• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    流變相法制備倍率性能優(yōu)異的LiFePO4/C復(fù)合材料

    2012-11-13 05:50:40鐘本和郭孝東方為茂
    關(guān)鍵詞:氫氧化鋰變相四川大學(xué)

    徐 瑞 鐘本和 郭孝東 唐 艷 唐 紅 方為茂*, 劉 恒

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065) (2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)

    流變相法制備倍率性能優(yōu)異的LiFePO4/C復(fù)合材料

    徐 瑞1鐘本和1郭孝東1唐 艷1唐 紅1方為茂*,1劉 恒2

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065) (2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)

    以月桂酸為碳源和表面活性劑,氫氧化鋰、碳酸鋰和醋酸鋰為鋰源,采用流變相法制備LiFePO4/C復(fù)合材料。運(yùn)用X射線衍射(XRD)、掃描電子顯微鏡(SEM)、粒度分析、恒流充放電測(cè)試、循環(huán)伏安以及交流阻抗測(cè)試等方法對(duì)復(fù)合材料進(jìn)行表征。結(jié)果表明,不同的鋰源對(duì)LiFePO4/C復(fù)合材料的結(jié)構(gòu)和電化學(xué)性能均有很大影響,以氫氧化鋰為鋰源合成的LiFePO4/C材料展示出最佳的循環(huán)性能和倍率性能。該材料在0.1C下放電比容量為153.4mAh·g-1,在大倍率10 C下,容量保持率仍可達(dá)76%,甚至10C下循環(huán)800次后,容量衰減率僅有4%,SEM結(jié)果顯示該材料具有較小的粒徑(~200 nm),且分布集中,有效提高了電子遷移速率,從而改進(jìn)了LiFePO4/C的倍率性能。

    LiFePO4/C;流變相法;鋰源;高倍率

    After the discovery of olivine-structured LiFePO4in 1997 by Goodenough and co-workers[1],thematerial has always been one of the hottest cathode active materials for Lithium-ion batteries.Recently,rapidly capacity fading of LiFePO4at high current density has been a bottleneck problem, which limits theapplication in large electric drives.Padhietal[1]showed that discharging would be ended when the discharging current increased and the lithium-ions of LiFePO4/ Li1-xFePO4interface were not enough to preserve the current of discharge,so it is an usefulway to improve the specific capacity at high rate by enhancing the diffusion rate of Li+.Some references[2-5]reported that smaller particle size of LiFePO4could shorten the diffusion distance of Li+,which is beneficial to the enhancement of diffusion rate;uniformly distributed carbon layer on the surface of active powder can make sure the homogeneous insertion/deinsertion of Li+.So via reducing the particle size and improving the carbon coating,the bottleneck problem of LiFePO4can be achieved a breakthrough.

    At present,various synthetic routes,such as solid state reaction[6-8],sol-gel reaction[9-10],co-precipitation reaction[11-12],hydrothermal reaction[13-14]and microwave heating reaction[15-16]etc,have been applied to synthesize LiFePO4.For solid state reaction,simple preparative technology and devices make it to be beneficial to industrial production,but by this route, particles obtained are usually with irregular morphology,non-uniform particle size distribution,and the higher calcining temperature and longer calcining timewould also cause tremendousenergy comsumption.Sol-gel reaction and co-precipitation reaction both belonging to liquid phase method are similar to some degree,such as the mixing of the raw materials in molecular scale,the narrower size distribution and the smaller particle size of the product.But the preparing condition of sol-gel reaction is harsh,moreover, particles are easy to agglomerate in stoving and calcination process,in view of these,it is difficult to scale up thismethod into industrialapplication.For coprecipitation reaction,differentsedimentation rates and equilibrium solubility of components affect the stoichiometric ratio of the elements in the product, which is a significant impact factor on the products performance.The hydrothermalmethod is another kind of liquid phase reaction,owning some advantages mentioned above.But the hydrothermal reaction under high temperature and high pressure is more complex and is hard to control in reactor,therefore a higher qualification is needed for equipment tomeet the harsh reaction condition.

    In this work,we resolved the problem that the capacity of LiFePO4faded rapidly at high rate through controlling the particle size of LiFePO4.The rheological phase method combines the advantages of solid state reaction and liquid state reaction,such as decreasing energy consumption,reducing the particle size of the product and being suitable for industrial production.LiFePO4/C synthesized by the rheologicalphasemethod has excellent rate capability because of its smaller particle size.We also studied the effect of different lithium sourceson the performance ofsamples.

    1 Experimental

    1.1 Synthesis of LiFePO4/C

    The LiFePO4/C composites were prepared by rheological phase method.Iron phosphate (FePO4· 2H2O,AR),lithium hydroxide(LiOH·H2O,AR),lithium carbonate(Li2CO3,AR),lithium acetate(CH3COOLi· 2H2O,AR)and lauric acid(C12H24O2,AR)were used as raw materials.LiOH·H2O,Li2CO3and CH3COOLi· 2H2Owere separatelymixed with stoichiometric amount of FePO4·2H2O and grounded for 2 h to get a solid reactantmixture,whichwas thenmixed with lauric acid dissolved in ethanoland grounded for1 h to geta solidliquid rheological body,it looked like a kind ofmushy slurry.Then,the different rheological bodies were calcined at 650℃ in a tube furnace for 6 h under nitrogen flow,then naturally cooled to room temperature to obtain the LiFePO4/C composites.The products prepared with lithium hydroxide,lithium carbonate, lithium acetate as lithium sources aremarked with A, B,C,respectively.

    1.2 M aterials characterization

    The crystalline structrue of each product was characterized by X-ray diffraction (XRD,Philips X′Pert PW1730)with Cu Kαradiation(λ=0.154 18 nm) at scanning angle of 10°~80°and scanning rate of 8°· min-1.The particle morphology and particle size of samples were observed by scanning electron microscopy (SEM,SPA400 Seiko Instructures).The particle size distribution was tested by JL-1155 laser particle size distribution tester.The carbon content was tested by CS-902 analytical instrument.

    1.3 Electrochem ical characterization

    Tomake electrode,80wt%LiFePO4/C composite, 13wt%acetylene black and 7wt%of polyvinylidene fluoride (PVDF)were mixed in N-methylpyrrolidone (NMP)as solvent.The obtained slurry was then deposited uniformly onto a thin Al foil,and dried in vacuum at 80℃ for 10 h.The dried filmed Al foil was cut into disks as cathode electrode.The electrolyte was 1 mol·L-1LiPF6dissolved in ethylene carbonate (EC),diethylene carbonate (DEC)and dimethylene carbonate(DMC)with amolar ratio of 1∶1∶1.The Li foil was used as anode and the Celgard 2400 as the separator.The coin-type cells were assembled in a glove box filling with argon.The cells were measured by galvanostatic constant current charging/discharging tests with the potential range of 2.5~4.3 V using a battery test system (Neware BTS-610)at room temperature (25 ℃ ).The cyclic voltammetry(CV)and electrochemical impedance(EIS) of the cell were conducted by a CHI660B electrochemical work station,CV tests were carried out in the potential range of 2.5~4.3 V at a scanning rate of 0.10mV·s-1.

    2 Results and discussion

    2.1 Structure and morphology analysis

    Fig.1 shows the X-ray diffraction patterns of the LiFePO4/C synthesized with different lithium sources.Compared with the normal pattern of LiFePO4(PDF No.40-1499),the crucial diffraction peaks of three samples are well matched with the standard of an orthorhombic olivine-type structure with a space group of Pnma.All the peaks of sample A and B are sharp without any peaks of impurities,which proves that the product is well-crystallized.However,the pattern of sample C appears an obvious impurity Li3PO4, analyzed by Jade 5.0,which indicates that reaction of the raw materials are incomplete,in addition,the wide and weak peaks suggest the poor crystallinity.No residual carbon-related diffraction peak is detected here,which indicates that the residual carbon is amorphous and the carbon can not affect the crystalline structure of LiFePO4.

    Fig.2 shows the SEM images of LiFePO4/C synthesized with different lithium sources.All the samples used lauric acid as carbon source and the carbon content is about 2.3%.Sample A has the smallest particle size of about 200 nm and uniform size distribution;the particle size of sample B is also small but the distribution is non-uniform and some primary particles seem a little agglomerated;the particle size of sample C is big and agglomerate even more seriously.Smaller particles have large specific surface area,which contribute not only to the effective contact of electrolyte and the surface of LiFePO4,but also to the diffusion of Li+,so we anticipate that the sample synthesized by lithium hydroxide based rheological phase method will have the optimal performance.It indicates that the various systems of raw materials has great effect on the morphology of products.FePO4is neutral and lauric acid is acidic, so compared with other lithium source,lithium hydroxide with strong alkaline can mix with FePO4and lauric acid well to reach the homogeneity of molecular level.At the same time,the rheological phasemethod integrates the advantages of solid-phase method and liquid-phase method,which makes the homogeneous system with certain viscosity to decrease the particle size.

    2.2 Electrochem ical cycling test

    Fig.3 shows the initial charge-discharge curves of LiFePO4/C synthesized with different lithium sources at 0.1C.From the curves,all the samples have stable charge-discharge platform located at 3.45/3.4 V, corresponding to the redox plateau potentials of Fe2+/ Fe3+,the charge capacity of samples A,B and C is 155.8 mAh·g-1,157.2 mAh·g-1and 113.5 mAh·g-1, the discharge capacity of samples A,B and C is 153.4 mAh·g-1,139.7 mAh·g-1and 98.4 mAh·g-1,coulomb efficiency is 98.2%,88.9%and 86.7%,resectively.It can be seen that the sample synthesized with lithium hydroxide shows the highest discharge capacity and coulomb efficiency,i.e.sample A has the best reversibility.The charge-discharge process of LiFePO4occurs in the mutual transformation process of FePO4and LiFePO4:lithium ions extract from LiFePO4and get into electrolyte when charging;on the contrary, lithium ions insert into Li1-xFePO4from electrolyte when discharging.The uniform and regular particle morphology of sample A would mean a more stable structure,so after the delithiation,nearly all the lithium ions can insert into thematerials again,which leads to high coulomb efficiency.However,there is a certain amount of impurities in sample C by XRD analysis result.The existence of impurities does not only decrease the content of electrochemical active substance,but also impedes the extraction/insertion of lithium,which causes a part of lithium ions can not join in electrochemical reaction and thus leading to lower specific capacity.

    Fig.4 shows the discharge cycling curves of three samples at different current rates.Seeing from the chart,sample A shows the best cycling performance and its specific capacity decays slowly with current density increasing.At 0.1C,the specific capacity is 153.4 mAh·g-1and maintains 116.4 mAh·g-1at high rate of 10C,with capacity retention rate of 76%. However,the specific discharge capacity of sample B and C at 0.1C is 139.7 mAh·g-1,and 98.4 mAh·g-1, respectively,their capacity retention rates are both only 56%at 10C.Liu Youyong et al[17]synthesized nanospheres-LiFePO4composite by PEG based sol-gel synthesis,the specific capacity is 113 mAh·g-1at 5C; Wu Yongming et al[18]successfully developed a facile method to synthesize the hierarchical LFP/C NMs,the specific capacity of LFP/C NMs decreased from 150 to 85 mAh·g-1with an increasing current rate from a value of 0.1C to 5C.Compared with the data of the two documents,our sample displays an excellent rate capability.

    Contrasting the SEM images with the electrochemical performance of samples,we can also see that there is a close connection between electrochemical performance and the morphology of the samples.The sample A has the smallest particle size of 200 nm and without blocky particles,Li+can rapidly extract/insert from LiFePO4owing to the shorter diffusion distance of lithium ions,which improves its rate capability.The reason why sample C exhibits bad rate capability is that the purity of the target product and morphology mentioned in the XRD and SEM results are not beneficial to the extraction/ insertion of Li+.Dong et al[19]considered that pH value could affect the dispersion of water system and cell performance of LiCoO2cathodes,when the pH value of the slurry was pH≤7.0 or pH≥11.6,the adhesive force between slurry covering and aluminum foil, conductivity and charge-discharge performance of LiCoO2cathodes decreased obviously.Hence,we presume that the above situation may be suitable for LiFePO4in thiswork.In otherwords,when the system of mixed materials is alkaline,it can be obtained LiFePO4electrode with fine dispersion and excellent electrochemical performance.Only thematerial system of sample A is alkaline,so its electrochemical performance is the best.

    2.3 Analysis of the optim um sam p le

    2.3.1 Analysis of particle size

    The particle size distribution of sample A and its precursor are given in Table 1.The particle size of sample A is small,the average particle size is only 1.942μm,D10,D50,D90value and the average particle size of sample A are close to its precursor,which represents particles without growing much during calcination,the result is in accordance with SEM, which shows that the reaction system composed of LiOH·H2O,FePO4and lauric acid can suppress particle growth,thus the small particles obtained.

    Table 1 Particle size distribution of sample A and its precursor

    2.3.2 Cycling stability test

    Fig.5 shows the cycling curve of sample A at 10 C,its specific capacity basically keeps at about 115 mAh·g-1,the capacity retention rate after 800 cycles is still 96%,which indicates that sample A has an excellent cycling stability.All the results show that the nanoparticles of sample A is stable,even at high rate,the reversibility of lithium extraction/insertion is also good.

    2.3.3 Cyclic voltammetry test

    Fig.6 shows the cyclic voltammetry curve of sample A for the 1st,2nd and 5th cycles at scanning rate of 0.1 mV·s-1.The reduction and oxidation peak positions for the 1st,2nd and 5th cycles are the same, it proves that the structure of the sample A is very stable during the charge/discharge processes.Seeing from the chart,the CV curves exhibit symmetrical and sharp shape of the anodic/cathodic peaks at 3.27 V and 3.62 V,respectively,the redox potential interval is small only 0.35 V,which demonstrates the higher electrochemical reactivity and lower electrode polarization.The nearly equal area of anodic/cathodic peaks indicates well lithium insertion/extraction reversibility of the LiFePO4/C,which is in well agreement with the good performance showed in galvanostatic charge/discharge results.

    2.3.4 Electrochemical Impedance analysis

    Fig.7a shows the impedance spectra of LiFePO4composites with different lithium sources.As can be seen from the figure,all spectra have an intercept at the Z′axis,a semicircle and a straight line in the high-, middle- and low-frequency regions. An intercept at the Z′axis in high frequency corresponds to the ohmic resistance, which represents the resistance of the electrolyte and LiFePO4/C thin film. Themiddle frequency semicircle indicates the chargetransfer resistance of electrochemical reaction.The slow frequency line is attributed to the diffusion of the lithium ions into the bulk of the electrode material. An equivalent circuitmodel of EISwas constructed to analyze the resistance of LiFePO4/C electrode(Fig.7b), which can explain the impedance spectra through the ohmic resistance Re,charge-transfer Rfand the diffusion resistance Rct.The parameters of the equivalent circuit by computer simulations are shown in Table 2.Seeing from the table,the resistance of the electrolyte and sample A thin film is only 2.673Ω, the charge-transfer resistance of electrochemical reaction is 41.05Ω,the diffusion resistance is 40.43 Ω.all the resistance of sample A is the lowest,which leads to the highest electrical conductivity and the optimum electrochemical performance of sample A.

    3 Conclusions

    In this work, LiFePO4/C composite wassynthesized by rheological phase method with lauric acid as carbon source and surfactant.It is found that all the composites are olivine-type LiFePO4with high crystallinity, and the energy consumption of calcination process decreases.Using LiOH·H2O as lithium source can get LiFePO4/C with excellent electrochemical performance and rate capability, specific capacity of 153.4mAh·g-1at 0.1C,and 116.4 mAh·g-1at high rate of 10C,The good performance is mainly due to the small particle size of only 200 nm. Through analyzing the optimum sample in detail,we found using rheological phase method with the raw material system of LiOH·H2O,FePO4and lauric acid to synthesize LiFePO4/C can restrain the particles growing and get the sample with outstanding cycling stability and reversibility at high rate.

    Table 2 Numerical values of the elements from equivalent circuit

    [1]Padhi A K,Nanjundaswamy K S,Goodenough J B.J. Electrochem.Soc.,1997,144(4):1188-1194

    [2]Liu H,Feng Y,Wang Z H,et al.Powder Technol.,2008, 184:313-317

    [3]Huang Y H,Ren H B,Peng ZH,et al.Electrochimica Acta, 2009,55:311-315

    [4]WANGXiao-Juan(王小娟),LIXin-Hai(李新海),WANG Zhi-Xing(王志興),et al.J.Funct.Mater.(Gongneng Cailiao), 2009,40(12):1996-2003.

    [5]YU Hong-Ming(于紅明),ZHENGWei(鄭威),CAO Gao-Shao (曹高劭),et al.Acta Physico-Chimica Sinica(Wuli Huaxue Xuebao),2009,25(11):2186-2190

    [6]WANG Qiu-Ming(王秋明).Thesis for the Master Degree of Harbin Institute of Technology(哈爾濱工業(yè)大學(xué)碩士論文).2008.

    [7]Zhang SS,Allen JL,Xu K,et al.J.Power Sources,2005, 147:234-240

    [8]Kang H C,Jun D K,Jin B,et al.J.Power Sources,2008, 179:340-346

    [9]Sanchez M A E,Brito G E S,Fantini M C A,et al.Solid State Ionics,2006,177:497-500

    [10]Miran G,Robert D,Marjan B,et al.Solid State Ionics, 2005,176:1801-1805

    [11]Yang R,Song X P,Zhao M S,et al.J.Alloys Compd., 2009,468:365-369

    [12]Park K S,Kang K T,Lee S B,et al.Mater.Res.Bull., 2004,39:1803-1810

    [13]Chen J J,Wang S J,Stanley W M.J.Power Sources, 2007,174:442-448

    [14]Chen J J,Stanley W M.Electrochem.Commun.,2006,8: 855-858

    [15]Guo X F,Zhan H,Zhou Y H.Solid State Ionics,2009,180: 386-391

    [16]Zhang Y,Feng H,Wu X B,et al.Electrochimica Acta, 2009,54:3206-3210

    [17]Liu Y Y,Cao C B,Li J.Electrochimica Acta,2010,55: 3921-3926

    [18]Wu Y M,Wen Z H,Li JH.Adv.Mater.,2011,23(9):1126-1129

    [19]Dong Y L,Li JZ,Li ZC.Mater.Sci.Eng.,2006,38(1):1-6

    LiFePO4/C Composite w ith Excellent Rate Capability Synthesized by Rheological Phase M ethod

    XU Rui1ZHONG Ben-He1GUO Xiao-Dong1TANG Yan1TANG Hong1FANGWei-Mao*,1LIU Heng2
    (1College of Chemical Engineering,Sichuan University,Chengdu 610065,China) (2College ofMaterials Science and Engineering,Sichuan University,Chengdu 610065,China)

    LiFePO4/C was synthesized by rheological phasemethod (a soft chemicalmethod)using lauric acid as the carbon source and surfactant,lithium hydroxide,lithium carbonate and lithium acetate as the lithium source.Thematerials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),particle size analysis,constant-current charge/discharge test,cyclic voltammetry(CV)and electrochemical impedance spectra (EIS).The results show that the effect of the lithium source on the morphology and the electrochemical performance of LiFePO4/C composites is great.The LiFePO4/C sample with lithium hydroxide as the lithium source exhibits the best cycling performance and rate capability.It shows a specific capacity of 153.4 mAh·g-1at 0.1 C,a capacity retention rate of 76%at high current density of 10 C,and a lossing rate of 4%at 10C after 800 cycles.The excellent performance of this LiFePO4/C is attributed to the smaller size (~200 nm)and the narrower particle size distribution.

    LiFePO4/C;rheological phasemethod;lithium sources;high rate

    This work was supported by the National Scientific and Technical Backup Plan of China (2007BAQ01055). We also gratefully acknowledge the assistance of the Analysis and Test Center of Sichuan University.

    O646;TB33;TM912.9

    A

    1001-4861(2012)07-1506-07

    2011-12-22。收修改稿日期:2012-02-20。

    國(guó)家科技支撐計(jì)劃(No.2007BAQ01055),國(guó)家自然科學(xué)基金(No.50574063)和四川大學(xué)青年基金(No.2011SCU11081)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:wmfang@scu.edu.cn

    猜你喜歡
    氫氧化鋰變相四川大學(xué)
    一種氫氧化鈉母液中提純單水氫氧化鋰晶體的工藝方法
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    碳酸鋰和氫氧化鋰的價(jià)格聯(lián)動(dòng)機(jī)制探討
    跟旅游團(tuán)游玩時(shí)被變相強(qiáng)制消費(fèi),可以投訴嗎?
    新教育(2018年27期)2019-01-08 02:23:04
    百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
    通報(bào)變相重點(diǎn)班并非小題大做
    甘肅教育(2016年3期)2016-05-30 04:08:00
    鹽湖鹵水提鋰制取氫氧化鋰的工藝研究
    變相
    ——水墨的維度
    四川大學(xué)華西醫(yī)院
    采用氫氧化鋰提高鋁合金氧化膜的耐腐蝕性能
    av在线观看视频网站免费| 三级国产精品片| 欧美另类一区| 日韩一本色道免费dvd| 中国美白少妇内射xxxbb| 综合色丁香网| av网站免费在线观看视频| 亚洲丝袜综合中文字幕| 十八禁高潮呻吟视频 | 美女视频免费永久观看网站| 在现免费观看毛片| 人人妻人人添人人爽欧美一区卜| 日本wwww免费看| 在线天堂最新版资源| 国产午夜精品一二区理论片| 国产一级毛片在线| 色视频在线一区二区三区| 国产精品无大码| 少妇高潮的动态图| 黄色欧美视频在线观看| 性色av一级| 插阴视频在线观看视频| 久久久久人妻精品一区果冻| av又黄又爽大尺度在线免费看| 午夜av观看不卡| 永久网站在线| 久久久久久久久久久免费av| 久久婷婷青草| 亚洲av不卡在线观看| 成年人午夜在线观看视频| av国产精品久久久久影院| 欧美性感艳星| a 毛片基地| 99热网站在线观看| 美女国产视频在线观看| 一区在线观看完整版| 国产精品久久久久久久电影| 国产一区二区三区综合在线观看 | 日韩精品有码人妻一区| 日产精品乱码卡一卡2卡三| 熟女电影av网| 成人亚洲欧美一区二区av| 少妇精品久久久久久久| 丁香六月天网| 一个人免费看片子| 蜜桃久久精品国产亚洲av| 老熟女久久久| 久久久久久久国产电影| 在线免费观看不下载黄p国产| 好男人视频免费观看在线| 天美传媒精品一区二区| 搡老乐熟女国产| 国产男女内射视频| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久影院| 亚洲精品色激情综合| 色婷婷av一区二区三区视频| 成人国产麻豆网| 国产熟女午夜一区二区三区 | 亚洲欧美精品自产自拍| 国产av码专区亚洲av| 亚洲成人av在线免费| 国产伦理片在线播放av一区| 国产精品国产av在线观看| 大又大粗又爽又黄少妇毛片口| 内地一区二区视频在线| 少妇人妻精品综合一区二区| av国产久精品久网站免费入址| 丰满乱子伦码专区| 久久久久久伊人网av| 日韩精品有码人妻一区| 一区二区av电影网| 精华霜和精华液先用哪个| 91aial.com中文字幕在线观看| av在线观看视频网站免费| 三级国产精品欧美在线观看| 插逼视频在线观看| 国产男女超爽视频在线观看| 国产探花极品一区二区| 97超碰精品成人国产| 午夜免费观看性视频| 午夜视频国产福利| 国产精品人妻久久久久久| 国产色婷婷99| 精品一品国产午夜福利视频| 国产日韩欧美亚洲二区| 中文字幕人妻熟人妻熟丝袜美| 99久久人妻综合| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久久性| 秋霞在线观看毛片| 秋霞在线观看毛片| 国模一区二区三区四区视频| 啦啦啦视频在线资源免费观看| 久久99热这里只频精品6学生| a级毛片免费高清观看在线播放| 日本wwww免费看| 亚洲国产精品专区欧美| 国产欧美日韩综合在线一区二区 | 亚洲国产精品专区欧美| av免费在线看不卡| 免费不卡的大黄色大毛片视频在线观看| 97超视频在线观看视频| 亚洲综合色惰| 日韩大片免费观看网站| 丰满人妻一区二区三区视频av| 欧美bdsm另类| 一区在线观看完整版| 亚洲美女黄色视频免费看| 欧美xxⅹ黑人| 亚洲国产精品一区二区三区在线| 国产免费福利视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲电影在线观看av| 成人亚洲欧美一区二区av| 熟女电影av网| 天天躁夜夜躁狠狠久久av| 久久免费观看电影| 国产精品国产三级专区第一集| 亚洲熟女精品中文字幕| 亚洲精品,欧美精品| 中文欧美无线码| 天堂8中文在线网| 免费高清在线观看视频在线观看| 日韩欧美 国产精品| 国产黄色免费在线视频| 久久99一区二区三区| 两个人的视频大全免费| freevideosex欧美| 久久99精品国语久久久| 国产极品粉嫩免费观看在线 | kizo精华| 国产精品99久久久久久久久| 看免费成人av毛片| 亚洲久久久国产精品| 女性生殖器流出的白浆| 欧美最新免费一区二区三区| 99精国产麻豆久久婷婷| 精品国产一区二区三区久久久樱花| 亚洲精品乱码久久久久久按摩| 亚洲精品视频女| 亚洲精品久久久久久婷婷小说| 亚洲精品日韩在线中文字幕| 免费人妻精品一区二区三区视频| 亚洲精品亚洲一区二区| 久久热精品热| 国产黄频视频在线观看| 精品国产一区二区久久| 色婷婷av一区二区三区视频| 久久久久久久久大av| 18禁裸乳无遮挡动漫免费视频| 一级a做视频免费观看| 日日摸夜夜添夜夜爱| 国产成人a∨麻豆精品| 国产亚洲精品久久久com| 少妇熟女欧美另类| 久久久久久久大尺度免费视频| 亚洲欧美一区二区三区国产| 亚洲欧美中文字幕日韩二区| 亚洲人与动物交配视频| 久热久热在线精品观看| videos熟女内射| 国产午夜精品久久久久久一区二区三区| 两个人的视频大全免费| a级毛片在线看网站| 哪个播放器可以免费观看大片| 国产 一区精品| 一区二区av电影网| 亚洲自偷自拍三级| 狂野欧美激情性xxxx在线观看| 久久青草综合色| 国模一区二区三区四区视频| 国产精品一区www在线观看| 51国产日韩欧美| 在线观看www视频免费| 亚洲精品乱码久久久v下载方式| 久久久久久久国产电影| 久久精品国产鲁丝片午夜精品| 青春草视频在线免费观看| kizo精华| 精品酒店卫生间| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 纯流量卡能插随身wifi吗| 高清毛片免费看| 国产在线一区二区三区精| av在线老鸭窝| 亚洲三级黄色毛片| 国产在线男女| 国产伦理片在线播放av一区| 国产成人精品福利久久| 欧美日韩综合久久久久久| 国产永久视频网站| 3wmmmm亚洲av在线观看| 亚洲伊人久久精品综合| 欧美另类一区| 中文字幕av电影在线播放| 国产免费一区二区三区四区乱码| 久久午夜福利片| 久久久久网色| 97精品久久久久久久久久精品| 一级av片app| 中文在线观看免费www的网站| 日韩一区二区视频免费看| 人妻一区二区av| 寂寞人妻少妇视频99o| 午夜av观看不卡| 亚洲怡红院男人天堂| 夫妻午夜视频| 国产黄片视频在线免费观看| 日韩免费高清中文字幕av| 麻豆精品久久久久久蜜桃| 熟妇人妻不卡中文字幕| 一级爰片在线观看| 国产午夜精品一二区理论片| 黄色配什么色好看| av网站免费在线观看视频| 自拍偷自拍亚洲精品老妇| 777米奇影视久久| 啦啦啦中文免费视频观看日本| 国产精品久久久久成人av| 午夜福利在线观看免费完整高清在| 你懂的网址亚洲精品在线观看| 天堂中文最新版在线下载| 如日韩欧美国产精品一区二区三区 | 男女啪啪激烈高潮av片| 亚洲欧洲国产日韩| 有码 亚洲区| 国产日韩一区二区三区精品不卡 | 人体艺术视频欧美日本| 日韩av不卡免费在线播放| 哪个播放器可以免费观看大片| 成人特级av手机在线观看| 我要看黄色一级片免费的| 在线观看www视频免费| 丝袜喷水一区| 欧美人与善性xxx| 成年美女黄网站色视频大全免费 | 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 精品一区在线观看国产| 大香蕉97超碰在线| 五月伊人婷婷丁香| 一区在线观看完整版| 国产欧美另类精品又又久久亚洲欧美| 国产日韩一区二区三区精品不卡 | 夫妻性生交免费视频一级片| 在线天堂最新版资源| 亚洲美女黄色视频免费看| 一本—道久久a久久精品蜜桃钙片| av一本久久久久| 插阴视频在线观看视频| 在线观看www视频免费| tube8黄色片| 五月开心婷婷网| 汤姆久久久久久久影院中文字幕| 18禁裸乳无遮挡动漫免费视频| 午夜福利影视在线免费观看| 国产精品一二三区在线看| 国产伦精品一区二区三区四那| 成人亚洲精品一区在线观看| 草草在线视频免费看| 人人澡人人妻人| 大香蕉97超碰在线| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 久久久久久久久久人人人人人人| 如日韩欧美国产精品一区二区三区 | 最近2019中文字幕mv第一页| 亚洲av在线观看美女高潮| 亚洲精华国产精华液的使用体验| 欧美日韩一区二区视频在线观看视频在线| 深夜a级毛片| 男女边吃奶边做爰视频| 亚洲av免费高清在线观看| 亚洲国产成人一精品久久久| a级片在线免费高清观看视频| 欧美日韩综合久久久久久| 少妇丰满av| 2018国产大陆天天弄谢| 一本大道久久a久久精品| 如何舔出高潮| 国产av一区二区精品久久| 国产免费一级a男人的天堂| 最新中文字幕久久久久| 在线观看国产h片| 五月天丁香电影| 国产日韩欧美亚洲二区| 性高湖久久久久久久久免费观看| 久久久午夜欧美精品| 日韩av免费高清视频| 能在线免费看毛片的网站| 丝袜在线中文字幕| 色5月婷婷丁香| 两个人免费观看高清视频 | 啦啦啦在线观看免费高清www| 大片免费播放器 马上看| av在线播放精品| 黄色视频在线播放观看不卡| 简卡轻食公司| 亚洲美女搞黄在线观看| 国产精品国产av在线观看| 国产精品.久久久| 国产成人freesex在线| 日韩av不卡免费在线播放| 日韩中文字幕视频在线看片| 美女福利国产在线| 国产极品天堂在线| 欧美一级a爱片免费观看看| 久久鲁丝午夜福利片| 久久久午夜欧美精品| 午夜激情久久久久久久| 亚洲成人手机| 亚洲国产欧美日韩在线播放 | 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂| 亚洲精品日本国产第一区| 黑人巨大精品欧美一区二区蜜桃 | 一本一本综合久久| 日韩欧美一区视频在线观看 | 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| www.av在线官网国产| 桃花免费在线播放| 在线 av 中文字幕| 亚洲丝袜综合中文字幕| 国产午夜精品久久久久久一区二区三区| 国产免费视频播放在线视频| 老熟女久久久| 国内少妇人妻偷人精品xxx网站| 亚洲情色 制服丝袜| 熟妇人妻不卡中文字幕| 午夜福利网站1000一区二区三区| 久久久久人妻精品一区果冻| 在线观看www视频免费| 久久精品国产亚洲av涩爱| 日韩精品有码人妻一区| 黄色毛片三级朝国网站 | 国产成人精品无人区| 少妇人妻久久综合中文| 色视频在线一区二区三区| 狂野欧美激情性bbbbbb| 国产日韩欧美在线精品| 欧美日韩综合久久久久久| 观看av在线不卡| 久久午夜综合久久蜜桃| 国产精品久久久久久精品电影小说| 又爽又黄a免费视频| 成年人免费黄色播放视频 | 国产熟女欧美一区二区| 3wmmmm亚洲av在线观看| 在线观看国产h片| 下体分泌物呈黄色| 亚洲av成人精品一区久久| 波野结衣二区三区在线| 哪个播放器可以免费观看大片| 亚洲av电影在线观看一区二区三区| 国产精品嫩草影院av在线观看| 老熟女久久久| 看十八女毛片水多多多| 日韩中字成人| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 欧美变态另类bdsm刘玥| 边亲边吃奶的免费视频| 国产精品人妻久久久影院| 久久久久久久久久成人| 男女边摸边吃奶| 五月玫瑰六月丁香| 亚洲国产最新在线播放| 亚洲不卡免费看| 不卡视频在线观看欧美| 国产精品福利在线免费观看| 国产精品欧美亚洲77777| 在现免费观看毛片| 久久久a久久爽久久v久久| 国产成人91sexporn| 中国国产av一级| 欧美3d第一页| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 久久久久久久亚洲中文字幕| 日本-黄色视频高清免费观看| 又粗又硬又长又爽又黄的视频| 日韩亚洲欧美综合| 日韩一区二区视频免费看| a级毛片在线看网站| 国产视频首页在线观看| 日本黄色片子视频| 欧美+日韩+精品| 看非洲黑人一级黄片| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| a级毛片在线看网站| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| www.av在线官网国产| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美在线精品| av网站免费在线观看视频| 一级毛片电影观看| 性色av一级| 精品人妻熟女毛片av久久网站| av福利片在线| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久丰满| 在线观看人妻少妇| 又大又黄又爽视频免费| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 人妻 亚洲 视频| 22中文网久久字幕| 国产一区亚洲一区在线观看| 91精品国产国语对白视频| 国产乱来视频区| 熟女av电影| 桃花免费在线播放| av国产精品久久久久影院| 99热这里只有是精品在线观看| a级片在线免费高清观看视频| 亚洲精品久久久久久婷婷小说| 一级毛片电影观看| 国产视频内射| 尾随美女入室| 日本av免费视频播放| 欧美另类一区| 秋霞在线观看毛片| 久久久久久久久久成人| 亚洲精品,欧美精品| 嫩草影院新地址| 极品教师在线视频| 国产熟女欧美一区二区| 成人国产av品久久久| 精品少妇内射三级| 新久久久久国产一级毛片| 纵有疾风起免费观看全集完整版| 日韩av免费高清视频| 人人妻人人澡人人看| 国产男人的电影天堂91| 丝袜脚勾引网站| 久久婷婷青草| 亚洲精品,欧美精品| 亚洲成人手机| 国产色爽女视频免费观看| 永久免费av网站大全| 日本av手机在线免费观看| 三级国产精品片| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 亚洲av福利一区| 简卡轻食公司| 又爽又黄a免费视频| 亚洲激情五月婷婷啪啪| 99九九线精品视频在线观看视频| 性色av一级| 欧美激情极品国产一区二区三区 | 亚洲色图综合在线观看| 内地一区二区视频在线| 国产成人精品久久久久久| av一本久久久久| a级毛色黄片| 伦理电影大哥的女人| 草草在线视频免费看| 啦啦啦视频在线资源免费观看| 老熟女久久久| 你懂的网址亚洲精品在线观看| 免费久久久久久久精品成人欧美视频 | 日韩人妻高清精品专区| 久久99热这里只频精品6学生| 中文字幕制服av| 大话2 男鬼变身卡| 欧美日韩视频高清一区二区三区二| 妹子高潮喷水视频| 伦理电影大哥的女人| 国产欧美另类精品又又久久亚洲欧美| 热99国产精品久久久久久7| 国产伦在线观看视频一区| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 国产免费又黄又爽又色| 男女边摸边吃奶| 日本av手机在线免费观看| 久久久久久久久久久丰满| 三级国产精品欧美在线观看| 26uuu在线亚洲综合色| 久久国内精品自在自线图片| 80岁老熟妇乱子伦牲交| 夜夜看夜夜爽夜夜摸| 亚洲天堂av无毛| 99久久综合免费| 极品少妇高潮喷水抽搐| 性高湖久久久久久久久免费观看| 男女啪啪激烈高潮av片| 亚洲欧美日韩卡通动漫| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 一本—道久久a久久精品蜜桃钙片| 国内精品宾馆在线| 97超碰精品成人国产| 最新中文字幕久久久久| av女优亚洲男人天堂| 欧美激情极品国产一区二区三区 | 一级片'在线观看视频| 一级黄片播放器| 黄色日韩在线| 精品久久久久久电影网| 少妇 在线观看| 久久99一区二区三区| 亚洲国产欧美在线一区| 日本黄色片子视频| 黄色日韩在线| 久久久国产一区二区| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 久久久国产一区二区| 亚洲精品中文字幕在线视频 | 美女中出高潮动态图| 亚洲天堂av无毛| 亚洲va在线va天堂va国产| 人人妻人人看人人澡| 菩萨蛮人人尽说江南好唐韦庄| 51国产日韩欧美| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| 六月丁香七月| 久久这里有精品视频免费| av福利片在线| 热99国产精品久久久久久7| 亚洲欧美日韩东京热| 草草在线视频免费看| 简卡轻食公司| 97超碰精品成人国产| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久成人| 亚洲精品乱久久久久久| 国产日韩欧美视频二区| 精品人妻熟女毛片av久久网站| 草草在线视频免费看| 国产成人aa在线观看| 伦理电影大哥的女人| 777米奇影视久久| 超碰97精品在线观看| 高清视频免费观看一区二区| 一区二区av电影网| 下体分泌物呈黄色| 国产探花极品一区二区| 国产精品三级大全| 亚洲国产成人一精品久久久| av福利片在线观看| 男女边吃奶边做爰视频| 97在线人人人人妻| 这个男人来自地球电影免费观看 | 好男人视频免费观看在线| 97超碰精品成人国产| 国产亚洲91精品色在线| 老女人水多毛片| av免费观看日本| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 久久97久久精品| 国产精品不卡视频一区二区| 国产精品三级大全| 精品人妻一区二区三区麻豆| freevideosex欧美| 精品人妻熟女av久视频| 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看 | 好男人视频免费观看在线| 免费看不卡的av| 精品久久久久久久久av| 亚洲av在线观看美女高潮| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 欧美xxⅹ黑人| av不卡在线播放| 女性生殖器流出的白浆| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲,欧美,日韩| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美精品自产自拍| 一级二级三级毛片免费看| 国产成人精品一,二区| 精华霜和精华液先用哪个| 午夜91福利影院| 久久婷婷青草| 搡女人真爽免费视频火全软件| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 色视频在线一区二区三区| 乱码一卡2卡4卡精品| www.色视频.com| 成人二区视频| 22中文网久久字幕| 我要看黄色一级片免费的| 两个人免费观看高清视频 | 欧美性感艳星| 一级毛片aaaaaa免费看小| 精品久久久久久久久亚洲| 久久人人爽人人片av| 国产黄片美女视频| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 国产女主播在线喷水免费视频网站| 夜夜骑夜夜射夜夜干|