    Fig.2 Five structures formed with different εnBvaluesεnB:(a)-0.5,(b)-0.6,(c)-0.9,(d)-1.2,(e)-1.6

    Turning to the other limit case with εnBclose to or beyond εnn=-1.5,we find that nanoparticles fully enter into the shell of A1B3vesicle as shown in Fig.2(e)at εnB=-1.6.This structure is consistent with experimental observation.11,12,16Therefore one may obtain a hollow sphere after removing copolymers.6-8In this case,nanoparticles can either disperse into the vesicle shell or aggregate into a sphere in the view of energy.However,dispersion into the shell gets more contacts between nanoparticle and B bead,thus leading to the decrease of the system energy.

    Three other kinds of structures are formed at moderate εnB=-0.6,-0.9,-1.2.At εnB=-0.6,though nanoparticles still assemble into a compact aggregate,there are a number of contacts between nanoparticle and B bead.Such contacts break the vesicle as shown in Fig.2(b).When εnBis close to εBB,B beads like to contact with nanoparticles as well as with themselves. Since εnnis more negative than both εnBand εBB,nanoparticles still assemble into a compact aggregate.In this case,the nanoparticle aggregate is fully enveloped by A1B3chains, which prevents the contact between nanoparticle and solvent and lowers the system energy.A perfect core-shell structure is presented in Fig.2(c)at εnB=-0.9.With a further increase of the attraction between nanoparticle and B bead to the case|εBB|<|εnB|<|εnn|,B bead favors to contact with nanoparticle,but nanoparticles still favor to aggregate with themselves.Thus it is observed that nanoparticles are not well dispersed but aggregate together irregularly in the vesicle shell,as shown in Fig.2 (d)with εnB=-1.2.The irregular aggregate has a large surface to balance the n-B interaction and n-n interaction.In all these three structures,nanoparticles always aggregate together with themselves since the attraction strength|εnB|is smaller than|εnn|.

    It is clear that the final structures are dependent on the interactions that we take into account in the system.These structures are controlled by the competition among three attraction strengths εBB,εnn,and εnB.In the present model with εBB=-1 and εnn=-1.5,we observe five structures at different εnBvalues.At small εnBclose to 0,we observe separate nanoparticle aggregate and A1B3vesicle.With the increase of|εnB|,nanoparticle aggre-gate and A1B3irregular aggregate,nanoparticle/A1B3core-shell structure,and A1B3vesicle with nanoparticles aggregate in the shell are observed.And at εnBclose to-2,we observe A1B3vesicle with nanoparticles well-dispersed in the shell.We have also studied the influence of the nanoparticle volume fraction φnon the structure of nanoparticle/A1B3vesicle system.For the case φp=7%,all the five structures can be formed at φn<10%, and the boundaries between different structures are roughly independent of φn.

    Among these five structures,we find that the core-shell structure and nanoparticle-dispersed vesicle are of most interesting.These two structures are widely observed and discussed in experiments,since they are of great potential to carry drug, magnetic and optical particles.11-17It will increase the compatibility and stabilization of nanoparticles after being loaded into copolymer superstructures.In the present simulation,the coreshell structure is obtained by adding nanoparticles into a vesicle system,which is different from experiment where nanoparticles were added into a micellar system.13The evolutions of core-shell structure and nanoparticle-dispersed vesicle are studied in the following.

    3.2 Evolution of nanoparticle/A1B3complex structures

    We first investigated the evolution of core-shell structure at εnB=-0.9 shown in Fig.2(c).Fig.3 presents the snapshots captured at different periods.Due to the attraction between nanoparticles,they quickly assemble into small aggregates upon addition into A1B3vesicle system.Because of the attraction between nanoparticle and B bead,some nanoparticle aggregates contact with the vesicle,as shown in Fig.3(a)captured at t=0.1×106MCS.Then nanoparticle aggregates become larger with the time going,while the vesicle becomes smaller because more and more A1B3chains are adsorbed onto nanoparticle aggregates(see Fig.3(b-e)).At t=8×106MCS,A1B3vesicle disappears and all A1B3chains envelop around one big nanoparticle aggregate,forming a perfect nanoparticle/A1B3chain core-shell structure,Fig.3(f)shows the final structure formed at t=9×106MCS.

    Fig.3 Snapshots of the evolution of nanoparticle/A1B3core-shell structures at different time10-6t/MCS:(a)0.1,(b)1,(c)2,(d)4,(e)7,(f)9;εnB=-0.9.To clearly see the core-shell structure,we shift 7 lattices along z direction in(f).

    Fig.4 (a)Evolution of the system energy(E)during the formation of nanoparticle/A1B3core-shell structure,(b)variation of the densities(ρ)ofAbead,B bead,nanoparticle,and solvent with the distance(r)to the mass centerThe snapshots of a-f are presented in Fig.3.

    Fig.5 Snapshots captured at different time10-5t/MCS:(a)0,(b)0.1,(c)1,(d)5;εnB=-1.6

    Fig.4(a)presents the evolution of system energy during the formation of core-shell structure.At early time t<106MCS,the system energy decreases quickly because nanoparticles rapidly form small aggregates followed by the fast growth of aggregates.During a long time interval from 1×106to 6×106MCS, the system energy varies little but the configuration changes obviously.During this period there is a competition between the following two tendencies:(1)The shrink of vesicle causes an increase in energy;while(2)the adsorption of A1B3chains on nanoparticle aggregates decreases the system energy.Their competition leads to the fluctuation of the system energy and the configuration evolution.However,the energy decreases gradually from 6×106MCS,indicating that the second tendency becomes dominating and the vesicle becomes smaller and smaller.At t=8×106MCS,A1B3vesicle disappears and the coreshell structure is formed instead,and the system reaches an equilibrium.

    Fig.6 (a)Time evolution of the system energy E during the formation of nanoparticle-dispersed vesicle,(b)variation of the densities ofA, B beads,nanoparticle,and solvent with the distance(r)to the mass center of vesicleThe snapshots of a-d are presented in Fig.5.

    The core-shell structure is characterized using the density distributions of different components with respect to the mass center,as shown in Fig.4(b).It shows that the core is occupied by nanoparticles within r<8.The core size is comparable to the nanoparticle aggregate formed in the absence of block copolymer(Fig.1(b)).The peaks of A and B beads locate at about 10 and 9,respectively,indicating that A1B3chains form the shell with A bead on outer surface of the core-shell structure.The shell is fabricated by one layer of copolymers.

    We have also investigated the evolution of nanoparticle-dispersed vesicle structure at εnB=-1.6(Fig.2(e)).Snapshots for the loading of nanoparticles in the vesicle shell are shown in Fig.5.Initially,nanoparticles are randomly put into the simulation box(Fig.5(a)).They quickly assemble into small aggregates due to their hydrophobic property.Meanwhile some nanoparticles diffuse into the vesicle shell owing to the attraction between nanoparticle and B bead,see Fig.5(b).Number of nanoparticle aggregates decreases with the time,more and more nanoparticles diffuse into the vesicle shell,as shown in Fig.5(b,c).At time t=1.5×105MCS,all nanoparticles are located in the vesicle shell.Fig.5(d)shows the snapshot captured at t=5×105MCS.This structure remains stable in the following 15×105MCS simulation.During the evolution,the system energy E drops monotonously(Fig.6(a)),indicating the evolution is determinatively controlled by energy.E reaches an equilibrium value at t~1.5×105MCS.Afterwards,the system energy roughly remains constant,indicating that the final structure is stable.

    In order to obtain the detailed information on the final structure,the density distributions of different components with respect to the mass center of the vesicle are plotted in Fig.6(b). The vesicular core is occupied by solvent within r<3.A beads locate at inner and outer surfaces of the vesicle showing two peaks at r~4.5 and~11.5 in the density profile,respectively.B beads form the vesicle shell.The shell thickness is about 7,bigger than that of the initial A1B3vesicle(Fig.1(a)).The peak position of nanoparticle distribution is symmetric with respective to the center of the shell,while the density profile of B beads shows two peaks separated by nanoparticles,suggesting that nanoparticles localize in the center of the vesicle shell.The result is consistent with the experimental report.16

    4 Conclusions

    In this work,the structures of nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulation.The amphiphilic property of A1B3chain is represented by an attraction between hydrophobic B-B beads,while nanoparticle is hydrophobic with attraction among nanoparticles.A1B3chains with εBB=-1 form a vesicle in solution at φp=7%,while nanoparticles with εBB=-1.5 assemble into a compact aggregate at φn=3%.In the simulation,nanoparticles are added into the vesicle solution.By tuning the attraction εnBbetween nanoparticle and B bead,we obtain two interesting structures:nanoparticle/A1B3core-shell structure and A1B3vesicle with nanoparticles dispersed in the shell.They are in agreement with experimental findings.

    The evolutions of these two structures were investigated. The core-shell structure is developed through destroying the vesicle.While for the nanoparticle-dispersed vesicle,A1B3vesicle acts as a template and nanoparticles diffuse into the hydrophobic shell.The formation of the core-shell structure is a very time-consuming process,since it has to overcome an energy barrier to destroy the vesicle.Therefore,it is much slower than nanoparticle-dispersed vesicle.Our simulation provides a new way to load hydrophobic nanoparticles into A1B3micelle through breakingA1B3vesicle.

    (1) Lipowsky,R.Nature 1991,349,475.

    (2)Discher,B.M.;Won,Y.Y.;Ege,D.S.;Lee,J.C.M.;Bates,F. S.;Discher,D.E.;Hammer,D.A.Science 1999,284,1143.

    (3) Zhang,L.F.;Eisenberg,A.J.Am.Chem.Soc.1996,118,3168.

    (4) Zhu,J.T.;Jiang,Y.;Liang,H.J.;Jiang,W.J.Phys.Chem.B 2005,109,8619.

    (5) Yang,Z.G.;Yuan,J.J.;Chen,S.Y.J.Funct.Poly.2003,16, 287.[楊子剛,袁建軍,程時(shí)遠(yuǎn).功能高分子學(xué)報(bào),2003,16, 287.]

    (6)Hubert,D.H.W.;Jung,M.;Frederik,P.M.;Bomans,P.H.H.; Meuldijk,J.;German,A.L.Adv.Mater.2000,12,1286.

    (7) Hentze,H.P.;Raghavan,S.R.;McKelvey,C.A.;Kaler,E.W. Langmuir 2003,19,1069.

    (8)Yeh,Y.Q.;Chen,B.C.;Lin,H.P.;Tang,C.Y.Langmuir 2006, 22,6.

    (9) Li,L.Y.;Wang,J.G.;Sun,P.C.;Liu,X.H.;Ding,D.T.;Chen, T.H.Acta Phys.-Chim.Sin.2008,24,359. [李麗穎,王金桂,孫平川,劉曉航,丁大同,陳鐵紅.物理化學(xué)學(xué)報(bào),2008,24, 359.]

    (10) Bernardi,C.;Drago,V.;Bernardo,F.L.;Girardi,D.;Klein,A. N.J.Mater.Sci.2008,43,469.

    (11) Binder,W.H.;Sachsenhofer,R.;Farnik,D.;Blaas,D.Phys. Chem.Chem.Phys.2007,9,6435.

    (12)Binder,W.H.;Sachsenhofer,R.Macromol.Rapid Commun. 2008,29,1097.

    (13) Lecommandoux,S.;Sandre,O.;Chécot,F.;Perzynski,R.Prog. Solid State Chem.2006,34,171.

    (14) Kang,Y.J.;Taton,T.A.Angew.Chem.Int.Edit.2005,44,409.

    (15) Mu,D.;Zhou,Y.H.Acta Phys.-Chim.Sin.2011,27,374. [牟 丹,周亦含.物理化學(xué)學(xué)報(bào),2011,27,374.]

    (16) Mueller,W.;Koynov,K.;Fischer,K.;Hartmann,S.;Pierrat,S.; Basche,T.;Maskos,M.Macromolecules 2009,42,357.

    (17) Li,X.L.;Ji,J.;Wang,X.L.;Wang,Y.X.;Shen,J.C. Macromol.Rapid Commun.2007,28,660.

    (18) Noguchi,H.;Takasu,M.Phys.Rev.E 2001,64,041913.

    (19)Yamamoto,S.;Maruyama,Y.;Hyodo,S.J.Chem.Phys.2002, 116,5842.

    (20) Marrink,S.J.;Mark,A.E.J.Am.Chem.Soc.2003,125,15233.

    (21) Vries,A.H.;Mark,A.E.;Marrink,S.J.J.Am.Chem.Soc. 2004,126,4488.

    (22)Huang,J.H.;Wang,Y.;Qian,C.J.J.Chem.Phys.2009,13, 234902.

    (23)Thompson,R.B.;Ginzburg,V.V.;Matsen,M.W.;Balazs,A.C. Science 2001,292,2469.

    (24) Wang,Q.;Nealey,P.F.;Pablo,J.J.J.Chem.Phys.2003,118, 11278.

    (25) Schultz,A.J.;Hall,C.K.;Genzer,J.Macromolecules 2005,38, 3007.

    (26) Ginzburg,V.V.;Qiu,F.;Balazs,A.C.Polymer 2002,43,461.

    (27)Liu,D.H.;Zhong,C.L.Macromol.Rapid Commun.2006,27, 458.

    (28) He,L.;Zhang,L.;Liang,H.J.J.Phys.Chem.B 2008,112, 4194.

    (29) Carmesin,I.;Kremer,K.Macromolecules 1988,21,2819.

    (30) Ji,S.C.;Ding,J.D.Langmuir 2006,22,553.

    (31) Romiszowski,P.;Sikorski,A.Macromol.Symp.2008,267,105.

    (32) Zehl,T.;Wahab,M.;Mogel,H.J.;Schiller,P.Langmuir 2006, 22,2523.

    (33)Huh,J.;Ginzburg,V.V.;Balazs,A.C.Macromolecules 2000, 33,8085.

    (34) Mannng,G.S.Biophys.J.2006,91,3607.

    (35) Huang,J.H.;Sun,D.C.J.Colloid Interface Sci.2007,315,355.

    August 29,2011;Revised:November 16,2011;Published on Web:November 21,2011.

    Monte Carlo Simulation on the Structures of a Nanoparticle/ Copolymer Mixed System

    LIU Guan-Feng HUANG Jian-Hua*
    (Department of Chemistry,Zhejiang Sci-Tech University,Hangzhou 310018,P.R.China)

    The structures of a nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulations.Each copolymer chain consisted of one A bead and three B beads,and the amphiphilic property of the A1B3chains was represented by an attraction between B-B beads. Nanoparticles were hydrophobic with an attraction amongst themselves.By properly choosing the attraction between the nanoparticle and the B beads,we observe two interesting structures:a nanoparticle/ A1B3chain core-shell structure and an A1B3vesicle with nanoparticles dispersed in the hydrophobic shell. The evolutions of these two structures were investigated.Our results show that the A1B3vesicle acts as a template for the formation of the nanoparticle-dispersed vesicle.

    Dynamic Monte Carlo simulation;Copolymer;Nanoparticle;Vesicle

    10.3866/PKU.WHXB201111211 www.whxb.pku.edu.cn

    *Corresponding author.Email:jhhuang@zstu.edu.cn;Tel:+86-571-86843233.

    The project was supported by the National Natural Science Foundation of China(21171145)and Natural Science Foundation of Zhejiang Province, China(Y4110422).

    國家自然科學(xué)基金(21171145)和浙江省自然科學(xué)基金(Y4110422)資助項(xiàng)目

    O641;O648

    猜你喜歡
    體系結(jié)構(gòu)珠子共聚物
    兩嵌段共聚物軟受限自組裝行為研究
    與樹一樣大的珠子
    擺珠子
    紙珠子
    基于粒計(jì)算的武器裝備體系結(jié)構(gòu)超網(wǎng)絡(luò)模型
    作戰(zhàn)體系結(jié)構(gòu)穩(wěn)定性突變分析
    基于DODAF的裝備體系結(jié)構(gòu)設(shè)計(jì)
    雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
    猜珠子
    讀寫算(上)(2015年6期)2015-11-07 07:17:55
    DADMAC-AA兩性共聚物的合成及應(yīng)用
    久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 日韩欧美一区二区三区在线观看| 国产高潮美女av| 国产日本99.免费观看| 成人午夜高清在线视频| 99国产极品粉嫩在线观看| 亚洲丝袜综合中文字幕| 老司机福利观看| 久久九九热精品免费| 色综合站精品国产| 午夜a级毛片| 欧美不卡视频在线免费观看| 在线免费观看不下载黄p国产| 听说在线观看完整版免费高清| 中文欧美无线码| 免费av不卡在线播放| 真实男女啪啪啪动态图| 熟女人妻精品中文字幕| 在线观看美女被高潮喷水网站| 亚洲精品久久久久久婷婷小说 | 国产精品一区二区三区四区久久| ponron亚洲| 91狼人影院| 国产精品久久电影中文字幕| 精品久久久久久久末码| 又粗又硬又长又爽又黄的视频 | 日韩制服骚丝袜av| 亚洲中文字幕日韩| .国产精品久久| 亚洲国产日韩欧美精品在线观看| 免费在线观看成人毛片| 麻豆成人午夜福利视频| 欧美日韩乱码在线| 免费大片18禁| 淫秽高清视频在线观看| 成人三级黄色视频| 22中文网久久字幕| 亚洲精品自拍成人| 男女啪啪激烈高潮av片| 日韩,欧美,国产一区二区三区 | 人妻少妇偷人精品九色| 国产精品久久久久久av不卡| 18禁在线无遮挡免费观看视频| 丝袜美腿在线中文| 91久久精品国产一区二区三区| 国产极品精品免费视频能看的| 天天一区二区日本电影三级| 精品少妇黑人巨大在线播放 | 天堂影院成人在线观看| 亚洲第一电影网av| 免费黄网站久久成人精品| 亚洲四区av| 国内精品宾馆在线| 免费人成视频x8x8入口观看| 亚洲精品国产成人久久av| 亚洲国产欧美人成| 国产一区二区激情短视频| 国产私拍福利视频在线观看| 在线观看免费视频日本深夜| 成人永久免费在线观看视频| 成人一区二区视频在线观看| 国产av麻豆久久久久久久| 美女被艹到高潮喷水动态| 亚洲三级黄色毛片| 51国产日韩欧美| 午夜老司机福利剧场| 国产精品精品国产色婷婷| 国产高清视频在线观看网站| 色噜噜av男人的天堂激情| 日日啪夜夜撸| 精品一区二区三区人妻视频| 日本成人三级电影网站| 熟妇人妻久久中文字幕3abv| 国产伦理片在线播放av一区 | 亚洲丝袜综合中文字幕| 久久精品国产亚洲av天美| 精品无人区乱码1区二区| 一进一出抽搐动态| 亚洲国产色片| 美女cb高潮喷水在线观看| 美女cb高潮喷水在线观看| 一级毛片我不卡| 久久久久久国产a免费观看| 国产精品国产三级国产av玫瑰| 亚洲欧美成人综合另类久久久 | 国产精品无大码| 欧美精品一区二区大全| 天堂中文最新版在线下载 | 国产精品电影一区二区三区| 又爽又黄无遮挡网站| 99久国产av精品国产电影| 亚洲婷婷狠狠爱综合网| 一本久久中文字幕| 日本欧美国产在线视频| 精品欧美国产一区二区三| 中文字幕熟女人妻在线| 国产亚洲91精品色在线| 国产蜜桃级精品一区二区三区| 五月伊人婷婷丁香| 最好的美女福利视频网| 看非洲黑人一级黄片| 久久中文看片网| 亚洲自偷自拍三级| 国产成人91sexporn| 日韩欧美三级三区| 国产高清视频在线观看网站| 亚洲一级一片aⅴ在线观看| 国产成人福利小说| 一级二级三级毛片免费看| 欧美激情在线99| 精品免费久久久久久久清纯| 色哟哟·www| 亚洲国产欧美人成| 偷拍熟女少妇极品色| 六月丁香七月| 久久人人爽人人爽人人片va| 国产 一区精品| 日产精品乱码卡一卡2卡三| 国产精品综合久久久久久久免费| 永久网站在线| 亚洲一区二区三区色噜噜| 成人特级黄色片久久久久久久| 小说图片视频综合网站| 亚洲成人av在线免费| 美女脱内裤让男人舔精品视频 | 日韩欧美 国产精品| 日本黄色视频三级网站网址| 一个人看的www免费观看视频| 搞女人的毛片| 免费av观看视频| 日韩视频在线欧美| 真实男女啪啪啪动态图| 中文字幕人妻熟人妻熟丝袜美| 九九爱精品视频在线观看| 又爽又黄a免费视频| 老师上课跳d突然被开到最大视频| 日韩视频在线欧美| 搞女人的毛片| 人体艺术视频欧美日本| 国产精品国产高清国产av| 久久久久国产网址| 婷婷亚洲欧美| 12—13女人毛片做爰片一| 亚洲精品成人久久久久久| 黑人高潮一二区| 爱豆传媒免费全集在线观看| 哪里可以看免费的av片| 在线观看美女被高潮喷水网站| 欧美在线一区亚洲| 男插女下体视频免费在线播放| 我要搜黄色片| 乱人视频在线观看| 一个人免费在线观看电影| 69人妻影院| 精品一区二区三区视频在线| 又爽又黄无遮挡网站| 国产日韩欧美在线精品| 赤兔流量卡办理| 亚洲国产日韩欧美精品在线观看| 亚洲人成网站在线观看播放| 看黄色毛片网站| 国产精品99久久久久久久久| 日本黄色视频三级网站网址| 日韩精品青青久久久久久| 亚洲欧美成人综合另类久久久 | 国内揄拍国产精品人妻在线| 久久久成人免费电影| 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 午夜福利在线观看吧| 欧美xxxx性猛交bbbb| 日本在线视频免费播放| 成人欧美大片| 少妇的逼水好多| 久久亚洲国产成人精品v| 伊人久久精品亚洲午夜| 天堂中文最新版在线下载 | 校园春色视频在线观看| 亚洲久久久久久中文字幕| 在线播放国产精品三级| av在线老鸭窝| 精品国内亚洲2022精品成人| 日韩在线高清观看一区二区三区| 亚洲国产日韩欧美精品在线观看| 夫妻性生交免费视频一级片| 国产亚洲精品久久久久久毛片| 日本黄色视频三级网站网址| 我的老师免费观看完整版| 国产爱豆传媒在线观看| 日日啪夜夜撸| 深夜a级毛片| 色噜噜av男人的天堂激情| www.色视频.com| 日韩欧美三级三区| 变态另类丝袜制服| 国产精品女同一区二区软件| 少妇猛男粗大的猛烈进出视频 | 国产精品久久视频播放| av卡一久久| 久久国内精品自在自线图片| 亚洲国产精品成人久久小说 | 亚洲精品乱码久久久久久按摩| 日日撸夜夜添| 97人妻精品一区二区三区麻豆| 亚洲精品日韩av片在线观看| av在线蜜桃| 久久99精品国语久久久| 亚洲精品粉嫩美女一区| 国产高清有码在线观看视频| videossex国产| 成人无遮挡网站| 中文字幕久久专区| 亚洲av中文字字幕乱码综合| 国产一级毛片七仙女欲春2| 午夜a级毛片| 嫩草影院精品99| 国模一区二区三区四区视频| 精品欧美国产一区二区三| 欧美色欧美亚洲另类二区| 国产久久久一区二区三区| 天堂av国产一区二区熟女人妻| 伦理电影大哥的女人| 欧美又色又爽又黄视频| 国产av不卡久久| 最后的刺客免费高清国语| 麻豆精品久久久久久蜜桃| 日本一本二区三区精品| 三级经典国产精品| 国产免费一级a男人的天堂| 精华霜和精华液先用哪个| 精品久久久久久久久av| 亚洲精品久久国产高清桃花| 嘟嘟电影网在线观看| 啦啦啦韩国在线观看视频| 尾随美女入室| av天堂中文字幕网| av在线观看视频网站免费| 深夜精品福利| 一级毛片我不卡| 亚洲人成网站在线播| 观看免费一级毛片| 中文字幕av在线有码专区| 岛国毛片在线播放| 日韩欧美 国产精品| 男女下面进入的视频免费午夜| 久久人人爽人人爽人人片va| 狠狠狠狠99中文字幕| 在现免费观看毛片| 亚洲av电影不卡..在线观看| 成人永久免费在线观看视频| 国产高潮美女av| 美女国产视频在线观看| 亚洲精品国产成人久久av| 91在线精品国自产拍蜜月| 免费观看的影片在线观看| 国产精品一二三区在线看| 中文字幕人妻熟人妻熟丝袜美| 欧美变态另类bdsm刘玥| 国语自产精品视频在线第100页| 午夜福利高清视频| 国产av不卡久久| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 边亲边吃奶的免费视频| 国产蜜桃级精品一区二区三区| 久久久精品94久久精品| 六月丁香七月| 久久99热6这里只有精品| 免费人成在线观看视频色| 国产免费男女视频| 又粗又爽又猛毛片免费看| 国产国拍精品亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 亚洲,欧美,日韩| 人妻夜夜爽99麻豆av| 亚洲av男天堂| 一个人观看的视频www高清免费观看| 久久精品久久久久久久性| 国产欧美日韩精品一区二区| 永久网站在线| 亚洲熟妇中文字幕五十中出| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 91精品一卡2卡3卡4卡| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 一本久久精品| 高清毛片免费看| av在线亚洲专区| 国产女主播在线喷水免费视频网站 | 日韩视频在线欧美| 一进一出抽搐gif免费好疼| АⅤ资源中文在线天堂| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 一区二区三区高清视频在线| 麻豆一二三区av精品| 成人亚洲欧美一区二区av| 亚洲av男天堂| 久久韩国三级中文字幕| 成人鲁丝片一二三区免费| 在线国产一区二区在线| 国产高潮美女av| 99在线人妻在线中文字幕| 久99久视频精品免费| 99热精品在线国产| 22中文网久久字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av二区三区四区| 国产一区二区三区av在线 | 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 一夜夜www| 午夜激情福利司机影院| 成人综合一区亚洲| av福利片在线观看| 免费观看a级毛片全部| or卡值多少钱| av女优亚洲男人天堂| 中文在线观看免费www的网站| 久久久久久久久久成人| 国产三级中文精品| 久久中文看片网| 免费搜索国产男女视频| 干丝袜人妻中文字幕| 午夜视频国产福利| 人妻夜夜爽99麻豆av| 国产伦精品一区二区三区视频9| 搡老妇女老女人老熟妇| 国产真实乱freesex| 精品久久久久久久久久免费视频| 波野结衣二区三区在线| 五月伊人婷婷丁香| 免费大片18禁| 久久久久性生活片| 赤兔流量卡办理| 99久久久亚洲精品蜜臀av| 99热只有精品国产| 亚洲婷婷狠狠爱综合网| 亚洲一区高清亚洲精品| 搞女人的毛片| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 国产大屁股一区二区在线视频| 精品一区二区三区人妻视频| 亚洲欧洲日产国产| 日韩亚洲欧美综合| 国产 一区 欧美 日韩| 日本黄色视频三级网站网址| av又黄又爽大尺度在线免费看 | 一区福利在线观看| 一个人观看的视频www高清免费观看| 亚洲av电影不卡..在线观看| 看十八女毛片水多多多| 美女黄网站色视频| 可以在线观看的亚洲视频| 伦精品一区二区三区| 亚洲成人中文字幕在线播放| 免费搜索国产男女视频| 色视频www国产| 国产伦在线观看视频一区| 精品人妻视频免费看| av视频在线观看入口| 亚洲人成网站高清观看| 国产精品一区二区性色av| 美女xxoo啪啪120秒动态图| a级毛色黄片| 亚洲av二区三区四区| 国产精品一区二区三区四区久久| 久久精品夜色国产| 日日摸夜夜添夜夜添av毛片| 欧美日本亚洲视频在线播放| 亚洲七黄色美女视频| 亚洲图色成人| 在线a可以看的网站| 久久久久久大精品| 成熟少妇高潮喷水视频| 国产精品久久久久久久电影| 日韩强制内射视频| 亚洲av电影不卡..在线观看| 精品熟女少妇av免费看| 亚洲国产欧洲综合997久久,| 狂野欧美白嫩少妇大欣赏| 成人午夜精彩视频在线观看| 成人三级黄色视频| 日韩高清综合在线| 国产精品电影一区二区三区| 此物有八面人人有两片| 综合色丁香网| 乱码一卡2卡4卡精品| 又粗又爽又猛毛片免费看| 亚洲av熟女| 精品久久久噜噜| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 热99re8久久精品国产| 特级一级黄色大片| 99久久精品热视频| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 国产精品一区二区三区四区久久| 亚洲国产色片| 欧美日本视频| 精品人妻视频免费看| 欧美在线一区亚洲| 亚洲精品456在线播放app| 大香蕉久久网| 黑人高潮一二区| 一级黄片播放器| 人人妻人人澡人人爽人人夜夜 | 一级毛片电影观看 | 国产一区二区亚洲精品在线观看| 秋霞在线观看毛片| 天天一区二区日本电影三级| 草草在线视频免费看| 男插女下体视频免费在线播放| 中文字幕久久专区| 中文字幕av成人在线电影| 黄色视频,在线免费观看| 韩国av在线不卡| 色5月婷婷丁香| 久久久成人免费电影| 国产黄色视频一区二区在线观看 | 成人午夜精彩视频在线观看| 国产免费一级a男人的天堂| 舔av片在线| 别揉我奶头 嗯啊视频| 99久久久亚洲精品蜜臀av| 最近中文字幕高清免费大全6| 国产亚洲av片在线观看秒播厂 | 国产高清视频在线观看网站| 欧美丝袜亚洲另类| h日本视频在线播放| 色综合站精品国产| 国产v大片淫在线免费观看| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 午夜福利视频1000在线观看| 在线国产一区二区在线| 爱豆传媒免费全集在线观看| 精品久久国产蜜桃| 嘟嘟电影网在线观看| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 午夜精品国产一区二区电影 | 桃色一区二区三区在线观看| 一个人看视频在线观看www免费| 久久精品国产清高在天天线| 国产日本99.免费观看| 全区人妻精品视频| 一级毛片久久久久久久久女| 久久久精品大字幕| 哪个播放器可以免费观看大片| 在现免费观看毛片| 欧美激情久久久久久爽电影| 亚洲一级一片aⅴ在线观看| 在线免费观看不下载黄p国产| av天堂中文字幕网| 99九九线精品视频在线观看视频| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 成人av在线播放网站| 婷婷精品国产亚洲av| 天堂√8在线中文| 成年av动漫网址| 国产免费一级a男人的天堂| 日本爱情动作片www.在线观看| 十八禁国产超污无遮挡网站| 久久99精品国语久久久| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 99久久精品热视频| 成人二区视频| 欧美精品一区二区大全| 欧美激情在线99| a级一级毛片免费在线观看| 在线观看一区二区三区| 99久国产av精品国产电影| 国产免费男女视频| 深夜精品福利| 久久草成人影院| 边亲边吃奶的免费视频| 亚洲aⅴ乱码一区二区在线播放| 99精品在免费线老司机午夜| 黄片wwwwww| 熟女人妻精品中文字幕| 婷婷精品国产亚洲av| or卡值多少钱| 国产色爽女视频免费观看| 深夜a级毛片| 国产麻豆成人av免费视频| 99久久久亚洲精品蜜臀av| 高清毛片免费观看视频网站| 变态另类成人亚洲欧美熟女| 99九九线精品视频在线观看视频| 欧美一级a爱片免费观看看| 美女国产视频在线观看| 久久精品久久久久久久性| 天堂中文最新版在线下载 | 少妇的逼水好多| www日本黄色视频网| 好男人视频免费观看在线| 久久久欧美国产精品| 在线免费观看的www视频| 免费看日本二区| 日本五十路高清| 精品人妻熟女av久视频| 国产极品精品免费视频能看的| 亚洲五月天丁香| 亚洲国产精品合色在线| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 成人国产麻豆网| 麻豆乱淫一区二区| 我的老师免费观看完整版| 99久久无色码亚洲精品果冻| 国产午夜精品一二区理论片| 在线免费观看的www视频| 欧美高清性xxxxhd video| 成人三级黄色视频| 99热这里只有是精品在线观看| 大型黄色视频在线免费观看| 男人和女人高潮做爰伦理| 变态另类成人亚洲欧美熟女| 国产黄色小视频在线观看| 午夜视频国产福利| 欧美精品国产亚洲| 中文在线观看免费www的网站| 午夜a级毛片| 亚洲欧美精品综合久久99| 亚洲精品日韩在线中文字幕 | 三级经典国产精品| 日日摸夜夜添夜夜爱| 亚洲在久久综合| 深爱激情五月婷婷| 在线播放无遮挡| 成年女人永久免费观看视频| 国产高清三级在线| 亚洲av.av天堂| 亚洲欧美精品综合久久99| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 国产极品精品免费视频能看的| 在线观看午夜福利视频| h日本视频在线播放| 嫩草影院入口| .国产精品久久| 六月丁香七月| 网址你懂的国产日韩在线| 69av精品久久久久久| 搞女人的毛片| 深爱激情五月婷婷| 97超碰精品成人国产| 久久精品综合一区二区三区| 国产在线精品亚洲第一网站| 高清日韩中文字幕在线| 国产在视频线在精品| 色综合亚洲欧美另类图片| 亚洲美女搞黄在线观看| 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 久久草成人影院| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人片av| 波多野结衣高清无吗| 最近2019中文字幕mv第一页| 日韩欧美 国产精品| 麻豆国产av国片精品| 精品一区二区三区人妻视频| 禁无遮挡网站| 国产午夜福利久久久久久| 禁无遮挡网站| 国产成人精品久久久久久| 美女cb高潮喷水在线观看| 亚洲中文字幕日韩| 一本久久精品| 欧美三级亚洲精品| 日韩高清综合在线| 熟女电影av网| 久久国内精品自在自线图片| 色哟哟哟哟哟哟| 久99久视频精品免费| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 大型黄色视频在线免费观看| 久99久视频精品免费| 午夜福利高清视频| 午夜爱爱视频在线播放| 午夜福利高清视频| 国产精品久久久久久精品电影小说 | 久久久久久大精品| 少妇的逼水好多| 成人特级av手机在线观看| 午夜视频国产福利| 亚洲精品国产成人久久av| 国产成人午夜福利电影在线观看| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 嫩草影院新地址| 九草在线视频观看| 午夜福利在线观看吧| 夫妻性生交免费视频一级片| 男人的好看免费观看在线视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人久久小说 | 一本一本综合久久| 三级国产精品欧美在线观看| av女优亚洲男人天堂|