• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    交替微波加熱法對制備氧還原催化劑性能的影響

    2012-12-05 02:27:36尹詩斌荊勝羽朱強強強穎懷
    物理化學(xué)學(xué)報 2012年1期
    關(guān)鍵詞:加熱法中國礦業(yè)大學(xué)工程學(xué)院

    尹詩斌 羅 林 荊勝羽 朱強強 強穎懷,*

    (1中國礦業(yè)大學(xué)低碳能源研究院,江蘇徐州221116;2中國礦業(yè)大學(xué)材料科學(xué)與工程學(xué)院,江蘇徐州221116; 3中國礦業(yè)大學(xué)信息與電氣工程學(xué)院,江蘇徐州221116)

    交替微波加熱法對制備氧還原催化劑性能的影響

    尹詩斌1,2,*羅 林1,2荊勝羽3朱強強2強穎懷2,*

    (1中國礦業(yè)大學(xué)低碳能源研究院,江蘇徐州221116;2中國礦業(yè)大學(xué)材料科學(xué)與工程學(xué)院,江蘇徐州221116;3中國礦業(yè)大學(xué)信息與電氣工程學(xué)院,江蘇徐州221116)

    詳細研究了交替微波加熱法制備多壁碳納米管負載Pt催化劑(Pt/MWCNTs)的過程中交替微波加熱(5s-on/5s-off)次數(shù)對催化劑性能的影響.X射線粉末衍射(XRD)結(jié)果表明,Pt的晶粒尺寸在開始的加熱階段基本上沒有發(fā)生變化,但是隨著加熱次數(shù)的增多,Pt的晶粒尺寸逐步增大.采用循環(huán)伏安法和旋轉(zhuǎn)圓盤電極技術(shù)考察了催化劑的電化學(xué)活性.結(jié)果顯示,以5s-on/5s-off加熱20次時,催化劑顯示出最佳的催化活性;在0.5 mol·L-1H2SO4飽和氧水溶液中催化劑的氧還原起峰電位接近1.0 V(vs RHE).交替微波加熱法簡單經(jīng)濟,在大批量制備催化劑等納米材料方面顯示出較好的應(yīng)用前景.

    催化劑;交替微波加熱法;旋轉(zhuǎn)圓盤電極;氧還原反應(yīng);多壁碳納米管

    1 Introduction

    Platinum is widely used in proton exchange membrane fuel cells(PEMFCs)due to its high activity and superior stability.1,2It is still a challenge to rapidly synthesize the highly dispersed Pt with a uniform particle size distribution.Traditional methods,such as impregnation and colloid methods,are extensively used for the preparation of Pt-based catalysts.3-6However,impregnation cannot avoid the large particle sizes and broad size distributions,while colloid methods are always quite complex. It is well known that the particle size and the dispersion of catalysts are crucial to the catalytic reaction.Consequently,it is necessary to develop novel methods to prepare catalysts with a uniform size distribution.

    The polyol method has been successfully used in the synthesis of highly active Pt/C catalysts with a high loading(40%, mass fraction)and narrow size distribution.7While,this process is time-consuming since it takes at least 3-6 h to reduce the metal completely.Therefore,it is necessary to develop an effective way for a time-saving preparation of the highly dispersed catalysts.Microwave irradiation has exhibited a remarkable effect on nanosized material preparation.8,9It has advantages of selective heating with high heating speed.The intermittent microwave heating(IMH)method is novel with respect to nanomaterial synthesis.10-13Tian et al.14,15prepared Pt/C catalysts with a Pt loading higher than 40%by adopting the IMH method.Song et al.16firstly combined the advantages of IMH and polyol methods to prepare high loading Pt/C catalysts,in which the metal reduction can be accomplished within 2 min. Moreover,the catalysts exhibited a comparable activity to the commercial ones for the oxygen reduction reaction(ORR). The influences of pH value and water content on the properties of catalysts prepared by polyol method were investigated.17,18However,the influence of microwave heating parameters on the performance of catalytic reaction is rarely reported.It is believed that,during the synthesis processing,the operating factors,such as the reduction time and temperature,will greatly affect the performance of catalysts.

    In the present study,we prepared Pt particles supported on multi-walled carbon nanotubes(Pt/MWCNTs)by using the IMH polyol method,and the relationship between the number of pulse repetitions and the performance of catalysts was investigated.Their corresponding physicochemical and electrochemical properties were studied by employing X-ray diffraction (XRD),transmission electron microscopy(TEM),and rotating disk electrode(RDE)technologies.

    2 Experimental

    2.1 Carbon nanotube pretreatment

    Multi-walled carbon nanotubes(MWCNTs)with diameters of 10-20 nm and purities of>95%(Shenzhen Nanotech.Co., Ltd.,China)were used as received.MWCNTs were treated by HF(AR,Sinopharm Chemical Regent Co.,Ltd.,China)as follows.19,20The MWCNTs(2.0 g)were added into 40%(mass fraction)HF aqueous solutions(12.5 g HF and 37.5 g water) under continuous stirring for 6 h.The treated MWCNTs were thoroughly rinsed with deionized water to neutral pH and dried at 80°C under vacuum for 24 h.

    2.2 Catalyst preparation

    The 20%Pt/MWCNTs catalysts were easily and rapidly prepared by the IMH polyol method as follows.16,21The chloroplatinic acid(AR,Sinopharm Chemical Regent Co.,Ltd.,China) as the starting precursor was well mixed with 20.0 mL ethylene glycol(EG,AR,Sinopharm Chemical Regent Co.,Ltd., China)in an ultrasonic bath,and then 200.0 mg MWCNTs were added into the mixture.After the pH value of the system was adjusted to be larger than 10.0 by NaOH/EG solution,the well-dispersed slurry was obtained with stirring and ultrasonication for 15 min.Thereafter,the slurry was microwave heated in a homemade program-controlled microwave oven(1000 W, 2.45 GHz)with pulses form of 5s-on/5s-off for 10,20,30,40, 50,60,70,and 100 repetitions.After re-acidification,the resulting black solid samples were filtered,washed,and dried at 80°C for 12 h in a vacuum.The catalysts are denoted as Pt/ MWCNTs-x,where x indicates the number of pulse repetitions.

    2.3 Catalyst characterization

    XRD measurements were carried out on a D/Max-III (Rigaku Co.,Japan)using Cu Kαradiation(λ=0.15406 nm), and operating at 40 kV and 30 mA.The 2θ angular regions between 20°and 90°were explored at a scan rate of 10(°)·min-1and the 64°-71°angle range was used to calculated the Pt crystal size according to the Scherrer formula.22,23TEM investigations were carried out in a JEOL JEM-2010(HR)at 200 kV to obtain the particle size distribution of Pt in the prepared catalysts.The histogram of the investigated catalysts was made by randomly measuring more than 300 particles.For Pt loadings, the catalysts were calcined in air at 700°C for 3 h,and then dissolved in freshly prepared aqua regia.Inductively coupled plasma atomic emission spectroscopy(ICP-AES,Perkin Elmer,Germany)was used to quantify the content of Pt in the prepared catalysts.

    All electrochemical measurements were conducted on a PARETAT 2273(Princeton Applied Research,USA)instrument in a thermostat-controlled standard three-electrode cell at 30°C using a platinum foil(1.0 cm×1.0 cm)as the counter electrode.Reference electrode was saturated calomel electrode (SCE)and calibrated against a reversible hydrogen electrode (RHE).The specific steps were as follows:the SCE and the platinum foil were placed in 0.5 mol·L-1aqueous solutions together,and the platinum foil was bubbled with high-pure hydrogen gas,the voltage difference value between SCE and platinum foil was measured by multimeter and was recorded as RHE.A glass carbon(GC)disk electrode with a diameter of 5.0 mm was used as the substrate for the catalyst thin film in the electrochemical measurements.The thin film catalysts layer,as the working electrode,was prepared as follows:a mixture containing 5.0 mg catalysts,1.8 mL ethanol(AR,Sino-pharm Chemical Regent Co.,Ltd.,China),and 0.2 mL Nafion solution(5%Nafion?perfluorinated resin solution,AR,Sigma-Aldrich,USA)were dispersed in an ultrasonic bath for several minutes to obtain a well-dispersed ink.This catalysts ink was then quantitatively transferred onto the surface of the GC electrode by a micropipette,and dried under an infrared lamp to obtain the catalyst thin film.The estimated loading was 25.5μg· cm-2for each catalyst.An aqueous solution containing 0.5 mol· L-1H2SO4deaerated with high-pure nitrogen gas was used as the electrolyte.Rotating disk electrode tests were carried out in O2-saturated 0.5 mol·L-1H2SO4aqueous solutions with a potential range from 0.1 to 1.1 V at a rotating speed of 2500 r·min-1and a scan rate of 5 mV·s-1.

    3 Results and discussion

    Fig.1 presents the XRD results of the Pt/MWCNTs catalysts prepared by IMH with different numbers of pulse repetitions (x).As is clearly displayed,all the samples show the typical characteristics of a crystalline Pt face centered cubic(fcc) structure.The diffraction peaks at 2θ of 39.6°,46.3°,67.4°, and 81.6°are assigned to the Pt(111),Pt(200),Pt(220),and Pt(311)facets.The fitted(220)plane was used to calculate the Pt crystal size according to the Scherrer formula.22,23The corresponding Pt crystal sizes for Pt/WMCNTs-x are summarized in Table 1.It is obvious that the crystal sizes of Pt particles are hardly increased with the increment in the pulse repetitions at early stage(for example,10-60 times),while it becomes much larger after the further heating.

    Fig.1 XRD patterns of Pt/MWCNTs microwave heated for different numbers of pulse repetitions(x)at a scan rate of 10(°)·min-1

    From the TEM images given in Fig.2(a,b)at different magnifications,it can be clearly seen that the Pt particles are uniform and well distributed on the surface of MWCNTs.Based on the measurements of 300 randomly chosen particles,the average particle size is estimated to be 2.8 nm for Pt/MWCNTs-20.The corresponding histogram in Fig.2(c)reveals that the particle size distributions are narrow and approximately Gaussian type.

    Fig.3 plots the cyclic voltammetry(CV)curves of all the investigated catalysts in the deaerated 0.5 mol·L-1H2SO4aqueous solutions at a scan rate of 20 mV·s-1.The electrochemical surface area(SESA,m2·g-1,Pt as reference)of the catalysts can be calculated from the integrated charge in the hydrogen desorption peak area in the CV curves.24,25The Pt poly-crystallite hydrogen adsorption constant is 210 μC·cm?2,and then the value of SESAcan be obtained from Eq.(1).

    SESA=QH/(2.1×mPt) (1) where QH(in μC·cm-2)is the charge due to the hydrogen desorption in the hydrogen region of the CVs shown in Fig.3,mPtis the quality of Pt loaded on the surface of GC electrode with the unit of mg·cm-2.

    SESAis one of the most important parameters for characterizing Pt catalysts.A higher SESAimplies a better electrode,as more catalytic sites are available for electrode reactions.The relationships of the size of Pt(d)or SESAversus the number of pulse repetitions is plotted in Fig.4.SESAdoes not change much from 20 to 50 pulse repetitions,but it changes dramatically initially and at larger pulse repetitions(>50 times).There aremany factors for this phenomenon.During the synthesis process,if only microwave heating for 10 pulse repetitions,the temperature and time may not be sufficient to reduce the chloroplatinic acid precursor.On the other hand,with 20 pulse repetitions,the chloroplatinic acid precursor could be completely reduced.As increased up to 50 pulse repetitions,the temperature of the whole system would not change so much,and the corresponding crystal size would almost have no change.With the pulse repetitions further increasing,the Pt particles that reduce in the EG solutions could move and agglomerate together.This conclusion is further verified by the Pt loading results obtained from the inductively coupled plasma atomic emission spectrometry.The Pt loading rate is the content of Pt quantified by ICP versus the default values.As displayed in Table 1,Pt/ MWCNTs-10 has the lowest Pt loading rate(only 15.4%), which means that the majority of the Pt did not adsorb on the surface of the MWCNTs.The reason could be attributed to the insufficient reduction of chloroplatinic acid at low IMH repetitions.While with the pulse repetitions further increasing,the Pt loading rate is significantly increased(Pt/MWCNTs-50 has the largest Pt loading rate of 88.7%).However,the Pt loading rate is reduced dramatically with the pulse repetitions further increased.It might due to the fact that the agglomerated Pt particles could not adsorb on the surface of MWCNTs during the re-acidification.

    Table 1 Physico-chemical and electrochemical characterization for the Pt/MWCNTs microwave heated for different numbers of pulse repetitions

    Fig.2 TEM images at two magnifications(a,b)and Pt particle size distribution histogram(c)of Pt/MWCNTs-20

    Fig.3 CV curves of the Pt/MWCNTs microwave heated for different numbers of pulse repetitions in 0.5 mol·L-1H2SO4 aqueous solutions at 30°C with a scan rate of 20 mV·s-1

    Fig.4 Relationship between the diameter or the electrochemical surface area of Pt/MWCNTs and the number of microwave heating pulse repetitions

    Fig.5 Linear potential sweep curves of oxygen reduction reaction on Pt/MWCNTs microwave heated for different numbers of pulse repetitions in O2-saturated 0.5 mol·L-1H2SO4aqueous solutionsT=30°C;scan rate:5 mV·s-1;stirring:2500 r·min-1

    The chemical specific surface area(SCSA,m2·g-1)of Pt particles can be calculated from Eq.(2),assuming that all particles are of spherical shape,16,25

    where ρ is the density of Pt(21.4 g·cm-3)and d(in nm)is the diameter of the Pt particles in the catalysts calculated from the XRD results given in Table 1.

    The Pt utilization efficiency(ηPt)for the catalysts is also a very important parameter,as it reflects the number of Pt particles that are active in electrochemical reactions.It is defined as the ratio of the SESAand SCSA.

    For the cathode catalysts of PEMFCs,the capability for the oxygen reduction reaction is very important.Fig.5 shows the ORR polarization curves for all the investigated catalysts in oxygen saturated 0.5 mol·L-1H2SO4aqueous solutions as obtained by rotating the disk electrode at 2500 r·min-1and at a scan rate of 5 mV·s-1.The corresponding relationship between the activities towards ORR and the pulse repetitions is exhibited in Fig.6.As it is obviously displayed,the Pt/MWCNTs with 20 to 70 pulse repetitions show almost the same Pt utilization efficiency,which is significantly higher than those of the other catalysts.On the other hand,Pt/MWCNTs-20 shows a positive shift in the ORR onset potential indicating that the ORR is more favorable on Pt/MWCNTs-20 than on the other catalysts. We believe that such high performance predominantly origins from the better distribution of Pt particles on the prepared catalysts.

    Fig.6 Relationship between the Pt utilization efficiency or the onset potential of Pt/MWCNTs and the number of microwave heating pulse repetitions

    4 Conclusions

    Pt/MWCNTs catalysts were prepared by using the intermittent microwave heating polyol method.The influence of pulse repetitions on the properties of catalysts was investigated.The Pt crystal size does not change much for low numbers of pulse repetitions(<50 times),but it changes dramatically at higher pulse repetitions.The electrochemical surface area and the Pt utilization reflect a similar tendency with number of pulse repetitions.The oxygen reduction reaction results show that the Pt/ MWCNTs-20 exhibits the most favorable activity towards oxygen reduction in the present study.The reason could be attributed to the uniformly distributed Pt particles on the surface of MWCNTs.The intermittent microwave heating method is simple and economical and can be potentially applied to scale-up for the mass production of nanosized materials.

    Acknowledgments:The authors gratefully acknowledge the support by Prof.SHEN Pei-Kang in Sun Yat-Sen University.

    (1) Zhang,S.S.;Yuan,X.Z.;Hin,J.N.C.;Wang,H.J.J.Power Sources 2009,194,588.

    (2) Rao,G.S.;Cheng,M.Q.;Zhong,Y.;Deng,X.C.;Yi,F.;Chen, Z.R.;Zhong,Q.L.;Fan,F.R.;Ren,B.;Tian,Z.Q.Acta Phys.-Chim.Sin.2011,27,2373.[饒貴仕,程美琴,鐘 艷,鄧小聰,易 飛,陳治仁,鐘起玲,范鳳茹,任 斌,田中群.物理化學(xué)學(xué)報,2011,27,2373.]

    (3) Fugane,K.;Mori,T.;Ou,D.R.;Suzuki,A.;Yoshikawa,H.; Masuda,T.;Uosaki,K.;Yamashita,Y.;Ueda,S.;Kobayashi,K.; Okazaki,N.;Matolinova,I.;Matolin,V.Electrochim.Acta 2011,56,3874.

    (4)Hara,Y.;Minami,N.;Matsumoto,H.;Itagaki,H.Appl.Catal.A 2007,332,289.

    (5) Keng,P.Y.;Bull,M.M.;Shim,I.B.;Nebesny,K.G.; Armstrong,N.R.;Sung,Y.;Char,K.;Pyun,J.Chem.Mater. 2011,23,1120.

    (6)Yin,S.B.;Mu,S.C.;Lv,H.F.;Cheng,N.C.;Pan,M.;Fu,Z.Y. Appl.Catal.B 2010,93,233.

    (7)Zhou,Z.H.;Wang,S.L.;Zhou,W.J.;Wang,G.X.;Jiang,L. H.;Li,W.Z.;Song,S.Q.;Liu,J.G.;Sun,G.Q.;Xin,Q.Chem. Commun.2003,394.

    (8)Wang,X.Z.;Zheng,J.S.;Fu,R.;Ma,J.X.Acta Phys.-Chim. Sin.2011,27,85.[王喜照,鄭俊生,符 蓉,馬建新.物理化學(xué)學(xué)報,2011,27,85.]

    (9) Shen,P.K.;Yin,S.B.;Li,Z.H.;Chen,C.Electrochim.Acta 2010,55,7969.

    (10)Yin,S.B.;Luo,L.;Xu,C.;Zhao,Y.L.;Qiang,Y.H.;Mu,S.C. J.Power Sources 2012,198,1.

    (11) Hu,Z.F.;Chen,C.;Meng,H.;Wang,R.H.;Shen,P.K.;Fu,H. G.Electrochem.Commun.2011,13,763.

    (12)Yin,S.B.;Cai,M.;Wang,C.X.;Shen,P.K.Energy Environ. Sci.2011,4,558.

    (13) Yin,S.B.;Shen,P.K.;Song,S.Q.;Jiang,S.P.Electrochim. Acta 2009,54,6954.

    (14) Tian,Z.Q.;Xie,F.Y.;Shen,P.K.J.Mater.Sci.2004,39,1507.

    (15) Tian,Z.Q.;Jiang,S.P.;Liang,Y.M.;Shen,P.K.J.Phys. Chem.B 2006,110,5343.

    (16) Song,S.Q.;Wang,Y.;Shen,P.K.J.Power Sources 2007,170, 46.

    (17)Li,X.;Chen,W.X.;Zhao,J.;Xing,W.;Xu,Z.D.Carbon 2005, 43,2168.

    (18) Li,W.Z.;Liang,C.H.;Zhou,W.J.;Qiu,J.S.;Li,H.Q.;Sun, G.Q.;Xin,Q.Carbon 2004,42,436.

    (19) Li,Y.L.;Hu,F.P.;Wang,X.;Shen,P.K.Electrochem. Commun.2008,10,1101.

    (20) Hu,F.P.;Shen,P.K.;Li,Y.L.;Liang,J.Y.;Wu,J.;Bao,Q.L.; Li,C.M.;Wei,Z.D.Fuel Cells 2008,8,429.

    (21)Song,S.Q.;Yin,S.B.;Li,Z.H.;Shen,P.K.;Fu,R.W.;Wu,D. C.J.Power Sources 2010,195,1946.

    (22) Patterson,A.L.Phys.Rev.1939,56,978.

    (23) Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995, 154,98.

    (24) Xing,Y.C.;Li,L.;Chusuei,C.C.;Hull,R.V.Langmuir 2005, 21,4185.

    (25) Xing,Y.J.Phys.Chem.B 2004,108,19255.

    October 9,2011;Revised:November 10,2011;Published on Web:November 15,2011.

    Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction

    YIN Shi-Bin1,2,*LUO Lin1,2JING Sheng-Yu3ZHU Qiang-Qiang2QIANG Ying-Huai2,*
    (1Low Carbon Energy Institute,China University of Mining and Technology,Xuzhou 221116,Jiangsu Province,P.R.China;
    2School of Materials Science and Engineering,China University of Mining and Technology,Xuzhou 221116,
    Jiangsu Province,P.R.China;3School of Information and Electrical Engineering,China University of Mining and Technology, Xuzhou 221116,Jiangsu Province,P.R.China)

    The influence of intermittent microwave heating(IMH)on the physicochemical and electrochemical properties of platinum loaded on multi-walled carbon nanotubes(Pt/MWCNTs)was investigated.X-ray diffraction results revealed that the crystal size of Pt particles hardly increased for smaller numbers of pulse repetitions,but became much larger as the number of pulse repetitions increased.Cyclic voltammetry(CV)and rotating disk electrode(RDE)results showed that the Pt/MWCNTs catalysts prepared by IMH in a repeated pulse form of 5s-on/5s-off for 20 pulse repetitions possessed the largest electrochemical surface area.An onset potential of approximately 1.0 V(vs RHE)was observed for the oxygen reduction reaction in oxygen-saturated 0.5 mol·L-1H2SO4aqueous solutions.The IMH method is simple,economical,and can potentially be scaled up for the mass production of nanomaterials.

    Catalyst;Intermittent microwave heating method;Rotating disk electrode; Oxygen reduction reaction;Multi-walled carbon nanotube

    10.3866/PKU.WHXB201111153www.whxb.pku.edu.cn

    *Corresponding authors.YIN Shi-Bin,Email:shibinyin@126.com;Tel:+86-516-83883235;Fax:+86-516-83883501.

    QIANG Ying-Huai,Email:yhqiang@cumt.edu.cn;Tel:+86-516-83591876;Fax:+86-516-83591870.

    The project was supported by the National Natural Science Foundation of China(21106178),Postdoctoral Science Foundation of China (20110491480),Scientific Research Foundation of Xuzhou,China(XJ11B009),Polysilicon and Photovoltaic Energy Technology of Xuzhou,China (6AT102092),Open Fund of the State Key Laboratory ofAdvanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2012-KF-13),and Scientific Research Foundation for Yong Teachers of the China University of Mining and Technology,China (2011QNA21,2009A026).

    國家自然科學(xué)基金(21106178),中國博士后基金(20110491480),徐州市科技項目(XJ11B009),徐州市多晶硅與光伏能源技術(shù)專項(6AT102092),材料復(fù)合新技術(shù)國家重點實驗室(武漢理工大學(xué))開放基金(2012-KF-13)和中國礦業(yè)大學(xué)青年基金(2011QNA21,2009A026)資助

    O646

    猜你喜歡
    加熱法中國礦業(yè)大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    用新型加熱法測定高錳酸鹽指數(shù)的可行性研究
    地下水(2021年3期)2021-07-05 05:25:48
    不同加熱方式對無涂層鐵鍋重金屬遷移量的影響
    五金科技(2021年2期)2021-05-08 07:52:12
    福建工程學(xué)院
    福建工程學(xué)院
    加熱法在無肝素血液灌流護理中的應(yīng)用
    高校學(xué)生評教的問題與對策——以中國礦業(yè)大學(xué)為例
    中國礦業(yè)大學(xué)教育培訓(xùn)工作簡介
    混凝土冬季施工的加熱法
    重慶建筑(2014年2期)2014-03-26 13:21:56
    一级毛片我不卡| 一区二区三区四区激情视频| 亚洲一码二码三码区别大吗| 91字幕亚洲| 亚洲精品av麻豆狂野| 亚洲一区二区三区欧美精品| 亚洲视频免费观看视频| 麻豆乱淫一区二区| 欧美中文综合在线视频| 汤姆久久久久久久影院中文字幕| 99国产精品免费福利视频| 亚洲精品在线美女| 丰满迷人的少妇在线观看| 成人亚洲欧美一区二区av| 欧美精品高潮呻吟av久久| 97在线人人人人妻| 91字幕亚洲| 999久久久国产精品视频| 欧美日韩福利视频一区二区| 宅男免费午夜| 久久精品熟女亚洲av麻豆精品| 少妇猛男粗大的猛烈进出视频| 又大又黄又爽视频免费| 欧美日韩亚洲综合一区二区三区_| 少妇精品久久久久久久| 丝袜脚勾引网站| 久久热在线av| 操出白浆在线播放| 黄频高清免费视频| 热99久久久久精品小说推荐| 蜜桃国产av成人99| 亚洲欧美一区二区三区久久| 大片电影免费在线观看免费| 欧美日韩成人在线一区二区| 女人久久www免费人成看片| 久久久国产欧美日韩av| 国产精品99久久99久久久不卡| 人人澡人人妻人| 极品人妻少妇av视频| 国产成人影院久久av| 91精品三级在线观看| 秋霞在线观看毛片| 少妇人妻 视频| 中国美女看黄片| 伊人亚洲综合成人网| 亚洲一码二码三码区别大吗| 99热全是精品| 欧美精品人与动牲交sv欧美| 无遮挡黄片免费观看| 水蜜桃什么品种好| 不卡av一区二区三区| www日本在线高清视频| av不卡在线播放| 丰满迷人的少妇在线观看| 国产97色在线日韩免费| 观看av在线不卡| 国产一区二区三区av在线| 精品福利永久在线观看| 免费女性裸体啪啪无遮挡网站| 久久av网站| 亚洲国产看品久久| 赤兔流量卡办理| 日韩制服丝袜自拍偷拍| 少妇粗大呻吟视频| 午夜视频精品福利| 午夜激情av网站| 老司机在亚洲福利影院| a 毛片基地| 真人做人爱边吃奶动态| 亚洲 欧美一区二区三区| 大片免费播放器 马上看| 欧美日韩亚洲国产一区二区在线观看 | 美女主播在线视频| 色播在线永久视频| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 久久久久国产一级毛片高清牌| 欧美黄色片欧美黄色片| 咕卡用的链子| 一区二区三区精品91| 韩国精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av国产av综合av卡| 午夜福利乱码中文字幕| 美女国产高潮福利片在线看| av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 欧美成人午夜精品| 97精品久久久久久久久久精品| 999精品在线视频| 午夜视频精品福利| av在线老鸭窝| 午夜福利一区二区在线看| 少妇 在线观看| 日韩一区二区三区影片| 性色av一级| 亚洲中文字幕日韩| 精品少妇一区二区三区视频日本电影| 麻豆乱淫一区二区| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区国产| 日本欧美国产在线视频| 超碰成人久久| 下体分泌物呈黄色| 国产亚洲av高清不卡| 激情五月婷婷亚洲| 黄色片一级片一级黄色片| 婷婷色麻豆天堂久久| 中文字幕另类日韩欧美亚洲嫩草| 久久av网站| 成年动漫av网址| 国产亚洲精品第一综合不卡| 美女视频免费永久观看网站| 亚洲午夜精品一区,二区,三区| 男男h啪啪无遮挡| 久久国产精品人妻蜜桃| svipshipincom国产片| 国产成人精品在线电影| 熟女av电影| 午夜福利,免费看| 啦啦啦 在线观看视频| 成年人免费黄色播放视频| 成年av动漫网址| 妹子高潮喷水视频| www.自偷自拍.com| 黄网站色视频无遮挡免费观看| 丝袜美足系列| 男女床上黄色一级片免费看| 午夜免费成人在线视频| 999精品在线视频| 老司机靠b影院| 亚洲成人免费电影在线观看 | 欧美97在线视频| 国产xxxxx性猛交| 国产主播在线观看一区二区 | 亚洲一区二区三区欧美精品| 99精国产麻豆久久婷婷| 国产高清不卡午夜福利| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合色网址| 国产极品粉嫩免费观看在线| 精品国产一区二区久久| 在线av久久热| 亚洲国产中文字幕在线视频| 国产精品亚洲av一区麻豆| 精品久久蜜臀av无| 黑人猛操日本美女一级片| 午夜激情久久久久久久| 久久久精品94久久精品| 少妇的丰满在线观看| 国产欧美亚洲国产| 久久国产精品男人的天堂亚洲| 精品亚洲成a人片在线观看| 搡老岳熟女国产| 丝袜喷水一区| 赤兔流量卡办理| 国产欧美亚洲国产| 国产免费福利视频在线观看| 成年人黄色毛片网站| 最新在线观看一区二区三区 | 男人操女人黄网站| 亚洲一区二区三区欧美精品| 永久免费av网站大全| 久久精品国产亚洲av高清一级| 女人久久www免费人成看片| 中文字幕人妻丝袜一区二区| 久久人妻福利社区极品人妻图片 | 又黄又粗又硬又大视频| 婷婷成人精品国产| 97在线人人人人妻| 国产精品一二三区在线看| 中文字幕精品免费在线观看视频| 九色亚洲精品在线播放| 国产精品久久久久久精品古装| 国产欧美日韩一区二区三区在线| 欧美日韩黄片免| 免费在线观看影片大全网站 | 亚洲图色成人| 好男人电影高清在线观看| 午夜福利一区二区在线看| 久久精品熟女亚洲av麻豆精品| 午夜福利一区二区在线看| 五月开心婷婷网| 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看| 欧美日韩一级在线毛片| 婷婷色麻豆天堂久久| 日韩大码丰满熟妇| 亚洲五月婷婷丁香| 国产精品偷伦视频观看了| 香蕉国产在线看| 美女主播在线视频| 一区二区av电影网| 一区二区av电影网| 两人在一起打扑克的视频| 99热国产这里只有精品6| 51午夜福利影视在线观看| 国产91精品成人一区二区三区 | 欧美成人午夜精品| www.999成人在线观看| 欧美黄色片欧美黄色片| 性高湖久久久久久久久免费观看| 久久精品国产亚洲av高清一级| 18在线观看网站| 国产精品一国产av| 操出白浆在线播放| 菩萨蛮人人尽说江南好唐韦庄| 日韩大片免费观看网站| www.精华液| 国产一区二区 视频在线| 精品一区二区三区av网在线观看 | 纯流量卡能插随身wifi吗| 欧美 日韩 精品 国产| 国产精品香港三级国产av潘金莲 | 十分钟在线观看高清视频www| 91老司机精品| 久久久久网色| 亚洲精品国产av蜜桃| 精品人妻熟女毛片av久久网站| 99国产综合亚洲精品| 日韩一本色道免费dvd| 首页视频小说图片口味搜索 | 美女中出高潮动态图| 国产真人三级小视频在线观看| 国产男人的电影天堂91| 国产精品一区二区免费欧美 | 国产精品九九99| 国产成人精品在线电影| 亚洲七黄色美女视频| 亚洲精品日韩在线中文字幕| 成人国产av品久久久| 19禁男女啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 老汉色av国产亚洲站长工具| 欧美激情极品国产一区二区三区| 黄色视频不卡| 欧美日本中文国产一区发布| 中文字幕人妻丝袜制服| 纵有疾风起免费观看全集完整版| 一本一本久久a久久精品综合妖精| 免费看不卡的av| avwww免费| 考比视频在线观看| 欧美黄色片欧美黄色片| 大话2 男鬼变身卡| 两人在一起打扑克的视频| 王馨瑶露胸无遮挡在线观看| 一边摸一边抽搐一进一出视频| 亚洲精品久久成人aⅴ小说| 天天添夜夜摸| 欧美日韩福利视频一区二区| 青青草视频在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 超色免费av| 看十八女毛片水多多多| 国产免费福利视频在线观看| cao死你这个sao货| 国产精品一区二区在线观看99| a级片在线免费高清观看视频| 久久久亚洲精品成人影院| 好男人电影高清在线观看| 国产精品香港三级国产av潘金莲 | 久久九九热精品免费| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 热re99久久国产66热| 欧美 亚洲 国产 日韩一| 久热爱精品视频在线9| 国产又爽黄色视频| 午夜福利,免费看| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇八av免费久了| 欧美久久黑人一区二区| 色播在线永久视频| 97人妻天天添夜夜摸| 日本91视频免费播放| 久久鲁丝午夜福利片| 欧美激情极品国产一区二区三区| 欧美日韩亚洲高清精品| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区三区在线| 亚洲久久久国产精品| 最近最新中文字幕大全免费视频 | 精品福利观看| 极品少妇高潮喷水抽搐| 亚洲国产精品国产精品| 成人午夜精彩视频在线观看| 老汉色av国产亚洲站长工具| 黄频高清免费视频| 香蕉国产在线看| 首页视频小说图片口味搜索 | 精品亚洲成国产av| 国产淫语在线视频| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 国产日韩一区二区三区精品不卡| 免费在线观看视频国产中文字幕亚洲 | 9191精品国产免费久久| 下体分泌物呈黄色| 久久国产精品影院| 精品亚洲成a人片在线观看| 国产成人一区二区在线| 亚洲七黄色美女视频| 日韩伦理黄色片| 中国国产av一级| 99国产精品99久久久久| av不卡在线播放| 亚洲少妇的诱惑av| 亚洲视频免费观看视频| 五月开心婷婷网| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 亚洲精品日本国产第一区| 国产精品香港三级国产av潘金莲 | 欧美少妇被猛烈插入视频| 久久 成人 亚洲| 中文字幕亚洲精品专区| 又紧又爽又黄一区二区| 国产一卡二卡三卡精品| 久久国产精品大桥未久av| 国产一区二区三区av在线| 欧美另类一区| 曰老女人黄片| 午夜福利一区二区在线看| 国产有黄有色有爽视频| 精品国产一区二区久久| 啦啦啦视频在线资源免费观看| 女人爽到高潮嗷嗷叫在线视频| 欧美国产精品va在线观看不卡| 91字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 精品欧美一区二区三区在线| 侵犯人妻中文字幕一二三四区| 美女高潮到喷水免费观看| 免费不卡黄色视频| 美女国产高潮福利片在线看| 久久久欧美国产精品| 亚洲人成电影免费在线| 日日夜夜操网爽| 欧美日韩亚洲高清精品| 亚洲欧美精品自产自拍| av一本久久久久| 免费在线观看影片大全网站 | 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 国产精品熟女久久久久浪| 1024香蕉在线观看| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 亚洲精品一二三| 免费人妻精品一区二区三区视频| 亚洲精品av麻豆狂野| 日本91视频免费播放| 日韩av在线免费看完整版不卡| 黄色怎么调成土黄色| 久久久久久久大尺度免费视频| 亚洲人成77777在线视频| www.精华液| 蜜桃国产av成人99| 狠狠婷婷综合久久久久久88av| 欧美精品av麻豆av| 欧美日韩亚洲高清精品| 亚洲欧美精品自产自拍| 黑人猛操日本美女一级片| 亚洲中文字幕日韩| 丝袜美腿诱惑在线| www.熟女人妻精品国产| 蜜桃国产av成人99| 久久人妻福利社区极品人妻图片 | av在线app专区| 大型av网站在线播放| 黑人欧美特级aaaaaa片| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 七月丁香在线播放| 2021少妇久久久久久久久久久| 亚洲国产看品久久| 两性夫妻黄色片| 一本久久精品| 国产精品麻豆人妻色哟哟久久| 这个男人来自地球电影免费观看| 大片免费播放器 马上看| avwww免费| 男的添女的下面高潮视频| 中文字幕av电影在线播放| 精品国产一区二区三区四区第35| 精品少妇黑人巨大在线播放| 99热网站在线观看| 欧美成人午夜精品| 性色av乱码一区二区三区2| 久久国产精品人妻蜜桃| 午夜免费成人在线视频| 国产精品 国内视频| 国产av国产精品国产| 国产高清视频在线播放一区 | 色94色欧美一区二区| 中文精品一卡2卡3卡4更新| 一区二区三区激情视频| 久久中文字幕一级| 制服人妻中文乱码| 亚洲精品一区蜜桃| 久久精品亚洲av国产电影网| 老司机亚洲免费影院| 九草在线视频观看| 啦啦啦在线观看免费高清www| 国产成人欧美| 国产熟女欧美一区二区| 国产高清国产精品国产三级| 日本五十路高清| 色精品久久人妻99蜜桃| 丁香六月欧美| 80岁老熟妇乱子伦牲交| 一区二区av电影网| 国产黄色视频一区二区在线观看| 亚洲中文av在线| 多毛熟女@视频| 午夜精品国产一区二区电影| 欧美精品一区二区大全| 真人做人爱边吃奶动态| 欧美黄色片欧美黄色片| 中文字幕色久视频| 亚洲伊人色综图| 欧美精品一区二区免费开放| 久久精品亚洲熟妇少妇任你| 国产在线免费精品| 一级毛片电影观看| 97在线人人人人妻| 男女下面插进去视频免费观看| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 午夜激情av网站| 人体艺术视频欧美日本| 50天的宝宝边吃奶边哭怎么回事| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 国产精品免费视频内射| 国产精品久久久久久精品电影小说| 精品亚洲乱码少妇综合久久| 91成人精品电影| 亚洲九九香蕉| 国产av国产精品国产| 久久久精品免费免费高清| 亚洲精品一区蜜桃| videosex国产| 国产精品欧美亚洲77777| 18禁观看日本| 亚洲人成电影观看| 不卡av一区二区三区| 成在线人永久免费视频| 在线观看免费高清a一片| 亚洲图色成人| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 性色av一级| 日韩熟女老妇一区二区性免费视频| 一边亲一边摸免费视频| 国产有黄有色有爽视频| 免费看不卡的av| 欧美人与性动交α欧美精品济南到| 久久精品国产综合久久久| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩高清在线视频 | 人妻一区二区av| bbb黄色大片| 欧美精品啪啪一区二区三区 | 精品卡一卡二卡四卡免费| 午夜视频精品福利| 肉色欧美久久久久久久蜜桃| 夫妻午夜视频| 晚上一个人看的免费电影| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣一区麻豆| www日本在线高清视频| 国产欧美亚洲国产| av又黄又爽大尺度在线免费看| 婷婷成人精品国产| a级毛片在线看网站| 91九色精品人成在线观看| 精品一品国产午夜福利视频| 国产麻豆69| 久久久久久亚洲精品国产蜜桃av| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 真人做人爱边吃奶动态| 精品一品国产午夜福利视频| 精品久久久久久电影网| 国产黄色视频一区二区在线观看| 人体艺术视频欧美日本| 午夜日韩欧美国产| 人妻 亚洲 视频| 两人在一起打扑克的视频| 韩国高清视频一区二区三区| 久久99一区二区三区| 真人做人爱边吃奶动态| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 麻豆乱淫一区二区| 永久免费av网站大全| netflix在线观看网站| 亚洲久久久国产精品| 欧美另类一区| 亚洲精品一区蜜桃| 欧美日韩成人在线一区二区| 亚洲午夜精品一区,二区,三区| 午夜福利在线免费观看网站| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区| 久9热在线精品视频| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 国产成人av激情在线播放| 久久毛片免费看一区二区三区| 色综合欧美亚洲国产小说| 极品少妇高潮喷水抽搐| av福利片在线| 激情视频va一区二区三区| 伊人亚洲综合成人网| 亚洲精品国产av成人精品| 99re6热这里在线精品视频| 色综合欧美亚洲国产小说| 18禁观看日本| 最新的欧美精品一区二区| av电影中文网址| 老汉色av国产亚洲站长工具| 免费久久久久久久精品成人欧美视频| 男人舔女人的私密视频| 1024视频免费在线观看| 婷婷色综合www| www.av在线官网国产| 欧美另类一区| 成年av动漫网址| 午夜福利在线免费观看网站| www.熟女人妻精品国产| 日韩精品免费视频一区二区三区| 大片电影免费在线观看免费| 亚洲av成人不卡在线观看播放网 | 欧美黄色片欧美黄色片| av福利片在线| 一本久久精品| 日韩欧美一区视频在线观看| 亚洲av男天堂| 在线亚洲精品国产二区图片欧美| 中国美女看黄片| 99国产精品一区二区三区| 看十八女毛片水多多多| 黄片播放在线免费| h视频一区二区三区| 两人在一起打扑克的视频| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 无限看片的www在线观看| 成人免费观看视频高清| 国产一区二区 视频在线| av欧美777| 可以免费在线观看a视频的电影网站| 亚洲精品国产av蜜桃| 午夜av观看不卡| 久久精品久久久久久久性| 麻豆av在线久日| 亚洲欧美中文字幕日韩二区| 中文字幕人妻丝袜制服| 午夜91福利影院| 成人亚洲精品一区在线观看| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| 亚洲欧美成人综合另类久久久| 婷婷成人精品国产| 免费人妻精品一区二区三区视频| 亚洲专区国产一区二区| 精品福利永久在线观看| 欧美性长视频在线观看| 大陆偷拍与自拍| 91精品国产国语对白视频| 老汉色av国产亚洲站长工具| 9色porny在线观看| 久久毛片免费看一区二区三区| av网站在线播放免费| tube8黄色片| 亚洲免费av在线视频| 亚洲av在线观看美女高潮| 久久精品久久久久久噜噜老黄| 999精品在线视频| 在线观看免费日韩欧美大片| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 我要看黄色一级片免费的| 国产av精品麻豆| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 亚洲,一卡二卡三卡| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| h视频一区二区三区| 国产精品免费大片| 国产精品香港三级国产av潘金莲 | 亚洲国产精品一区三区| 国产91精品成人一区二区三区 | tube8黄色片| 狂野欧美激情性xxxx| 午夜影院在线不卡| 夫妻午夜视频| 久久亚洲国产成人精品v| 黑人欧美特级aaaaaa片| 国产成人一区二区在线| 精品少妇久久久久久888优播|