• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氫鍵復(fù)合物中鍵長變化與振動頻率移動相關(guān)性重訪

    2012-11-30 10:33:40王偉周
    物理化學(xué)學(xué)報 2012年3期
    關(guān)鍵詞:化工學(xué)院鍵長氫鍵

    張 愚 馬 寧 王偉周

    (洛陽師范學(xué)院化學(xué)化工學(xué)院,河南洛陽471022)

    氫鍵復(fù)合物中鍵長變化與振動頻率移動相關(guān)性重訪

    張 愚 馬 寧 王偉周*

    (洛陽師范學(xué)院化學(xué)化工學(xué)院,河南洛陽471022)

    X―H···Y(Y為電子供體)型氫鍵形成時,X―H鍵長伸長或縮短與相應(yīng)的X―H伸縮振動頻率紅移或藍(lán)移存在較強(qiáng)的相關(guān)性,這也是氫鍵光譜檢測和研究的基礎(chǔ).但是,最近的理論研究卻推翻了這一觀點,認(rèn)為X―H鍵長變化和相應(yīng)的X―H伸縮振動頻率移動在有些氫鍵體系中并不存在相關(guān)性(McDowell,S.A.C.; Buckingham,A.D.J.Am.Chem.Soc.2005,127,15515.).本文中,我們采用更為可信的計算方法,對這一問題進(jìn)行再研究.結(jié)果表明是錯誤的計算方法導(dǎo)致了McDowell和Buckingham得出錯誤的結(jié)論.在McDowell和Buckingham所研究的氫鍵體系中,X―H鍵長變化和相應(yīng)的X―H伸縮振動頻率移動仍存在較強(qiáng)的相關(guān)性.

    氫鍵復(fù)合物;相關(guān);鍵長變化;振動頻率移動;密度泛函理論

    1 Introduction

    Hydrogen bond is one of the most important noncovalent interactions,which plays key roles in crystal engineering,supramolecular assembly,materials science,and biological system.1,2Infrared and Raman spectroscopies have played important roles in the detection of the hydrogen bonds:conventional X―H··· Y hydrogen bond is characterized by weakening of the X―H bond which causes elongation of this bond and a red shift of the X―H stretching frequency,and the blue-shifting X―H··· Y hydrogen bond is characterized by strengthening of the X―H bond which causes contraction of this bond and a blue shift of the X―H stretching frequency.3Obviously,the basis of the spectroscopic detection of the hydrogen bonds is that frequency shifts correlate very well with the bond-length changes and other characteristics of the hydrogen bond.3,4However,based on the ab initio computational results for a series of linear isoelectronic complexes of HCl with the proton acceptors N2,CO, or BF,McDowell and Buckingham5recently claimed that the widely believed correlation between the bond-length change and the frequency shift in the hydrogen-bonded complexes is unreliable.Such a conclusion is unusual,as it overturns the basis of the spectroscopic study of the hydrogen bond.We know now that the calculations of the bond-length change and the frequency shift are highly method-dependent.6Hence,it is reasonable to suppose that this conclusion may be a result of computational artifacts.In recent years,great progress has been made in the development of new quantum chemical methods.7-9It is the time to revisit this important issue by using more reliable computational methods.

    The systems selected in the present study are the linear hydrogen-bonded complexes formed by HCl with N2,CO,BF,or CO2(Fig.1).All the complexes considered by McDowell and Buckingham are included here.For the halogen-bonded complexes,we found that,besides the computational method,the coupling between the X―Hal(Hal=Cl,Br,or I)stretching vibration and other vibrations and the anharmonicity of the X―Hal stretching vibration also have great influence on the bond-length change-frequency shift correlation.10For the hydrogen-bonded complexes,the effect of the coupling between the X―H stretching vibration and other vibrations on the bond-length change-frequency shift correlation can be neglected because of the small mass of the H atom.On the other hand, the study by Sándorfy11indicated that the effect of the anharmonicity of the X―H stretching vibration on the bond-length change-frequency shift correlation is also negligible in most cases.So we did not consider the effects of the vibrational coupling and the anharmonicity on the bond-length change-frequency shift correlation in this work.

    Fig.1 Linear complexes considered in this workThe red dot lines represent the hydrogen bonds.

    2 Computational details

    Electronic structure calculations were carried out using the Gaussian 09 programs.12All the structures were fully optimized with“verytight”convergence criteria and characterized by frequency computations and wave function stability checks.Four newly developed density functionals,M05-2X,13,14M06-2X,14,15B2PLYP-D,16,17and mPW2PLYP-D,17,18were employed to investigate the correlation between bond-length change and vibrational frequency shift in hydrogen-bonded complexes.In order to examine the reliability of these density functionals,MP2, QCISD,and CCSD(T)calculations were also carried out.Both Pople?s basis sets and Dunning?s correlation-consistent series of basis sets with diffuse functions were used.The benchmark interaction energies in this work were calculated using the estimated CCSD(T)/CBS procedure,which can be found elsewhere.19An“ultrafine”integration grid(99 radial,590 angular points)was used for all the density functional theory(DFT)calculations to avoid the possible integration grid errors.The binding energies of the complexes were calculated using the supermolecule method.All binding energies are corrected for basis set superposition error(BSSE)using the counterpoise method of Boys and Bernardi.20

    In the present study,the value of the bond-length change is given as the difference of the bond length between the complex and the monomer,so that a negative value of the bond-length change refers to a bond contraction and a positive value of the bond-length change indicates a bond elongation.Similarly,a negative value of the frequency shift refers to a red shift and a positive value of the frequency shift means a blue shift.

    3 Results and discussion

    3.1 Reliability of the M05-2X,M06-2X,B2PLYP-D, and mPW2PLYP-D density functionals

    Fig.2 Potential energy curves for the linear complexCl―H···O≡C at different levels of theory All results reflect counterpoise correction.

    Many newly developed density functionals have been prov-en to provide improved performance over conventional MP2 method for noncovalent interactions.7-9In this work,we used four popular density functionals M05-2X,M06-2X,B2PLYP-D,and mPW2PLYP-D for the calculations.The hybrid meta density functionals M05-2X and M06-2X are from Truhlar?s group and the double hybrid functionals B2PLYP-D and mPW2PLYP-D are from Grimme?s group.13-18In order to examine the reliability of these density functionals for the hydrogen-bonded complexes considered in the present study,we selected the linear complex Cl―H···O≡C as a model complex and calculated its potential energy curve at the M05-2X/ 6-311++G(3d,3p),M06-2X/6-311++G(3d,3p),B2PLYP-D/ 6-311++G(3d,3p),mPW2PLYP-D/6-311++G(3d,3p),MP2/ 6-311++G(2d,2p),QCISD/6-311++G(2d,2p),QCISD/6-311++ G(3df,3pd),and CCSD(T)/CBS levels of theory,respectively. The highly accurate CCSD(T)/CBS potential energy curve was used as our benchmark.As clearly shown in Fig.2,the MP2/ 6-311++G(2d,2p)and QCISD/6-311++G(2d,2p)calculations underestimate the binding energies and the mPW2PLYP-D/ 6-311++G(3d,3p)calculation tends to be overbound relative to the CCSD(T)/CBS benchmark.More important is the slope of the potential energy curve.It,in fact,determines how accurate the bond length and the vibrational frequency will be.If the two potential energy curves generated at the QCISD/6-311++ G(2d,2p)and QCISD/6-311++G(3df,3pd)levels of theory are removed from Fig.2,we can see that all the potential energy curves are almost in parallel with each other.Evidently,the slopes of the two potential energy curves generated at the QCISD/6-311++G(2d,2p)and QCISD/6-311++G(3df,3pd)levels of theory are inaccurate relative to the CCSD(T)/CBS benchmark,and furthermore they can not produce the correct results of the bond-length change and the frequency shift.Let us add here that McDowell and Buckingham?s conclusions are based on the QCISD/6-311++G(2d,2p)and QCISD/6-311++ G(3df,3pd)calculations.5In comparison with the CCSD(T)/ CBS benchmark,the similar slopes of the potential energy curves generated at the M05-2X/6-311++G(3d,3p),M06-2X/ 6-311++G(3d,3p),B2PLYP-D/6-311++G(3d,3p),and mPW2PLYP-D/6-311++G(3d,3p)levels of theory confirm the reliability of the density functionals M05-2X,M06-2X,B2PLYP-D,and mPW2PLYP-D for the study of the bond-length change-frequency shift correlation of the hydrogen-bonded complexes considered in the present study.

    3.2 Selection of the basis set

    The linear hydrogen-bonded complexes selected in the present study is very small,so it is possible to use very large basis set to eliminate the effect of the basis set superposition error and the basis set incompleteness error.However,considering the possible extension to large hydrogen-bonded complexes,it is meaningful to study the effect of the basis set on the bond length and the vibrational frequency here.

    Table 1 lists the optimized geometries,Cl―H stretching frequencies and intensities,dipole moments,and BSSE-corrected binding energies of the studied complexes calculated at the M05-2X/6-311++G(d,p),M05-2X/6-311++G(3d,3p),and M05-2X/6-311++G(3df,3pd)levels of theory,respectively.Compar-ing the values in Table 1,it is found that the results calculated at the M05-2X/6-311++G(d,p)level of theory are obviously different from those calculated at the M05-2X/6-311++G(3d, 3p)and M05-2X/6-311++G(3df,3pd)levels of theory,for instance,the values of the Cl―H bond length calculated at the M05-2X/6-311++G(d,p)level of theory are all larger than the corresponding ones calculated at the M05-2X/6-311++G(3d, 3p)and M05-2X/6-311++G(3df,3pd)levels of theory,whereas the values of the Cl―H stretching frequency calculated at the M05-2X/6-311++G(d,p)level of theory are larger or smaller than the corresponding ones calculated at the M05-2X/6-311++ G(3d,3p)and M05-2X/6-311++G(3df,3pd)levels of theory;at the same time,it is also noticed that the results calculated at the M05-2X/6-311++G(3d,3p)level of theory are almost the same as those calculated at the M05-2X/6-311++G(3df,3pd) level of theory.These results indicate that the basis set 6-311++ G(3d,3p)yields converged results.In the following studies,we will use the basis set 6-311++G(3d,3p)for the calculations.

    Table 1 Optimized geometries(r and R,in nm),Cl―H stretching frequencies(ν,in cm-1)and intensities(I,in km·mol-1),dipole moments(μ,in C·m),and BSSE-corrected binding energies(ΔECP,in kJ·mol-1)of the studied complexes calculated using M05-2X functional with basis sets 6-311++G(d,p),6-311++G(3d,3p),and 6-311++G(3df,3pd)

    3.3 Cl―H bond-length change versus the Cl―H stretching frequency shift

    The values of Cl―H bond-length change and the corresponding Cl―H stretching frequency shift upon the hydrogen-bonded complex formation are summarized in Table 2 and plots of the Cl―H bond-length change versus the corresponding Cl―H vibrational frequency shift are shown in Fig.3.

    Fig.3 Correlation of Cl―H bond-length change with Cl―Hstretching frequency shift in hydrogen-bonded complexes

    McDowell and Buckingham found,at their highest level of theory(QCISD/6-311++G(3df,3pd)),that blue shifts were obtained for Cl―H···F―B and Cl―H···O≡C,while red shifts were obtained for the other hydrogen-bonded complexes.5Surprisingly,a blue shift accompanied by a Cl―H bond elongation was also predicted for Cl―H···O≡C.5Here in Table 2, our results show that blue shift is obtained only for Cl―H···F―B,while Cl―H···O≡C and other complexes are all bound by the red shifting hydrogen bonds.At the same time,it can be seen from Table 2 that all the data are very normal,that is to say,the red shift is connected with the bond elongation and the blue shift is connected with the bond contraction.As mentioned above,it is the computational artifact that leads to the different results.Note that McDowell and Buckingham also calculated Cl―H···O≡C at the MP2/6-311++G(2d,2p)level of theory.Their MP2 results are in agreement with our results.This can be explained by the correct slope of the potential energy curve of MP2 calculations,as mentioned above.

    The correlation between the bond-length change and the frequency shift for the Cl―H bond can be seen in Fig.3.Plots of the Cl―H bond-length change versus the corresponding vibrational frequency shift of the Cl―H stretch all give straight lines.The coefficient of determination of these linear fits(R2) is about 0.995 at the M05-2X/6-311++G(3d,3p)and M06-2X/ 6-311++G(3d,3p)levels of theory and about 0.999 at the B2PLYP-D/6-311++G(3d,3p)and mPW2PLYP-D/6-311++G(3d,3p) levels of theory.These results show that the correlation between the Cl―H bond-length change and the corresponding frequency shift is excellent in the hydrogen-bonded complexesstudied.

    Table 2 Cl―H bond-length changes(Δr,in nm)and the corresponding Cl―H stretching frequency shifts(Δν,in cm-1)upon the hydrogen-bonded complexes formation,and the BSSE-corrected binding energies(ΔECP,in kJ·mol-1)of the studied complexes at various levels of theory

    4 Conclusions

    The Cl―H bond-length change and the corresponding vibrational frequency shift of the Cl―H stretch upon the hydrogen bond formation have been determined using high level ab initio and density functional theory computations.It is found that the bond-length change-frequency shift correlation is highly method-dependent.The computational artifacts can lead to false conclusions.Compared with the CCSD(T)benchmark, M05-2X,M06-2X,B2PLYP-D,and mPW2PLYP-D give reasonable results,whereas the wave function theory-based QCISD performs poorly.Employing more reliable M05-2X, M06-2X,B2PLYP-D,and mPW2PLYP-D calculations,we found that plots of the Cl―H bond-length change versus the corresponding vibrational frequency shift of the Cl―H stretch all give straight lines and the coefficients of determination of the fits are close to 1 in all cases,showing that the correlation between the Cl―H bond-length change and the corresponding frequency shift is excellent in the hydrogen-bonded complexes studied.The correlation also indicates that the red shift is connected with the bond elongation,whereas the blue shift is connected with the bond contraction,and vice versa.We believe that,in addition to the Cl―H bond studied here,the results for other X―H bonds should be the same.

    The present study focuses only on the correlation between bond-length change and vibrational frequency shift of the hydrogen bond in the ground state.It is unclear whether the correlation still remains for the hydrogen bond in the electronically excited state.21Further study is underway in our laboratory.

    (1) Desiraju,G.R.Angew.Chem.Int.Edit.2011,50,52.

    (2) Arunan,E.;Desiraju,G.R.;Klein,R.A.;Sadlej,J.;Scheiner, S.;Alkorta,I.;Clary,D.C.;Crabtree,R.H.;Dannenberg,J.J.; Hobza,P.;Kjaergaard,H.G.;Legon,A.C.;Mennucci,B.; Nesbitt,D.J.Pure Appl.Chem.2011,83,1619.

    (3) Hobza,P.;Havlas,Z.Chem.Rev.2000,100,4253.

    (4) Li,X.;Liu,L.;Schlegel,H.B.J.Am.Chem.Soc.2002,124, 9639.

    (5)McDowell,S.A.C.;Buckingham,A.D.J.Am.Chem.Soc. 2005,127,15515.

    (6) Lu,P.;Lin,G.Q.;Li,J.C.J.Mol.Struct.-Theochem 2005,723, 95.

    (7) Sun,T.;Wang,Y.B.Acta Phys.-Chim.Sin.2011,27,2553. [孫 濤,王一波.物理化學(xué)學(xué)報,2011,27,2553.]

    (8) Schwabe,T.;Grimme,S.Accounts Chem.Res.2008,41,569.

    (9) Sherrill,C.D.J.Chem.Phys.2010,132,110902.

    (10) Wang,W.;Zhang,Y.;Ji,B.;Tian,A.J.Chem.Phys.2011,134, 224303.

    (11) Sándorfy,C.J.Mol.Struct.2006,790,50.

    (12) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision C.01;Gaussian Inc.:Wallingford CT,2010.

    (13) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2006,2,1009.

    (14) Zhao,Y.;Truhlar,D.G.Accounts Chem.Res.2008,41,157.

    (15) Zhao,Y.;Truhlar,D.G.Theor.Chem.Acc.2008,120,215.

    (16) Grimme,S.J.Chem.Phys.2006,124,034108.

    (17) Schwabe,T.;Grimme,S.Phys.Chem.Chem.Phys.2007,9, 3397.

    (18) Schwabe,T.;Grimme,S.Phys.Chem.Chem.Phys.2006,8, 4398.

    (19) Pitoňák,M.;Janowski,T.;Neogrády,P.;Pulay,P.;Hobza,P. J.Chem.Theory Comput.2009,5,1761.

    (20) Boys,S.F.;Bernardi,F.Mol.Phys.1970,19,553.

    (21) Zhao,G.J.;Han,K.L.Accounts Chem.Res.doi:10.1021/ ar200135h.

    November 4,2011;Revised:December 27,2011;Published on Web:December 30,2011.

    Correlation between Bond-Length Change and Vibrational Frequency Shift in Hydrogen-Bonded Complexes Revisited

    ZHANG Yu MA Ning WANG Wei-Zhou*
    (College of Chemistry and Chemical Engineering,Luoyang Normal University,Luoyang 471022,Henan Province,P.R.China)

    The correlation between the X―H bond-length change and the corresponding X―H stretching frequency shift upon X―H···Y(Y is an electron donor)hydrogen bond formation is the basis for the spectroscopic detection and investigation of the hydrogen bond.However,this view has been questioned in a recent report,suggesting that the widely accepted correlation between the bond-length change and the frequency shift in hydrogen-bonded complexes is unreliable(McDowell,S.A.C.;Buckingham,A.D.J.Am. Chem.Soc.2005,127,15515.).In this work,several robust computational methods have been used to investigate this issue.The results clearly show that a computational artifact leads to the conclusion incorrectly reported by McDowell and Buckingham and that the correlation between the X―H bond-length change and the corresponding X―H stretching frequency shift is still very good in the hydrogen-bonded complexes studied.

    Hydrogen-bonded complex;Correlation;Bond-length change;Vibrational frequency shift; Density functional theory

    10.3866/PKU.WHXB201112303

    O641

    ?Corresponding author.Email:wzwanglab@yahoo.com;Tel:+86-379-65515113.

    The project was supported by the National Natural Science Foundation of China(21173113),Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China(2010GGJS-166),and Natural Science Foundation of Henan Educational Committee,China (2010A150017,2011B150024).

    國家自然科學(xué)基金(21173113),河南省高等學(xué)校青年骨干教師資助計劃項目(2010GGJS-166)和河南省教育廳自然科學(xué)研究計劃項目(2010A150017,2011B150024)資助

    猜你喜歡
    化工學(xué)院鍵長氫鍵
    陰離子調(diào)控錳基鈣鈦礦中Mn─O的鍵長和磁性
    教材和高考中的氫鍵
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    《化工學(xué)報》贊助單位
    密度泛函理論研究鎘的二鹵化合物分子的結(jié)構(gòu)和振動頻率
    淺議鍵能與鍵長的關(guān)系
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    銥(Ⅲ)卟啉β-羥乙與基醛的碳?xì)滏I活化
    色综合色国产| 五月伊人婷婷丁香| 亚洲精品乱久久久久久| 欧美性感艳星| 午夜激情福利司机影院| 黄色欧美视频在线观看| 亚洲电影在线观看av| 国产乱人视频| 免费av毛片视频| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 直男gayav资源| 久久精品国产亚洲av涩爱| 91久久精品电影网| 日韩欧美三级三区| 最近手机中文字幕大全| 熟妇人妻不卡中文字幕| 国产白丝娇喘喷水9色精品| 蜜臀久久99精品久久宅男| 免费电影在线观看免费观看| 18禁在线无遮挡免费观看视频| 成年免费大片在线观看| 日日摸夜夜添夜夜添av毛片| 国产亚洲5aaaaa淫片| 又粗又硬又长又爽又黄的视频| 亚洲高清免费不卡视频| 日本三级黄在线观看| 尾随美女入室| av播播在线观看一区| 日韩av免费高清视频| 少妇猛男粗大的猛烈进出视频 | 午夜精品国产一区二区电影 | 大香蕉久久网| 日韩伦理黄色片| 99九九线精品视频在线观看视频| 国产黄色视频一区二区在线观看| 波多野结衣巨乳人妻| 国内精品美女久久久久久| 亚洲最大成人手机在线| 国产高清三级在线| 三级经典国产精品| 菩萨蛮人人尽说江南好唐韦庄| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 亚洲性久久影院| 久久精品人妻少妇| 高清av免费在线| 能在线免费看毛片的网站| 中文字幕制服av| 国产亚洲精品av在线| 久久久亚洲精品成人影院| 亚洲熟妇中文字幕五十中出| 久久久久精品性色| 中文字幕久久专区| 国产一级毛片七仙女欲春2| 亚洲av成人精品一二三区| 亚洲最大成人av| 国产精品一区www在线观看| 午夜久久久久精精品| h日本视频在线播放| 街头女战士在线观看网站| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 久久久欧美国产精品| 22中文网久久字幕| 日韩强制内射视频| 日本黄色片子视频| kizo精华| 亚洲欧美日韩无卡精品| 国产av国产精品国产| 久热久热在线精品观看| 亚洲无线观看免费| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 99热这里只有精品一区| 国产熟女欧美一区二区| 午夜激情久久久久久久| 久久人人爽人人片av| 欧美变态另类bdsm刘玥| 国产精品无大码| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| 久久久久久久久久久免费av| 男人舔女人下体高潮全视频| 91久久精品国产一区二区成人| 免费看日本二区| 亚洲性久久影院| 国产精品福利在线免费观看| 欧美激情在线99| 亚洲国产成人一精品久久久| 国产精品1区2区在线观看.| 亚洲欧美成人综合另类久久久| 女人十人毛片免费观看3o分钟| 嘟嘟电影网在线观看| 99re6热这里在线精品视频| 亚洲乱码一区二区免费版| 久久久精品欧美日韩精品| 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看| 深夜a级毛片| 日本免费a在线| 99久国产av精品| 黄色配什么色好看| 又大又黄又爽视频免费| 国产亚洲精品久久久com| 黄色欧美视频在线观看| 22中文网久久字幕| av在线播放精品| 国产一级毛片在线| 大香蕉久久网| 97超视频在线观看视频| 国产黄色视频一区二区在线观看| 日本熟妇午夜| 免费av毛片视频| 亚洲欧美清纯卡通| 80岁老熟妇乱子伦牲交| 美女大奶头视频| 成人午夜高清在线视频| 丝袜喷水一区| 久久久午夜欧美精品| 深爱激情五月婷婷| 国产久久久一区二区三区| 免费av不卡在线播放| 国产精品久久久久久精品电影| videossex国产| 午夜久久久久精精品| 天堂中文最新版在线下载 | 国产精品爽爽va在线观看网站| 免费黄色在线免费观看| 国内精品一区二区在线观看| 国产一区亚洲一区在线观看| 日本黄色片子视频| 免费无遮挡裸体视频| 日韩制服骚丝袜av| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 在线免费观看的www视频| 男人爽女人下面视频在线观看| 国产探花在线观看一区二区| 免费观看a级毛片全部| 男女视频在线观看网站免费| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠久久av| 少妇的逼好多水| 97精品久久久久久久久久精品| 欧美潮喷喷水| 日韩欧美精品v在线| 狂野欧美激情性xxxx在线观看| 色视频www国产| 精品酒店卫生间| 搡女人真爽免费视频火全软件| 禁无遮挡网站| 亚洲性久久影院| 国内揄拍国产精品人妻在线| 老司机影院成人| 日韩在线高清观看一区二区三区| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 亚洲av男天堂| 国产美女午夜福利| 国产精品1区2区在线观看.| 中文精品一卡2卡3卡4更新| 人妻少妇偷人精品九色| 三级经典国产精品| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的 | 成年版毛片免费区| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 色综合色国产| 国产一区二区亚洲精品在线观看| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 国产男人的电影天堂91| 久久久久九九精品影院| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 水蜜桃什么品种好| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 国产成人91sexporn| 亚洲va在线va天堂va国产| 啦啦啦韩国在线观看视频| 2022亚洲国产成人精品| 大香蕉97超碰在线| 国产精品一区二区三区四区免费观看| 久久精品综合一区二区三区| 久久久久久久国产电影| 精品一区二区三区人妻视频| 日韩成人av中文字幕在线观看| 国产综合懂色| 日韩中字成人| 精品人妻熟女av久视频| 人人妻人人澡人人爽人人夜夜 | 丝瓜视频免费看黄片| 国内少妇人妻偷人精品xxx网站| 日日干狠狠操夜夜爽| 欧美一级a爱片免费观看看| 国产亚洲5aaaaa淫片| 欧美xxxx黑人xx丫x性爽| 免费少妇av软件| 国产一区二区三区av在线| 插阴视频在线观看视频| 一个人看视频在线观看www免费| 97超视频在线观看视频| 亚洲精品中文字幕在线视频 | 一个人免费在线观看电影| 老女人水多毛片| 亚洲精品日韩在线中文字幕| 午夜精品在线福利| 亚洲经典国产精华液单| 久久久久久国产a免费观看| 国产91av在线免费观看| 国产黄频视频在线观看| 午夜精品在线福利| 欧美不卡视频在线免费观看| 91久久精品国产一区二区三区| 亚洲一区高清亚洲精品| 国产成人精品久久久久久| 免费看美女性在线毛片视频| 成人欧美大片| 免费播放大片免费观看视频在线观看| 久久久久性生活片| 熟女电影av网| 卡戴珊不雅视频在线播放| 国产探花在线观看一区二区| 久久国产乱子免费精品| 精品人妻熟女av久视频| 欧美xxⅹ黑人| 大片免费播放器 马上看| 小蜜桃在线观看免费完整版高清| 国产一区亚洲一区在线观看| 久久久久久久久久久丰满| 男女边摸边吃奶| 天天躁日日操中文字幕| 亚洲欧美成人精品一区二区| 美女黄网站色视频| 精品久久久久久成人av| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 老司机影院毛片| 国产精品女同一区二区软件| 欧美一级a爱片免费观看看| 少妇被粗大猛烈的视频| 三级毛片av免费| 最近中文字幕2019免费版| 99九九线精品视频在线观看视频| 国产伦精品一区二区三区四那| 日韩精品有码人妻一区| 嘟嘟电影网在线观看| 男的添女的下面高潮视频| 六月丁香七月| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| av线在线观看网站| 91av网一区二区| 国产精品久久久久久精品电影小说 | 在现免费观看毛片| 网址你懂的国产日韩在线| 激情五月婷婷亚洲| 观看免费一级毛片| 精品久久久久久电影网| 亚洲av电影不卡..在线观看| 国产精品无大码| 亚洲国产精品成人久久小说| 国产男女超爽视频在线观看| 国产黄色小视频在线观看| 免费黄频网站在线观看国产| 精品久久久久久久久亚洲| 精品一区二区三区视频在线| 网址你懂的国产日韩在线| 久久精品综合一区二区三区| 观看免费一级毛片| 看非洲黑人一级黄片| 久久久久精品性色| av天堂中文字幕网| 超碰av人人做人人爽久久| 国产免费又黄又爽又色| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 国产女主播在线喷水免费视频网站 | 精品一区二区三区视频在线| 少妇熟女aⅴ在线视频| 亚洲内射少妇av| 成年av动漫网址| 纵有疾风起免费观看全集完整版 | 成年免费大片在线观看| 高清午夜精品一区二区三区| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人观看的视频www高清免费观看| av黄色大香蕉| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| h日本视频在线播放| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 日韩精品青青久久久久久| 18禁在线无遮挡免费观看视频| kizo精华| 国产成人精品婷婷| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区| 欧美精品国产亚洲| 国产综合懂色| 国产精品av视频在线免费观看| 三级毛片av免费| 国产熟女欧美一区二区| 午夜福利视频精品| 伦精品一区二区三区| 久久人人爽人人爽人人片va| 亚洲天堂国产精品一区在线| 久久久久精品久久久久真实原创| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 国产午夜精品论理片| av一本久久久久| 欧美97在线视频| 久久久久久久久大av| 18禁动态无遮挡网站| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 国产乱人视频| 少妇人妻精品综合一区二区| 美女内射精品一级片tv| 白带黄色成豆腐渣| 欧美成人a在线观看| 99re6热这里在线精品视频| 我要看日韩黄色一级片| 色5月婷婷丁香| 国产精品日韩av在线免费观看| 中文字幕久久专区| 精品久久久久久久久av| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 成人午夜精彩视频在线观看| 久久久久久国产a免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 老女人水多毛片| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 色吧在线观看| 天堂网av新在线| 亚州av有码| 十八禁国产超污无遮挡网站| xxx大片免费视频| 在线观看人妻少妇| 亚洲18禁久久av| 国产亚洲av片在线观看秒播厂 | 又爽又黄无遮挡网站| 婷婷色麻豆天堂久久| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 亚洲成人久久爱视频| 三级国产精品欧美在线观看| 国产精品一区www在线观看| 国产高潮美女av| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影小说 | 丝袜喷水一区| 国产成人精品婷婷| 成人午夜精彩视频在线观看| 我要看日韩黄色一级片| 内射极品少妇av片p| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 青青草视频在线视频观看| 国产伦在线观看视频一区| 国产黄色视频一区二区在线观看| 国产av码专区亚洲av| 欧美xxxx黑人xx丫x性爽| 99久久九九国产精品国产免费| 嫩草影院精品99| av在线老鸭窝| 永久网站在线| 国产毛片a区久久久久| 日韩大片免费观看网站| 99热6这里只有精品| 肉色欧美久久久久久久蜜桃 | 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 亚洲成人精品中文字幕电影| 99久久精品国产国产毛片| 白带黄色成豆腐渣| 欧美性感艳星| 在线观看人妻少妇| 国产黄色免费在线视频| 色播亚洲综合网| 99久久精品一区二区三区| 26uuu在线亚洲综合色| 久久久久精品性色| 国产欧美日韩精品一区二区| 91久久精品电影网| 欧美激情在线99| 国产探花在线观看一区二区| 婷婷色综合大香蕉| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 亚洲av福利一区| 91精品国产九色| 插逼视频在线观看| 舔av片在线| 国产 一区 欧美 日韩| 国产黄频视频在线观看| 99久久精品国产国产毛片| 亚洲色图av天堂| 精品一区在线观看国产| 伊人久久国产一区二区| 精品久久久久久久久亚洲| 蜜桃久久精品国产亚洲av| 99热网站在线观看| 免费观看精品视频网站| 乱人视频在线观看| 久久久久免费精品人妻一区二区| 国产高清有码在线观看视频| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 神马国产精品三级电影在线观看| 超碰97精品在线观看| 欧美日韩精品成人综合77777| 亚洲精品乱码久久久v下载方式| 精品一区二区免费观看| 国产探花在线观看一区二区| 成人漫画全彩无遮挡| 天天一区二区日本电影三级| 亚洲国产最新在线播放| ponron亚洲| 色视频www国产| 26uuu在线亚洲综合色| videos熟女内射| 国产国拍精品亚洲av在线观看| 国产激情偷乱视频一区二区| 国产黄色小视频在线观看| 黄色日韩在线| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 日韩欧美三级三区| 国产色爽女视频免费观看| 在线免费观看的www视频| 成人二区视频| 亚洲电影在线观看av| 亚洲精品成人久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| 成人特级av手机在线观看| 蜜桃久久精品国产亚洲av| 国产午夜精品论理片| 亚洲av.av天堂| 尤物成人国产欧美一区二区三区| www.色视频.com| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 国产免费视频播放在线视频 | 免费av毛片视频| 免费黄网站久久成人精品| 全区人妻精品视频| 大片免费播放器 马上看| 国产精品.久久久| 国产综合精华液| 日韩国内少妇激情av| 欧美日韩国产mv在线观看视频 | 亚洲成色77777| 好男人在线观看高清免费视频| 免费高清在线观看视频在线观看| 精品久久久久久成人av| 天堂√8在线中文| 国产午夜精品论理片| 美女内射精品一级片tv| 在线观看av片永久免费下载| 国产亚洲91精品色在线| 久久久久久久久久成人| 色播亚洲综合网| 欧美日韩综合久久久久久| 少妇猛男粗大的猛烈进出视频 | 亚洲av电影不卡..在线观看| 少妇高潮的动态图| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂 | 久久6这里有精品| 国产男女超爽视频在线观看| 国产亚洲精品久久久com| ponron亚洲| 秋霞在线观看毛片| 蜜臀久久99精品久久宅男| 亚洲一区高清亚洲精品| 欧美bdsm另类| av线在线观看网站| 黑人高潮一二区| 一级毛片aaaaaa免费看小| 夫妻午夜视频| 欧美日本视频| 超碰av人人做人人爽久久| 成人高潮视频无遮挡免费网站| 男女视频在线观看网站免费| 免费av不卡在线播放| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 97精品久久久久久久久久精品| 日韩精品青青久久久久久| 51国产日韩欧美| 国产黄色免费在线视频| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 午夜久久久久精精品| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 亚洲自偷自拍三级| 赤兔流量卡办理| 免费大片18禁| 欧美不卡视频在线免费观看| 嫩草影院入口| 最近中文字幕2019免费版| 午夜福利在线观看吧| 欧美xxⅹ黑人| 熟女人妻精品中文字幕| 亚洲欧美精品专区久久| 成人亚洲精品av一区二区| 国产精品av视频在线免费观看| 欧美成人午夜免费资源| 高清日韩中文字幕在线| 日本一本二区三区精品| 最近最新中文字幕免费大全7| 亚洲在线观看片| 国产欧美另类精品又又久久亚洲欧美| 别揉我奶头 嗯啊视频| 国产欧美另类精品又又久久亚洲欧美| 秋霞伦理黄片| 乱人视频在线观看| 国产成人freesex在线| 一二三四中文在线观看免费高清| 老司机影院毛片| 免费观看的影片在线观看| 精品一区二区三区人妻视频| 男插女下体视频免费在线播放| 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| 3wmmmm亚洲av在线观看| 国产伦精品一区二区三区四那| 久久韩国三级中文字幕| 亚洲精品乱码久久久久久按摩| 成年av动漫网址| 男女国产视频网站| 99视频精品全部免费 在线| 国产亚洲一区二区精品| 国产精品人妻久久久影院| 亚洲最大成人中文| 五月天丁香电影| 26uuu在线亚洲综合色| 日韩一区二区视频免费看| 一二三四中文在线观看免费高清| 日韩av不卡免费在线播放| 免费黄网站久久成人精品| 久久久国产一区二区| 99re6热这里在线精品视频| 国产精品嫩草影院av在线观看| 黄片wwwwww| 小蜜桃在线观看免费完整版高清| 日韩欧美精品免费久久| 2021天堂中文幕一二区在线观| 伊人久久国产一区二区| 精品久久久久久久久av| 网址你懂的国产日韩在线| 日韩欧美精品免费久久| 深夜a级毛片| 欧美潮喷喷水| videossex国产| 2021天堂中文幕一二区在线观| 国产成人a区在线观看| av一本久久久久| 九草在线视频观看| 亚洲国产最新在线播放| 国产精品一区二区性色av| 国产三级在线视频| 亚洲精品456在线播放app| 国产成人免费观看mmmm| 美女被艹到高潮喷水动态| 啦啦啦中文免费视频观看日本| 三级男女做爰猛烈吃奶摸视频| 在线 av 中文字幕| 人人妻人人澡欧美一区二区| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| 国产大屁股一区二区在线视频| 男女国产视频网站| 成年女人看的毛片在线观看| 欧美 日韩 精品 国产| 成人特级av手机在线观看| 欧美日韩一区二区视频在线观看视频在线 | 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 久久午夜福利片| 91aial.com中文字幕在线观看| 亚洲三级黄色毛片| 久久午夜福利片| 亚洲精品日韩av片在线观看|