• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gemini表面活性劑乙烷基-α,ω-雙十四烷基二甲基溴化銨產(chǎn)生的高穩(wěn)定泡沫

    2012-11-30 10:48:52吳曉娜鄒文生趙劍曦
    物理化學(xué)學(xué)報 2012年5期
    關(guān)鍵詞:溴化銨乙烷二甲基

    吳曉娜 鄒文生 趙劍曦

    (福州大學(xué)化學(xué)化工學(xué)院,膠體與界面化學(xué)研究所,福州350108)

    Gemini表面活性劑乙烷基-α,ω-雙十四烷基二甲基溴化銨產(chǎn)生的高穩(wěn)定泡沫

    吳曉娜 鄒文生 趙劍曦*

    (福州大學(xué)化學(xué)化工學(xué)院,膠體與界面化學(xué)研究所,福州350108)

    報道了由gemini表面活性劑乙烷基-α,ω-雙十四烷基二甲基溴化銨(14-2-14)產(chǎn)生的高穩(wěn)定泡沫體系.泡沫塌陷到初始高度一半所對應(yīng)的時間(t1/2)用來表征泡沫的穩(wěn)定性.測得14-2-14體系的t1/2高達961 min,遠大于乙烷基-α,ω-雙十二烷基二甲基溴化銨(12-2-12)產(chǎn)生泡沫的t1/2(754 min),表明帶有一根短聯(lián)接鏈和兩條長尾鏈的gemini表面活性劑是高效的泡沫穩(wěn)定劑.為了揭示界面彈性與泡沫穩(wěn)定性之間的關(guān)聯(lián),測量了表面活性劑吸附膜的擴張流變行為.在指定的表面過剩量下,吸附膜的高頻極限彈性再一次被發(fā)現(xiàn)與泡沫穩(wěn)定性相關(guān),較大的極限彈性很好地對應(yīng)更加穩(wěn)定的泡沫.

    泡沫穩(wěn)定劑;Gemini表面活性劑;短聯(lián)接鏈;長尾鏈;高界面彈性

    1 Introduction

    Recently we reported stable foam systems generated by cationic gemini surfactants,2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecylammonium bromide),2-hydroxyl-butanediyl-α, ω-bis(dimethyldodecylammonium bromide)or 2,3-hydroxylbutanediyl-α,ω-bis(dimethyldodecylammonium bromide)(referred to as 12-3(OH)-12,12-4(OH)-12,and 12-4(OH)2-12,respectively).1These surfactants all contained a hydroxyl-substituted spacer and thus produced the intermolecular hydrogen bonding for those adsorbed at the air/water interface,2which made the packing of molecules tighter and increased the cohesion of surfactant within the monolayer and enhanced the foam stability.1,3Among these surfactants,12-3(OH)-12 can more efficiently stabilized the foam than 12-4(OH)-12 or 12-4(OH)2-12.This result suggests that even though there exists the intermolecular hydrogen bonding,the spacer length may still dominate the packing of surfactant at the air/water interface.Indeed,ethanediyl-α,ω-bis(dimethyldodecylammonium bromide)(12-2-12) has been found to efficiently stabilize soap film even at very low concentrations.4Illuminated by these results,we expanded the study to ethanediyl-α,ω-bis(dimethyltetradecyl-ammonium bromide)(14-2-14).14-2-14 has longer alkyl tails than 12-2-12 and therefore is expected to increase the cohesion of surfactant within the monolayer and better to stabilize foam.In the present work,the foam stability generated by 14-2-14 and the dilational rheology of the adsorption films were studied in detail. For comparison,12-2-12 was also examined.

    2 Experimental

    2.1 Materials

    Gemini surfactants,ethanediyl-α,ω-bis(tetradecyldimethylammonium bromide)and ethanediyl-α,ω-bis(dodecyldimethylammonium bromide),the chemical structures of which are shown in Scheme 1,were synthesized in our laboratory according to the method reported by Zana et al.5The products were confirmed by1H NMR and elemental analysis.All the solutions were prepared with Milli-Q water(resistivity:18.2 MΩ· cm).

    2.2 Measurements

    Foam stability was determined using a setup reported in literature.1The test solution of 5 mL was filled in a cylindrical glass container(25-mm internal diameter,140-mm height),at the bottom of which a porous glass disc was fixed.The cylindrical glass container was put in a water bath with a constant temperature of(25.0±0.1)°C.The solution was bubbled by air with a constant flow rate of 68 mL·min-1,and foam was generated until a designed 40 mm height that corresponded to a volume of 20 cm3and then the valve was shut immediately.Foam stability was characterized by time,t1/2,needed for the collapse of foam to half its initial height.The experiments were repeated at least three times,and the average value was adopted as t1/2.

    Scheme 1 Chemical structure of the gemini surfactants

    Interfacial dilational rheology was measured in an optical angle meter OCA-20 with oscillating drop accessory ODG-20. The equilibrated interface as indicated by a constant surface tension value was disturbed by sinusoidal oscillations produced by a function generator,which resulted in interfacial periodic expansion and contraction.The accessible frequency range was 0.01-1 Hz and the variation of the relative area(A) was~6%.These conditions followed the range of linear viscoelasticity.The changes in drop shape were monitored by CCD camera with a minimum of 50 frames per second.At the end of the experiment,the software retrieved the images and calculated the changes in both interface tension(dγ)and area(dA), which gave the interface dilatational modulus ε*=dγ/AdA.Using a Fourier transform analysis,the phase angle(θ)was determined.Thus,the dilational elasticity ε and dilational viscosity η could be calculated by the following relations:

    where ω=2πv,v is the frequency of sinusoidal oscillation.

    3 Results and discussion

    3.1 Foam stability

    Fig.1 shows the apparent pictures where both 12-2-12 and 14-2-14 generate foams with many gas bubbles separated by liquid films.Fig.2 illustrates the semi-logarithmic plots of the foam stability,represented as the time t1/2needed for the collapse of foam to half its initial height,as a function of surfactant concentration.As the surfactant concentration increases,t1/2rises rapidly to a plateau at respective critical micelle concentration (cmc)as shown by arrow.The maximum tmax1/2for 12-2-12(754 min)is greatly larger than that of 12-3(OH)-12(406 min)as reported previously,1verifying our inference that the gemini with a short spacer could more efficiently stabilize the foams. Significantly,14-2-14 produces tmax1/2as high as 961 min.This tmax1/2is 4-folds that of traditional cationic surfactant,tetradecyltrimethylammonium bromide(C14TABr,240 min),which is generally considered as the corresponding monomer of 14-2-14, and is also considerably larger than that of 14-3(OH)-14(660 min).6This means that a highly stable foam system is found.

    Fig.1 Apparent pictures of the foam systems generated by gemini surfactants(a)ethanediyl-α,ω-bis(dodecyldimethylammonium bromide)(12-2-12), (b)ethanediyl-α,ω-bis(tetradecyldimethylammonium bromide)(14-2-14)

    Fig.2 Semi-logarithmic plots of foam decay time(t1/2)for foam height to fall by 50%as a function of m-2-m concentration(c) at 25°CThe arrow shows respective cmc.

    Here we would like to mention another homologue,ethanediyl-α,ω-bis(hexadecyldimethylammonium bromide)(16-2-16) which has longer alkyl tails than 14-2-14.Unfortunately,16-2-16 cannot form normal foams due to the reason of adsorption kinetics analogous to 16-3(OH)-16 as discussed in our previous study.6

    3.2 Interfacial dilational rheology

    In general,foam stability is relevant to the interfacial elasticity of the adsorption film.3,7-13In this section,we discuss the dilational rheology of the adsorption films.Fig.3 shows the frequency-dependent variation of interfacial dilational elasticity (ε)and dilational viscosity(η)at different 14-2-14 concentrations(the similar results of 12-2-12 are not shown).At a fixed working frequency,both ε and η clearly exhibit concentration dependence(Fig.4)analogous to the observations for other surfactant systems.7,14The maximum in the concentration-dependent plot of ε has been explained by different effects induced by increased surfactant concentration,7which results in gradual increase in the surface excess Γ and noticeable enhancement in the molecular exchange between bulk and surface.The fast exchanges can even the surface tension gradient out rapidly. Thus,at low concentrations ε is governed by increased surface excess,whereas at high concentrations the molecular exchange plays a dominant role.The competition of the both determines a maximum in the ε(c)curve.

    Lucassen-van den Tempel(LVT)model describes the viscoelastic behavior of soluble monolayer over the range of low frequencies.15,16This model assumed that the material transport involved in the adsorption kinetics is governed only by diffusion without energy barriers and considered the instantaneous cou-pling between the interface rheology and the adsorption kinetics.The model predicted the viscoelastic moduli through the following equations:

    Fig.3 Experimental plots of(a)interfacial elasticity(ε)and(b)interfacial viscosity(η)as a function of frequency(v)in 14-2-14 aqueous solutions at 25°Clg(c/(mmol·L-1)):(□)-1.60,(○)-1.41,(△)-1.20,(▽)-1.10,(◇)-1.00,(?)-0.80,(?)-0.70,(☆)-0.50

    Fig.4 Semi-logarithmic plots of(a)dilational interfacial elasticity and(b)interfacial viscosity of 14-2-14 as a function of the concentration at different frequenciesν/Hz:(□)0.01,(○)0.046,(△)0.1,(▽)0.464,(◇)1.00

    with

    where ε0is the theoretical high-frequency limit of the surface elasticity and ω0is the molecular exchange parameter.Fig.5 shows some typical results for 14-2-14 fitted by Eqs.(3)and (4),in which the LVT model well describes the experimental data.Since the high-frequency limit is not experimentally included,the fitting values of ε0,fitwere adopted as ε0by the procedure suggested by Stubenrauch and Miller,7in which the couples of ε0,fitand ω0,fitthat best describe both the experimental ε(v,c)and η(v,c)curves,were determined.Similarly,ε0,fitis also concentration-dependent as seen in Fig.6.

    Fig.5 Fitting results of(a)dilational interfacial elasticity and(b)interfacial viscosity in terms of LVT model for 14-2-14 aqueous solutions at 25°Clg(c/(mmol·L-1)):(□)-1.60,(○)-1.41,(△)-1.20

    Fig.6 Concentration-dependent plots of high-frequency limit elasticity(ε0,fit)

    Fig.7 Frumkin adsorption isotherms of 12-2-12 and 14-2-14 at air/water interface

    In our recent study,we stressed that the relation between foam stability and interfacial elasticity of adsorption film is tenable only on the basis of high-frequency limit ε0(or ε0,fit)which excludes the influence of frequency as well as of identical surface excesses rather than the same bulk concentrations.1Analogous to the previous work,here we also adopted 80%of the surface excess as the comparison level for 12-2-12 and 14-2-14.The corresponding ε0,fitcan be obtained by combining Fig.6 and Fig.7,the latter represents the adsorption isotherms of Frumkin form obtained through fitting the surface tension data by Szyszkowski formula and then calculating the surface excesses by Gibbs equation.17Thus,the ε0,fitat 80%surface excess is 117.2 mN·m-1for 12-2-12 and 145.3 mN·m-1for 14-2-14. This result well indicates that high foam stability generated by 14-2-14 mirrors in high interfacial-elasticity of its adsorption film,being consistent with the previous conclusion.1

    4 Conclusions

    This paper reports a highly stable foam system generated by the gemini surfactant,14-2-14,which has two tetradecyl tails and an ethylene spacer linking the two quaternary ammonium headgroups.The present result suggests that the gemini surfactant with a short spacer and relatively long alkyl tails may be a good foam stabilizer,in which the short spacer can produce a columnar-like molecular geometry,while long alkyl tails increases the cohesion between surfactant molecules within the adsorption monolayer.The both factors are favorable to the tight arrangement of the molecules adsorbed at the interface and result in the high-elasticity film.

    (1) Wu,X.N.;Zhao,J.X.;Li,E.J.;Zou,W.S.Colloid Polym.Sci. 2011,289,1025.

    (2) Pei,X.M.;You,Y.;Zhao,J.X.;Deng,Y.S.;Li,E.J.;Li,Z.X. J.Colloid Interface Sci.2010,351,457.

    (3) Bergeron,V.Langmuir 1997,13,3474.

    (4) Espert,A.;Klitzing,R.V.;Poulin,P.;Colin,A.;Zana,R.; Langevin,D.Langmuir 1998,14,4251.

    (5) Zana,R.;Benrraou,M.;Rueff,R.Langmuir 1991,7,1072.

    (6)You,Y.;Wu,X.N.;Zhao,J.X.;Ye,Y.Z.;Zou,W.S.Colloids Surf.A 2011,384,164.

    (7) Stubenrauch,C.;Miller,R.J.Phys.Chem.B 2004,108,6412.

    (8) Santini,E.;Ravera,F.;Ferrari,M.;Stubenrauch,C.;Makievski, A.;Kr?gel,J.Colloids Surf.A 2007,298,12.

    (9) Wang,L.;Yoon,R.H.Int.J.Miner.Process.2008,85,101.

    (10) Georgieva,D.;Cagna,A.;Langevin,D.Soft Matter 2009,5, 2063.

    (11)Acharya,D.P.;Gutiérrez,J.M.;Aramaki,K.;Aratani,K.; Kunieda,H.J.Colloid Interface Sci.2005,291,236.

    (12) Wang,L.;Yoon,R.H.Int.J.Miner.Process 2008,85,101.

    (13) Sonin,A.A.;Bonfillon,A.;Langevin,D.J.Colloid Interface Sci.1994,162,323.

    (14)Li,Y.M.;Xu,G.Y.;Xin,X.;Gao,X.R.;Wu,D.Carbohydr. Polym.2008,72,211.

    (15) Lucassen,J.;van den Tempel,M.Chem.Eng.Sci.1972,27, 1283.

    (16) Lucassen,J.;van den Tempel,M.J.Colloid Interface Sci.1972, 41,491.

    (17) Rosen,M.J.Surfactants and Interfacial Phenomena;Wiley: New York,1988.

    December 20,2011;Revised:February 27,2012;Published on Wed:March 5,2012.

    Highly Stable Foams Generated by the Gemini Surfactant Ethanediyl-α,ω-bis(tetradecyldimethylammonium bromide)

    WU Xiao-Na ZOU Wen-Sheng ZHAO Jian-Xi*
    (Institute of Colloid and Interface Chemistry,College of Chemistry and Chemical Engineering,Fuzhou University, Fuzhou 350108,P.R.China)

    This paper reports a highly stable foam system generated by the gemini surfactant ethanediylα,ω-bis(tetradecyldimethylammonium bromide)(referred to as 14-2-14).The time measured for the collapse of the foam to half its initial height was used to characterize the foam stability;it was as high as 961 min for this system and significantly longer than that(754 min)for ethanediyl-α,ω-bis(dodecyldimethylammonium bromide)(12-2-12)foams.Thus the gemini surfactant structure of a short spacer together with two long tails enabled it to be a highly efficient foam stabilizer.The dilational rheology of the adsorbed films revealed the relationship between the interfacial elasticity and the foam stability.The high-frequency limit of elasticity of the adsorbed film at a specific surface coverage was again found to indicate foam stability.A larger limit of elasticity indicated a more stable foam.

    Foam stabilizer;Gemini surfactant;Short spacer;Long tail;High interfacial-elasticity

    10.3866/PKU.WHXB201203053

    O646

    ?Corresponding author.Email:jxzhao.colloid@fzu.edu.cn;Tel:+86-591-22866338;Fax:+86-591-22866152.

    The project was supported by the National Natural Science Foundation of China(20673021,20873024)and Natural Science Foundation of Fujian Province,China(2010J01038).

    國家自然科學(xué)基金(20673021,20873024)及福建省自然科學(xué)基金(2010J01038)資助項目

    猜你喜歡
    溴化銨乙烷二甲基
    離子沉淀浮選法回收廢水中的Cu2+
    溶液濃度對四丁基溴化銨水合物蓄冷性能的影響
    云南化工(2021年11期)2022-01-12 06:06:16
    二氧化碳對乙烷燃燒著火延遲時間的影響
    煤氣與熱力(2021年3期)2021-06-09 06:16:22
    磷鎢酸電極材料的超級電容器性能研究
    二甲基硅油結(jié)構(gòu)及熱穩(wěn)定性
    乙烷裂解制乙烯產(chǎn)業(yè)大熱
    2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
    Study on catalytic redox of potassium ferrocyanide at self assembly membrane of surfactant
    復(fù)合溶劑萃取N,N-二甲基乙酰胺
    固相微萃取-氣質(zhì)聯(lián)用法測定水中痕量土臭素和二甲基異崁醇
    亚洲精品美女久久久久99蜜臀 | 赤兔流量卡办理| 欧美日韩亚洲综合一区二区三区_| 嫁个100分男人电影在线观看 | 欧美老熟妇乱子伦牲交| 亚洲精品成人av观看孕妇| 免费少妇av软件| 国产成人精品在线电影| 国产免费福利视频在线观看| 精品欧美一区二区三区在线| 99国产精品一区二区三区| 久久久久久久大尺度免费视频| 午夜福利视频在线观看免费| 免费看不卡的av| 男女无遮挡免费网站观看| 久久精品熟女亚洲av麻豆精品| 日韩电影二区| 亚洲精品一二三| 在线精品无人区一区二区三| 99re6热这里在线精品视频| 女性生殖器流出的白浆| 国产欧美日韩精品亚洲av| 精品久久久久久久毛片微露脸 | 亚洲精品久久成人aⅴ小说| 午夜免费男女啪啪视频观看| 男女床上黄色一级片免费看| 成在线人永久免费视频| 欧美亚洲 丝袜 人妻 在线| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 亚洲少妇的诱惑av| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 免费日韩欧美在线观看| 久久亚洲精品不卡| 超色免费av| 国产片内射在线| 丝袜脚勾引网站| 日本欧美视频一区| 国产精品av久久久久免费| 国产极品粉嫩免费观看在线| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 久久国产精品大桥未久av| 亚洲欧美成人综合另类久久久| 啦啦啦在线免费观看视频4| 婷婷成人精品国产| 国产日韩欧美在线精品| 欧美 亚洲 国产 日韩一| 黄色a级毛片大全视频| 国产1区2区3区精品| 精品福利观看| 91九色精品人成在线观看| 五月天丁香电影| 亚洲一区中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 少妇裸体淫交视频免费看高清 | 亚洲情色 制服丝袜| 久久ye,这里只有精品| 我的亚洲天堂| 国产1区2区3区精品| 一本大道久久a久久精品| 亚洲欧美激情在线| 中文字幕亚洲精品专区| 亚洲欧美色中文字幕在线| 热99久久久久精品小说推荐| 大香蕉久久网| 男女之事视频高清在线观看 | 黑人欧美特级aaaaaa片| 国产av国产精品国产| 777久久人妻少妇嫩草av网站| 亚洲欧美色中文字幕在线| 女性生殖器流出的白浆| 欧美精品一区二区免费开放| 国产免费一区二区三区四区乱码| 国产又爽黄色视频| 日韩大码丰满熟妇| 高清不卡的av网站| 亚洲伊人色综图| 欧美日韩综合久久久久久| e午夜精品久久久久久久| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 久久精品人人爽人人爽视色| 国产精品人妻久久久影院| 老司机影院成人| 日韩电影二区| 亚洲色图 男人天堂 中文字幕| 黄色怎么调成土黄色| 久久久久久久大尺度免费视频| 久久精品人人爽人人爽视色| av片东京热男人的天堂| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| av网站免费在线观看视频| 国产成人免费观看mmmm| 国产高清国产精品国产三级| 中文乱码字字幕精品一区二区三区| 欧美97在线视频| 天天操日日干夜夜撸| www.精华液| 欧美日韩精品网址| kizo精华| 亚洲国产av影院在线观看| 天天躁日日躁夜夜躁夜夜| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 国产伦人伦偷精品视频| 多毛熟女@视频| 一区二区三区激情视频| 人体艺术视频欧美日本| www.熟女人妻精品国产| 自线自在国产av| 精品国产乱码久久久久久男人| 大码成人一级视频| 性色av一级| 亚洲国产日韩一区二区| 大码成人一级视频| 亚洲精品国产区一区二| 91麻豆av在线| 又紧又爽又黄一区二区| 国产欧美亚洲国产| 婷婷丁香在线五月| 亚洲五月色婷婷综合| 亚洲国产精品999| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| www.999成人在线观看| 日本一区二区免费在线视频| 一本久久精品| 国产不卡av网站在线观看| 中文欧美无线码| 国产精品一区二区免费欧美 | 视频区欧美日本亚洲| 亚洲av成人精品一二三区| 男男h啪啪无遮挡| 免费在线观看影片大全网站 | 大片电影免费在线观看免费| 蜜桃国产av成人99| 黑丝袜美女国产一区| av网站在线播放免费| 久久人人爽人人片av| 久久久久精品人妻al黑| 操美女的视频在线观看| 九色亚洲精品在线播放| 波野结衣二区三区在线| 国产视频首页在线观看| 日本五十路高清| 久久精品国产亚洲av高清一级| 欧美精品av麻豆av| 91成人精品电影| 国产精品久久久久久人妻精品电影 | 亚洲av成人不卡在线观看播放网 | 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 国产精品一区二区在线观看99| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄色大片毛片| www.999成人在线观看| 性少妇av在线| 一二三四在线观看免费中文在| 深夜精品福利| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 久久狼人影院| 黄色片一级片一级黄色片| 超碰成人久久| 黄色一级大片看看| 国产精品欧美亚洲77777| 免费在线观看影片大全网站 | 国产成人免费无遮挡视频| tube8黄色片| 中国美女看黄片| 亚洲,一卡二卡三卡| 亚洲 国产 在线| 99国产精品免费福利视频| 青草久久国产| 一区二区av电影网| 男女国产视频网站| 久久精品亚洲熟妇少妇任你| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 18在线观看网站| 国产精品欧美亚洲77777| 久久久久网色| 国产深夜福利视频在线观看| 捣出白浆h1v1| 国产黄色免费在线视频| 大片电影免费在线观看免费| 精品国产国语对白av| 999久久久国产精品视频| 日本黄色日本黄色录像| 国产黄频视频在线观看| 亚洲精品国产色婷婷电影| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频 | 精品国产一区二区三区四区第35| 久久九九热精品免费| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 日韩一卡2卡3卡4卡2021年| 欧美日韩av久久| 在线天堂中文资源库| 一边亲一边摸免费视频| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 午夜福利在线免费观看网站| 国产高清国产精品国产三级| 日韩视频在线欧美| 观看av在线不卡| 久久久久网色| 久久久国产精品麻豆| 一边亲一边摸免费视频| 日本五十路高清| 亚洲精品日韩在线中文字幕| 久久精品国产综合久久久| a级片在线免费高清观看视频| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区 | 午夜激情av网站| 90打野战视频偷拍视频| 免费在线观看日本一区| 亚洲精品一二三| 成人国语在线视频| 18禁观看日本| 久久精品亚洲av国产电影网| 欧美精品亚洲一区二区| 人妻 亚洲 视频| 国产亚洲精品久久久久5区| 五月开心婷婷网| 一本—道久久a久久精品蜜桃钙片| 欧美日韩国产mv在线观看视频| 青春草视频在线免费观看| 亚洲美女黄色视频免费看| 真人做人爱边吃奶动态| 在线观看人妻少妇| 日韩大码丰满熟妇| 好男人视频免费观看在线| 欧美97在线视频| 亚洲五月婷婷丁香| 国产一区二区 视频在线| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 日本色播在线视频| 91精品国产国语对白视频| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 一边亲一边摸免费视频| 国产一区二区三区av在线| 搡老乐熟女国产| 午夜两性在线视频| 午夜福利,免费看| 99精品久久久久人妻精品| 丰满少妇做爰视频| 午夜福利一区二区在线看| 亚洲人成电影观看| 啦啦啦视频在线资源免费观看| 好男人电影高清在线观看| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 老司机亚洲免费影院| 在线观看免费视频网站a站| 久久久亚洲精品成人影院| 多毛熟女@视频| 啦啦啦啦在线视频资源| 日韩,欧美,国产一区二区三区| 波多野结衣一区麻豆| 亚洲成人手机| 亚洲少妇的诱惑av| 久久99一区二区三区| 久久久久精品国产欧美久久久 | 日韩一卡2卡3卡4卡2021年| 老司机影院成人| 国产不卡av网站在线观看| 日韩一本色道免费dvd| 我的亚洲天堂| videos熟女内射| 成年人黄色毛片网站| 欧美人与性动交α欧美软件| 欧美激情 高清一区二区三区| 高清av免费在线| 亚洲伊人色综图| 亚洲熟女精品中文字幕| 一级黄片播放器| 国产福利在线免费观看视频| av不卡在线播放| 色94色欧美一区二区| 在线观看国产h片| 精品视频人人做人人爽| 久久久久国产一级毛片高清牌| 日韩制服丝袜自拍偷拍| 99精品久久久久人妻精品| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o | 人成视频在线观看免费观看| 久久久久网色| 国产亚洲精品久久久久5区| 丝袜美足系列| 国产精品.久久久| 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 搡老乐熟女国产| 两个人免费观看高清视频| 国产男人的电影天堂91| 精品国产一区二区三区四区第35| 777米奇影视久久| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 婷婷成人精品国产| 成人黄色视频免费在线看| 一级黄色大片毛片| 最新的欧美精品一区二区| 九色亚洲精品在线播放| 麻豆av在线久日| 女性被躁到高潮视频| 肉色欧美久久久久久久蜜桃| 好男人视频免费观看在线| 国产三级黄色录像| 午夜福利视频精品| 国产免费现黄频在线看| 国产成人精品久久二区二区免费| 在线精品无人区一区二区三| 精品欧美一区二区三区在线| 飞空精品影院首页| 亚洲午夜精品一区,二区,三区| 午夜免费观看性视频| 99国产精品一区二区蜜桃av | 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 啦啦啦 在线观看视频| 亚洲国产欧美在线一区| 免费在线观看影片大全网站 | www.熟女人妻精品国产| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 色播在线永久视频| 另类亚洲欧美激情| 黄色片一级片一级黄色片| 97人妻天天添夜夜摸| 久久久国产精品麻豆| www.熟女人妻精品国产| 超碰97精品在线观看| 男女之事视频高清在线观看 | 人人妻,人人澡人人爽秒播 | 色视频在线一区二区三区| 国产日韩欧美在线精品| 欧美日韩福利视频一区二区| 97人妻天天添夜夜摸| 久久中文字幕一级| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品古装| 嫁个100分男人电影在线观看 | 久久久精品国产亚洲av高清涩受| 精品人妻1区二区| 99久久精品国产亚洲精品| 亚洲少妇的诱惑av| xxx大片免费视频| 国产真人三级小视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美在线黄色| www.熟女人妻精品国产| 高清视频免费观看一区二区| 国产av国产精品国产| 大香蕉久久网| 精品久久久精品久久久| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 中文字幕亚洲精品专区| 99热网站在线观看| 亚洲欧美色中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产一区二区三区四区第35| 黑人猛操日本美女一级片| 精品人妻在线不人妻| 精品一区在线观看国产| 久久精品国产亚洲av涩爱| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 亚洲精品国产av成人精品| 亚洲欧美精品自产自拍| 亚洲精品一卡2卡三卡4卡5卡 | 精品国产一区二区久久| 涩涩av久久男人的天堂| 久久久国产一区二区| 久热这里只有精品99| 亚洲欧洲精品一区二区精品久久久| 国产一卡二卡三卡精品| 亚洲欧美日韩高清在线视频 | 国产不卡av网站在线观看| 亚洲av电影在线观看一区二区三区| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 桃花免费在线播放| 欧美日韩精品网址| 热re99久久精品国产66热6| 90打野战视频偷拍视频| 国产激情久久老熟女| 免费在线观看影片大全网站 | 精品国产一区二区久久| 90打野战视频偷拍视频| 黄片播放在线免费| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx| 狠狠精品人妻久久久久久综合| 1024视频免费在线观看| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 亚洲欧美日韩高清在线视频 | 校园人妻丝袜中文字幕| 国产精品久久久人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 黄色一级大片看看| 久久99精品国语久久久| 日本猛色少妇xxxxx猛交久久| videos熟女内射| 色精品久久人妻99蜜桃| 中文字幕精品免费在线观看视频| 亚洲av日韩精品久久久久久密 | 日韩免费高清中文字幕av| 国产精品二区激情视频| 在线av久久热| 国产欧美日韩一区二区三区在线| 汤姆久久久久久久影院中文字幕| 国语对白做爰xxxⅹ性视频网站| 一边亲一边摸免费视频| 免费日韩欧美在线观看| 免费高清在线观看日韩| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产精品免费视频内射| 亚洲av日韩在线播放| 国产1区2区3区精品| 国产精品二区激情视频| 亚洲精品国产色婷婷电影| 久久久国产欧美日韩av| 国产一区二区在线观看av| 婷婷色av中文字幕| 亚洲一区二区三区欧美精品| 曰老女人黄片| 久久国产精品大桥未久av| 男男h啪啪无遮挡| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 国产91精品成人一区二区三区 | 只有这里有精品99| 热99国产精品久久久久久7| 黄色视频不卡| 777米奇影视久久| 搡老岳熟女国产| 观看av在线不卡| 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 久久精品国产综合久久久| 看免费成人av毛片| 欧美中文综合在线视频| av在线老鸭窝| 日本午夜av视频| 一边摸一边抽搐一进一出视频| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 亚洲精品乱久久久久久| 国产日韩欧美亚洲二区| 观看av在线不卡| 性色av一级| 久久性视频一级片| 国产视频一区二区在线看| 色精品久久人妻99蜜桃| a级毛片黄视频| 国产女主播在线喷水免费视频网站| 亚洲欧美中文字幕日韩二区| 美女大奶头黄色视频| 女性被躁到高潮视频| 黄频高清免费视频| 一本大道久久a久久精品| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| av有码第一页| 美女福利国产在线| 久久鲁丝午夜福利片| 国产成人啪精品午夜网站| h视频一区二区三区| 婷婷丁香在线五月| 精品国产一区二区三区四区第35| 少妇的丰满在线观看| 国产野战对白在线观看| 精品久久蜜臀av无| 午夜影院在线不卡| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 久久人人爽av亚洲精品天堂| 1024香蕉在线观看| 欧美大码av| 国产主播在线观看一区二区 | 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 脱女人内裤的视频| 深夜精品福利| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 波多野结衣一区麻豆| 悠悠久久av| 国产成人精品久久二区二区91| 老司机亚洲免费影院| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| 满18在线观看网站| 手机成人av网站| 满18在线观看网站| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 午夜福利一区二区在线看| 欧美大码av| 亚洲av美国av| 亚洲欧美日韩高清在线视频 | 啦啦啦啦在线视频资源| av片东京热男人的天堂| 精品一品国产午夜福利视频| 少妇猛男粗大的猛烈进出视频| av网站免费在线观看视频| 欧美 日韩 精品 国产| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品一区二区蜜桃av | 亚洲国产欧美在线一区| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看 | av在线播放精品| 大话2 男鬼变身卡| 国产成人欧美| 午夜久久久在线观看| 国产三级黄色录像| 一二三四在线观看免费中文在| 中文字幕人妻熟女乱码| 国产主播在线观看一区二区 | 日韩人妻精品一区2区三区| 狠狠精品人妻久久久久久综合| 午夜激情久久久久久久| 成人免费观看视频高清| 国产片特级美女逼逼视频| 又大又黄又爽视频免费| 成年动漫av网址| 亚洲中文日韩欧美视频| 日韩大码丰满熟妇| 国产亚洲av片在线观看秒播厂| 男女边摸边吃奶| www.自偷自拍.com| 久久午夜综合久久蜜桃| 天堂中文最新版在线下载| 欧美成人精品欧美一级黄| 国产成人啪精品午夜网站| 亚洲人成77777在线视频| 国产亚洲一区二区精品| 成人三级做爰电影| videosex国产| 一边摸一边做爽爽视频免费| 一本色道久久久久久精品综合| 精品少妇黑人巨大在线播放| 曰老女人黄片| 日本vs欧美在线观看视频| 人人妻人人爽人人添夜夜欢视频| 久久久久网色| 精品一区二区三区四区五区乱码 | 国产激情久久老熟女| 亚洲av电影在线进入| 建设人人有责人人尽责人人享有的| 久久久久国产一级毛片高清牌| 国产在线免费精品| 国产视频一区二区在线看| 可以免费在线观看a视频的电影网站| 看免费成人av毛片| 亚洲精品成人av观看孕妇| 少妇的丰满在线观看| 黄色一级大片看看| 国产视频一区二区在线看| 国产精品人妻久久久影院| 国产亚洲欧美在线一区二区| 国产精品国产三级国产专区5o| 91麻豆av在线| 国产精品一区二区在线观看99| 啦啦啦啦在线视频资源| www.精华液| 一级毛片黄色毛片免费观看视频| 少妇粗大呻吟视频| 亚洲欧洲精品一区二区精品久久久| 亚洲av日韩精品久久久久久密 | 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 超色免费av| 中文欧美无线码| 精品少妇一区二区三区视频日本电影|