周美秀,張小明
(1. 浙江廣播電視大學 開放與遠程教育研究院,浙江 杭州,310030; 2. 浙江海寧電大,浙江 海寧, 314400)
關(guān)于A-G的幾個不等式
周美秀1,張小明2
(1. 浙江廣播電視大學 開放與遠程教育研究院,浙江 杭州,310030; 2. 浙江海寧電大,浙江 海寧, 314400)
為加強或加細幾個著名的算術(shù)-幾何不等式,研究用方差來估算兩者的差,并利用一個統(tǒng)一的證明模式,加強或推廣這些結(jié)果.
算術(shù)平均;幾何平均;最值壓縮定理;不等式
不加特殊說明,本文都設(shè)
通過對均值差的估計, 加強或加細著名的算術(shù)-幾何-調(diào)和平均值不等式
H(w,a)≤G(w,a)≤A(w,a)
(1)
是不等式理論研究的熱點之一.
(2)
和
文獻[2][3]中有
(4)
和
(5)
文[4][5]中的結(jié)果等價于
(6)
文[6]中有
(7)
文[7]把式(4)和(7)分別加強為
(8)
和
(9)
在文[14], Alzer H證明了
(10)
(11)
本文將以統(tǒng)一的方法加強或推廣以上式(4)-(7)和式(10)、(11),其中的結(jié)果也與(8)、(9)不分強弱,但形式比其簡潔.
以下都設(shè)集合D?Rn是有內(nèi)點的對稱凸集,對于i=1,2,…,n,記
和
若對引理1進行函數(shù)變換可得引理2和引理3,詳細證明見參考文獻[9].
證明設(shè)
lnIn={lna=(lna1,lna2,…lnan)|a∈In},g:y∈lnIn→f(ey1,ey1,…,eyn),
則
□
引理3證畢.
□
定理1
(12)
即
(13)
則有
和
此即為(12)的右式.
(13)的左式為同理可證,在此略.定理1證畢.
□
此即為式(4). 對于一般的wi(i=1,2,…,n),由于無理數(shù)是有理數(shù)的極限,所以式(4)仍成立.
定理2
(14)
即
(15)
有
和
□
同理可證(14)的右式,在此略.
(16)
證明設(shè)
則有
□
定理4
(17)
和
□
同理可證(17)的右式,本文在此略. 定理3證畢.
采用評注1中的證明方法,由定理4,易知推論1成立.
推論1
(18)
評注4 式(18)強于式(5).
rA(a)+(1-r)H(a)≥G(a).
(19)
證明若n=2,命題易證成立.下設(shè)
其中q>r.則
和
qA(a)+(1-q)H(a)-G(a)≥0.
再令q→r,知定理5成立.
□
所以說式(19)強于式(10)(11).
[1] Mitrinovic D S, Vasic M. Analytic inequalities[M]. New York: Springer-Verlag,1970:81-83.
[2] Cartwright D I, Field M J. A refinement of the arithmetic mean-geometric mean inequality[J]. Proc Amer Math Soc,1978,71(1):36-38.
[3] Bullen P S. Handbook of Means and their inequalities[M]. The Netherlands: Kluwer Academic Publishers,2003:156.
[4] Williams K S, Beesack P R. Problem 247[J]. Crux Math,1978,4:23-26;37-39.
[5] Mitrinovic D S, Pecaric J E, Fink A M.Classical and new inequalities in analysis [M]. The Netherlands: Kluwer Academic Publishers,1993:39.
[6] Alzer H. A New refinement of the arithemetic mean-geometic mean inequality[J]. Rocky Mountain J Math,1997,27(3):663-667.
[7] Mercer A M. Improved upper and lower bounds for the difference of An-Gn[J]. Rocky Mountain J Math,2001,31(3):553-560.
[8] Zhang Xiaoming, Chu Yuming, A new method to study analytici nequalities[J]. Journal of Inequalities and Applications,2010(2010), Article ID 698012.
[9] Williams K S, Beesack P R. Problem 395[J]. Crux Math,1979,5:89-90;232-233.
[10] Gao Peng. Ky Fan inequality and bounds for differences of means[J]. Int J Math Math Sci,2003,16:995-1002.
[11] Gao Peng. A new approach to Ky Fan-type inequalities[J]. Research Report Collection,2003,6(2),Article 8.
[12] Gao Peng.Certain bounds for the differences of means[J]. J Inequal Pure Appl Math, 2003,4(4), Article 76.
[13] Gao Peng. Some refinements of Ky Fan’s inequality[J]. Research Report Collection,2004,7(1), Article 16.
[14] Alzer H.Sierpinski’s inequality[J]. J Belgian Math Soc,1989,41:139-144.
[15] Zhang Xiaoming, Xi Boyan, Chu Yuming.A new method to prove and find analytic inequalities[J]. Abstract and Applied Analysis,2010 (2010),Article ID 128934.
[16] Zhang Xiaoming, Chu Yuming. New discussion to analytic inequality[M]. Harbin: HarBin Institute of Technology Press,2009:217-259.
SeveralInequalitiesaboutA-G
ZHOU Mei-xiu1, ZHANG Xiao-ming2
(1. Open and Distance Education Research Institute, Zhejiang Radio&Television University, Hangzhou 310030, China;2. Zhejiang Radio & Television University Haining College, Haining 314400, China)
To strengthen and refine some famous arithmetic-geometric inequalityies, this paper used variance to estimate the difference between the two, strengthen or popularize these results with a unified proof mode .
arithmetic mean; geometric mean; compressed independent variables theorem; inequality
2012-04-20
周美秀(1969—),女,教授,主要從事微分方程研究.E-mail:zwy950120@163.com
11.3969/j.issn.1674-232X.2012.05.009
O122.3MSC2010: 26D15
A
1674-232X(2012)05-0426-07