• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tumor-Imaging Core-Shell Nano-Models for Catalase

    2012-11-09 10:42:28YANGXiaCHENQiuYunSONGJingBao
    無機化學(xué)學(xué)報 2012年1期
    關(guān)鍵詞:甲胺核殼丙酸

    YANG Xia CHEN Qiu-Yun SONG Jing-Bao

    (School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China)

    Tumor-Imaging Core-Shell Nano-Models for Catalase

    YANG Xia CHEN Qiu-Yun*SONG Jing-Bao

    (School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang,Jiangsu212013,China)

    Microwave synthesis approach has been developed for preparing Mn-silica core-shell nano-complexes with fluorescent imaging by assembling the Mn(Ⅱ)complexes of bis(2-pyridylmethyl)amino-2-propionic acid(Adpa) on the surface of silica core-shell nanoparticles.IR,UV,TEM were used to characterize the structure of nanocomplexes.The results of H2O2disproportionation show that Mn-silica core-shell nano-complexes have good analog characteristics of catalase as a new kind of nano-models for catalase.Cell fluorescence image in vitro indicates that these Adpa modified nanoparticles locate outside of tumor cells,in contrast,Mn-silica core-shell nano-complexes could enter tumor cells which enables simultaneous tumor-targeting and good fluorescent imaging as a new tumor imaging agent.

    core-shell nanosphere;nano-complex;imaging,cancer

    0 Introduction

    Multifunctionalnanoparticles with a core-shell architecture,which combine many functionalities such as imaging,targeting,drug delivery,and therapy in a single stable construct,show greatpromise in biomedical applications[1-3]. Silica is a hydrophilic material that is photophysically inert and the surface of the organic-modified silica nanoparticles can be functionalized with a variety of active groups such as amine and carboxyl groups for specific function[4-5]. Rhodamine B isothiocyanate doped silica-coated coreshell fluorescent dye nanoparticles can specifically recognize early-stage apoptotic cells through the binding of surface conjugated Annexin V to the phosphatidylserine on the outer membrane of apoptoticcells[6].Manganese(Ⅱ) ions are the required co-factor for many ubiquitous enzymes and mitochondria can accumulate Mn(Ⅱ) ions through an ATP-dependent Ca transporter[7].The complex of Mn(Ⅱ)-dpa (dpa=di (picolyl)amines)modified SiO2@Mn(Ⅱ)-dpa nanoparticles was used to targetcancer cells through intracellular Ca2+signaling mitochondria accumulating in vivo formagnetic resonance imaging (MRI) detection[8].In addition to attenuation of the absorption of calcium in mitochondria,most transition metal complexes of di(picolyl)amine were reported as models of non-heme dioxygenase[9].Manganese(Ⅱ) complexes [Mn2(μ-O2CCH3)3L2]+(L=bis(pyridylmethyl)amine)and aminopyridine manganese(Ⅱ) complexes were studied for their ability to disproportionate H2O2and to produce highly value intermediates[10].These mean that manganese(Ⅱ)complexes with the derivatives of bis(2-pyridylmethyl)amine could disproportionate H2O2or react with H2O2to produce oxidant.Cellular levels of H2O2play directly orindirectly a key role in maglignant transformation and sensitize cancer cells to death.Overpression of H2O2-detoxifying enzymes or human catalase in vivo can result in H2O2concentration decreasing and cancer cells reverting to normalappearance[11].Recently,we found that carboxylate-bridged dimanganese(Ⅱ)systems were good models for catalase and exhibited good inhibition on the proliferation ofU251 and HeLa cells.The inhibiting activity of these manganese(Ⅱ) complexes on thetumorcellsin vitroisrelated totheir disproportionating H2O2activity[12].It is reported that nano-particles with size of 1~100 nm can accumulate in cancer cells selectively[13-14].Here,we report a class of core-shell architecture to assemble the Mn(Ⅱ)complexes of Adpa(Adpa=bis(2-pyridylmethyl)amino-2-propionicacid)on thesurface ofsilica shell nanoparticles and nano complexes with imaging and mimics of catalase.

    1 Experimental

    1.1 Instruments and Materials

    Rhodamine B isothiocyanate (RBITC),Triton X-100, 3-aminopropyltrimethoxysilane (APTS), ammonium hydroxide,N,N-dicyclohexylcarbodiimide (DCC),N-hydroxysuccinimide (NHS),cetyltrimethylam-monium bromide (CTAB)and solvents were of analytical grade.Water was purified with a Millipore Milli-Q system (25℃:18.2 MΩ·cm,7.20×10-2N· m-1).Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC@SiO2)and bis(2-pyridylmethyl)amino-2-propionic acid (Adpa)were prepared according to the reported method[5,7].TEM was performed at room temperature on a JEOL JEM-200CX transmission electron microscope using an accelerating voltage of 200 kV.FTIR characterizations were performed using a Nicolet Nexus 470 FTIR spectrophotometer in the spectral range of 4 000~400 cm-1.The electronic absorption spectrum was recorded using a UV-2450 UV-Vis spectrophotometer at room temperature.Photoluminescent emission spectraweremeasured on Varian CarryEclipse spectrofluorometer.The content of Mn(Ⅱ) ions in the nanoparticle wasmeasured by TAS-986 Atomic absorption spectrophotometer.

    1.2 Synthesis of RBITC@SiO2-Adpa and RBITC @SiO2-AdpaMn

    The Adpa molecules were covalently linked with 3-aminopropyltriethoxysilane(APTS)to form an APTSAdpa conjugate.DCC was used to ensure that the carboxylic group of Adpa selectively reacts with the amino group of APTS.Adpa (0.1 mL,0.35 mmol), DCC (22.5 mg,0.11 mmol)and NHS (40.3 mg,0.35 mmol)were sequentially added into a 5.0 mL N,N-dimethyl-formamide(DMF)solution.The mixture was stirred for 12 h at room temperature.After the filtration,85.3 mg(0.38 mmol)of APS was added into the solution and the solution was stirred for 24 h at room temperature.The obtained solution was directly used without further treatment.

    0.044 8 g Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles(RBITC-SiO2) was dispersed in 25 mL of toluene,0.1 mL of asprepared Adpa-APTS conjugates and 20 μL APS were added into the above solution.After the solution was transferred into a flask under nitrogen for 10 minutes, the reaction was allowed to proceed for 1.5 h at 70℃ in microwave reactor.After centrifuged and washed with ethanol,nanoparticles(RBITC@SiO2-Adpa)were then obtained.

    The obtained RBITC@SiO2-Adpa (0.485 g)was dispersed in ethanol(25 mL),MnAc2·4H2O(0.068 g, 0.014 mmol)was added into the solution and the solution was stirred for 2 h at room temperature. Nanoparticles(RBITC@SiO2-AdpaMn)were obtained after centrifuging and washing with methanol.The amount of Mn(Ⅱ) ions in RBITC@SiO2-dpa-Mn was evaluated by atomic absorption spectra after the nanoparticles were cooked with excess amount of nitric acids at 70℃for 3 h.The content of Mn(Ⅱ) in the nanoparticles is 1.13%.

    1.3 Catalase-like Activity

    All of the reactions between the nano-complexes and dihydrogen peroxide were performed in buffered (Tris/Tris-HCl,0.1 mol·L-1,NaClO40.1 mol·L-1,pH= 7.1)solutions at 0℃ and 37℃.The reactivity of the complexes with H2O2was first investigated in buffered solutions via UV-Vis spectroscopy titration at 0℃and 37℃.After the solution (5 mL)of nano-complexes (0.1 mol·L-1)was stirred at 0℃ and 37℃ for 30 min,0.5 mL of H2O2aqueous solution (30%)was added,and the spectra were recorded at 10 min intervals at 0℃ or 2 min intervals at 37℃.The volumetric measurements of the evolved dioxygen produced during the reaction of the complexes with H2O2were performed in triplicate as follows:a 10 mL round-bottom flask containing a nano-complex(3×10-4mol·L-1,3.0 mL)in a buffered system was placed in an ice (273.0±0.1 K)bath.The flask was closed with a rubber septum,and a cannula was used to connect the reaction flask to an inverted graduated pipet,filled with water.While the solution containing the nanocomplex was stirred,a solution of 0.5 mL of H2O2aqueous solution was added through the septum using a microsyringe.The volume of oxygen produced was measured in the pipet.The kinetic measurements for nano-complexes were performed in Tris/Tris-HCl solution at37 ℃.Differentconcentrations of dihydrogen peroxide were prepared by diluting the 30% H2O2aqueous solution with Tris/Tris-HCl solution.The optimum reaction order of the substrate with respect to the complexes was determined by reacting different concentrations of complexes with a constant concentration of substrate.Similarly,the optimum reaction order of the complexes with respect to the substrate was determined by reacting different concentrations of substrate with a constant concentration of complexes.

    1.4 Cellular uptake and imaging

    Human cancer cell line HeLa was obtained from Cancer Cell Repository (Shanghai cell bank).Cells were maintained in RPMI-1640 medium and DMEM medium (Gibco,USA)supplemented with 10%(V/V) heat-inactivated fetal bovine serum,antibiotics(100 U·mL-1penicillin and 100 U·mL-1streptomycin),at 37°C in a humidified atmosphere of 5%CO2.HeLa cells(2.4×104)were seeded into 24-well plates(Every plate was 100 μL)and cultured for 24 h,then nanoparticles (testnanoparticles (2.0 mg)were dispersed in H2O and diluted with culture media)were added and incubated for 3 h.At last,cells were washed with PBS twice to remove the free nanoparticles.Nanoparticles uptake and imaging of HeLa cells were observed using Nikon Ti-E2000 microscope with live cell system (LCS)which can provide CO2,temperature control and position fixing. The bright and fluorescence imaging of cells(ex.555 nm)were recorded and analyzed.

    2 Results and discussion

    2.1 Synthesis and characterization

    Scheme 1 Synthetic route of RBITC@SiO2-AdpaMn

    Scheme 1 sketches this synthesis procedure from fluorescent dye molecules towards fluorescence coreshell nano-models forcatalase.Normally,reverse microemulsion method was used to prepare rhodamine B isothiocyanate doped silica-coated(RBITC@SiO2) and furthermodification ofAPS derivativeswas carried out by refluxing for 24 h in toluene[5].Although the process is useful,it takes long reaction time and produces by-products thatlimitbioapplications.Here higher yielded grafted nanomodels were obtained through the microwave synthesis.These indicate that microwave assisted synthesis approach is effective and fast to the modification of silica.

    FTIR spectra (Table 1)ofthe two silica nanoparticles confirmed the existence of amino in the purified nanoparticles,showing characteristic peaks around 3 417 and 2 928 cm-1that correspond to stretching bands of N-H and C-H.The IR spectra show pyridyl ring bands of νas(C=N)at approximately 1 609 cm-1and the δ(CH)vibration of the pyridyl ring at 794 cm-1.The peaks at 1 659 cm-1indicates the existence of-CO-NH of Adpa.The strong peaks around 1 100 cm-1in Table 1 confirm the existence of SiO2which corresponds to stretching band of Si-O.

    Table 1 IR bands(cm-1)of RBITC@SiO2-Adpa and RBITC@SiO2-AdpaMn

    The bands at 278 nm of pyridyl rings dominate the UV spectra for RBITC@SiO2-AdpaMn nanoparticles and RBITC@SiO2-Adpa nanoparticles confirming the existence of Mn(Ⅱ)-Adpa grafted silica nanoparticles.558 nm ofπ-π* transition bands belongs to rhodamine B isothiocyanate(Fig.1).

    Fig.1 UV spectra for RBITC@SiO2(a,2.1 mg), RBITC@SiO2-AdpaMn(b,3.3 mg), RBITC@SiO2-Adpa(c,2.9 mg)dispersed in Tris-HCl(pH=7.1)(10 mL)

    The content of surface modified Adpa in the nano-models is 0.08 mmol·L-1according to the bands at 278 nm of free Adpa.The emission bands at 582 nm show thatthe fluorescence intensity ofthe RBITC@iO2-Adpa system little decreases upon the surface modification with Mn (Fig.3 line a).The hypochromism possibly is due to the self-quench of the Mn ions because the transition-metal ions (Mn2+) have unsaturated d-layer electrons[14].However,the fluorescence intensity at 582 nm of RBITCSiO2@AdpaMn increases after addition of 0.5 mLH2O2,indicating the nano-complex could possibly bind with H2O2to produce new intermediates.The nanoparticle suspension was added drop-wise onto a carbon-coated copper membrane and dried at room temperature.Particle size wasmeasured with a Hitachi-800 transmission electron microscope.The diameters of RBITC@SiO2-Adpa and RBITC@SiO2-AdpaMn are 90~100 nm(Fig.3)

    Fig.2 Fluorescence emission spectra for RBITC@SiO2-AdpaMn(a,3.3 mg),RBITC@SiO2-Adpa (b,2.9 mg)and H2O2added to RBITC@SiO2-AdpaMn(c,3.3 mg)in Tris-HCl(pH=7.1) (10 mL),the slit widths at the excitation and emission of the spectrofluorimeter is 5

    Fig.3(a)TEM images for RBITC@SiO2-Adpa

    Fig.3(b)TEM images for RBITC@SiO2-AdpaMn

    2.2 Catalase-likeactivitymeasuredbyO2evolution -kinetics studies

    The O2volume evolution was used for the study ofkinetic ofH2O2disproportionation.The H2O2disproportionation promoted by RBITC@SiO2-AdpaMn was carried out in Tris-HCl at 0 ℃ and 37 ℃. RBITC@SiO2-AdpaMn can disproportionate dihydrogen peroxide to generate dioxygen.The volume of oxygen produced every 2 min and the rates of the O2evolution of the RBITC@SiO2-AdpaMn at different conditions are shown in Fig.4.1.The kinetic plot is shown in Fig.4.2 and Fig.4.3.The obtained plot of initialrate vs concentration ofthe dihydrogen peroxide (E)is fitted by Hill equationAccording to the equation,the value of KMis 0.2150 mmol·L-1,turnover Number Kcatcalculated from the equation Kcat=Vmax/cE,tis 0.5368 s-1[16].The value of kcat/KMis used to evaluate the catalase activity.kcat/KMof the nano-model is 2 496.7,which shows that the nano-complex has good activity.The condition of the reaction carried out at 37℃ in Tris-HClsolution is mimetic condition ofthe cell environment.So we deduce that nano-complex would also show good catalase activity in vitro.

    Fig.4.1 Rates of the O2evolution for the RBITC@SiO2-AdpaMn(nano-complex)at different conditions, cnano-complex=0.3 mmol·L-1,30%H2O2 aqueous solution 0.5 mL,Vsolvent=3 mL.37℃in Tris-HCl(■),0℃in Tris-HCl(□)

    Fig.4.2 V0vs Concentration of H2O2plots of RBITC@ SiO2-AdpaMn(0.3 mmol·L-1)in Tris-HCl,37℃

    Fig.4.3 Initial rate(V0)of substrate consumption vs concentration of RBITC@SiO2-AdpaMn in Tris-HCl 37℃

    2.3 Cell uptake and imaging

    The fluorescence images of the RBITC@SiO2-Adpa and RBITC@SiO2-AdpaMn were assayed using HeLa cellline.For HeLa cells treated with RBITC@SiO2-Adpa, the red fluorescence image indicates these nanoparticles located outside of HeLa cells due to that the relative larger size and low water solubility result in no internalization of the nontarget control.On the contrary,the intense fluorescence image of cell is observed when HeLa cells incubate with the RBITC@SiO2-AdpaMn.The results are shown in Fig.5.A total of about 95%of cells display the RBITC signal.All emissions from the nanoparticle containing culture medium surrounding the cells are removed by washing the cells with PBS.Electron micrographs of the cells provide direct evidence that a large numberof RBITC@SiO2-AdpaMn are possibly endocytosed by the HeLa cells.The mitochondrial membrane potentials of tumor cells are higher than those of normal cells,most agents have a positively charged moiety that takes advantage of electrostatic forces in locating its target[17].These preliminary data reveal that the targeting ability of nanospheres to HeLa cells is enhanced greatly due to the Adpa-Mn complex conjugation onto the surface of the RBITC@SiO2producing the positive charged RBITC@SiO2-AdpaMn and allowing passive accumulating and mitochondrial membrane of cancer cells induced accumulation.

    Fig.5 Fluorescence images of HeLa cells treated with nanoparticles

    3 Conclusions

    A Nano-complex (RBITC@SiO2-AdpaMn)with catalase activity was synthesized and characterized. It is found that the nano-complex could disproportionate H2O2effectively to oxygen,so it is a good mimic of catalase.Furthermore,we found that RBITC@SiO2-AdpaMn could target and imaging tumor cell by allowing passive accumulating and mitochondrialmembraneofcancercellsinduced accumulation.

    [1]Sanvicens N,Marco M P.Trends Biotechnol.,2008,26(8):42-433

    [2]Wu W T,Shen J,Banerjee P,et al.Biomater.,2010,31(29): 7555-7566

    [3]Zhang R R,Wu C L,Tong L L,et al.Langmuir,2009,25 (17):10153-10158

    [4]Bonacchi S,Genovese D,Juris R,et al.Angew.Chem.Int. Ed.,2011,50(18):4056-4066

    [5]Tao G P,Chen Q Y,Yang X,et al.Colloids Surf.B:Biointerf., 2011,86(1):106-110

    [6]Shi H,He X X,Wang K M,et al.Nanomed.Nanotechnol. Biol.Med.,2007,3(4):266-272

    [7]Chen Q Y,Zhou D F,Huang J,et al.J.Inorg.Biochem., 2010,104(11):1141-1147

    [8]Chen Q Y,Wang L Y,Zhang L R,et al.Sci.China Chem., 2010,53(8):1728-1731

    [9]CHEN Qiu-Yun(陳秋云),HUANG Juan(黃娟),LI Jun-Feng (李軍峰),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao).,2008,24(11):1789-1793

    [10]Romero I,Dubois L,Collomb M N,et al.Inorg.Chem., 2002,41(7):1795-1806

    [11]López-Lázaro M.Cancer Lett.,2007,252(1):1-8

    [12]Zhou D F,Chen Q Y,Qi Y,et al.Inorg.Chem.,2011,doi. org/10.1021/ic200004y

    [13]Bahadur N M,Furusawa T,Sato M,et al.J.Colloid Interf. Sci.,2011,355(2):312-320

    [14]CHEN Qiu-Yun(陳秋云),WANG Lin-Yun(王玲昀),CHEN Hao(陳浩),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2010,26(10):1784-1789

    [15]Groni S,Blain G,Guillot R,et al.Inorg.Chem.,2007,46(6): 1951-1953

    [16]Shin B K,Kim M Y,Han J H.Polyhedron,2010,29(12): 2560-2568

    [17]Jasuja K,Linn J,Melton S,et al.J.Phys.Chem.Lett., 2010,1(12):1853-1860

    具有腫瘤熒光成像性能的核殼納米過氧化氫酶模擬物

    楊 霞 陳秋云*宋京寶

    (江蘇大學(xué)化學(xué)化工學(xué)院,鎮(zhèn)江 212013)

    運用微波法在硅核殼熒光材料的表面修飾了2-(二吡啶甲胺基)丙酸的錳配合物,獲得具有熒光性能的錳-硅核殼納米結(jié)構(gòu)復(fù)合物,運用IR,UV,TEM等方法表征了納米復(fù)合物的結(jié)構(gòu)。H2O2岐化實驗顯示錳-硅核殼納米復(fù)合物具有較好的過氧化氫酶模擬特性,是一種新的納米過氧化氫酶模擬物。體外細胞熒光成像研究表明2-(二吡啶甲胺基)丙酸修飾的納米球不能進入腫瘤細胞內(nèi),而錳-硅核殼納米復(fù)合物能進入腫瘤細胞內(nèi),具備良好的腫瘤靶向性,顯著提高腫瘤熒光成像效果,可作為新型的腫瘤成像劑。

    核殼納米球;納米復(fù)合物;成像;腫瘤

    O627.41

    A

    1001-4861(2012)01-0164-07

    2011-07-06。收修改稿日期:2011-08-24。

    國家自然科學(xué)基金(No.20971059)資助項目。

    *通訊聯(lián)系人。E-mail:chenqy@ujs.edu.cn

    猜你喜歡
    甲胺核殼丙酸
    氟尼辛葡甲胺注射液的制備及性狀初步研究
    飼料博覽(2021年11期)2022-01-08 14:57:12
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    固相萃取—離子色譜測定大氣顆粒物的甲胺類及其氧化產(chǎn)物
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    食品中丙酸鈉、丙酸鈣測定方法的改進
    4-甲胺基-6-三氟甲基-2-甲砜基嘧啶的合成及其晶體結(jié)構(gòu)
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    HPLC-ELSD法測定注射用福沙匹坦二甲葡胺中葡甲胺含量
    K/γ-Al2O3催化丙酸甲酯合成甲基丙烯酸甲酯
    化工進展(2015年3期)2015-11-11 09:07:41
    2-18F-氟丙酸在正常小鼠體內(nèi)的生物學(xué)分布
    香蕉国产在线看| 人人妻人人爽人人添夜夜欢视频| 亚洲人成77777在线视频| 久久久久国内视频| 校园春色视频在线观看| 欧美乱码精品一区二区三区| 婷婷精品国产亚洲av在线| 国产精品免费一区二区三区在线| 视频在线观看一区二区三区| 色综合欧美亚洲国产小说| 成人精品一区二区免费| www.自偷自拍.com| 国产成人精品在线电影| 精品无人区乱码1区二区| 91老司机精品| 老司机亚洲免费影院| 婷婷精品国产亚洲av在线| 国产一区二区激情短视频| 桃红色精品国产亚洲av| 国产在线精品亚洲第一网站| 久久久久久久久久久久大奶| 人妻久久中文字幕网| 丝袜美足系列| 女人高潮潮喷娇喘18禁视频| 久久香蕉国产精品| 99精品久久久久人妻精品| 国产片内射在线| 欧美日韩瑟瑟在线播放| 国产真人三级小视频在线观看| 久久久精品欧美日韩精品| 欧美日韩视频精品一区| xxxhd国产人妻xxx| 999久久久精品免费观看国产| 精品人妻在线不人妻| 免费女性裸体啪啪无遮挡网站| bbb黄色大片| 黄色怎么调成土黄色| 国产精品亚洲一级av第二区| a级片在线免费高清观看视频| 亚洲国产精品一区二区三区在线| 校园春色视频在线观看| 侵犯人妻中文字幕一二三四区| 啦啦啦免费观看视频1| 99国产综合亚洲精品| 亚洲人成电影免费在线| 热re99久久国产66热| 成人特级黄色片久久久久久久| 一区二区日韩欧美中文字幕| 中亚洲国语对白在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 91九色精品人成在线观看| 亚洲 国产 在线| 国产亚洲欧美在线一区二区| 国产精品美女特级片免费视频播放器 | 国产精品免费一区二区三区在线| 十八禁人妻一区二区| 久久久国产成人精品二区 | 亚洲一码二码三码区别大吗| 欧美另类亚洲清纯唯美| 曰老女人黄片| 久久精品国产清高在天天线| 国产精品成人在线| 天堂影院成人在线观看| 亚洲五月色婷婷综合| 欧美黑人精品巨大| av网站免费在线观看视频| 精品午夜福利视频在线观看一区| 老司机亚洲免费影院| 丁香欧美五月| www.www免费av| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| 亚洲 欧美 日韩 在线 免费| 丝袜在线中文字幕| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 亚洲久久久国产精品| 久久香蕉国产精品| 国内毛片毛片毛片毛片毛片| 69精品国产乱码久久久| 99久久综合精品五月天人人| 日韩欧美在线二视频| 国产熟女xx| 午夜福利影视在线免费观看| 日日爽夜夜爽网站| 欧美日韩国产mv在线观看视频| 真人做人爱边吃奶动态| 久久精品国产综合久久久| 真人做人爱边吃奶动态| 窝窝影院91人妻| 老司机深夜福利视频在线观看| 亚洲中文字幕日韩| 黄网站色视频无遮挡免费观看| 亚洲自偷自拍图片 自拍| a级毛片黄视频| 激情视频va一区二区三区| 女人高潮潮喷娇喘18禁视频| 人人妻人人爽人人添夜夜欢视频| 午夜福利一区二区在线看| 波多野结衣av一区二区av| 亚洲精品中文字幕在线视频| 久热这里只有精品99| 亚洲成人精品中文字幕电影 | 午夜两性在线视频| 搡老岳熟女国产| 男人舔女人下体高潮全视频| 一区二区日韩欧美中文字幕| 80岁老熟妇乱子伦牲交| 日本精品一区二区三区蜜桃| 亚洲中文av在线| 久久中文字幕一级| 欧美日本中文国产一区发布| 精品久久久久久久毛片微露脸| 免费女性裸体啪啪无遮挡网站| 国产成人精品无人区| 狠狠狠狠99中文字幕| 亚洲色图 男人天堂 中文字幕| 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 免费少妇av软件| 久久久久久久精品吃奶| 黄色丝袜av网址大全| 女同久久另类99精品国产91| 久久香蕉国产精品| 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 国产av一区二区精品久久| www.www免费av| 一级毛片女人18水好多| 欧美日本亚洲视频在线播放| 久久精品91无色码中文字幕| 亚洲精品av麻豆狂野| 婷婷丁香在线五月| 在线观看www视频免费| 亚洲久久久国产精品| 久久久精品国产亚洲av高清涩受| 国产精品98久久久久久宅男小说| 亚洲av成人av| 日韩一卡2卡3卡4卡2021年| 国产成+人综合+亚洲专区| 日本五十路高清| 国产成年人精品一区二区 | 9色porny在线观看| 曰老女人黄片| www.自偷自拍.com| 最好的美女福利视频网| 久久精品aⅴ一区二区三区四区| 18禁国产床啪视频网站| 久久久久久久午夜电影 | 亚洲中文日韩欧美视频| 欧美激情久久久久久爽电影 | 国产视频一区二区在线看| 欧美+亚洲+日韩+国产| 国产精品香港三级国产av潘金莲| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| 亚洲一区中文字幕在线| 国产三级黄色录像| www.熟女人妻精品国产| 亚洲专区中文字幕在线| 中文字幕人妻丝袜一区二区| 18美女黄网站色大片免费观看| 99久久国产精品久久久| www.精华液| 搡老熟女国产l中国老女人| 欧美激情久久久久久爽电影 | 久久精品亚洲熟妇少妇任你| 欧美 亚洲 国产 日韩一| 又黄又粗又硬又大视频| 夜夜看夜夜爽夜夜摸 | 久久香蕉国产精品| 国产精品爽爽va在线观看网站 | 热99国产精品久久久久久7| 另类亚洲欧美激情| 视频区图区小说| 国产精品久久久久成人av| 一a级毛片在线观看| 青草久久国产| 不卡av一区二区三区| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 美国免费a级毛片| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 欧美国产精品va在线观看不卡| 日本 av在线| 99香蕉大伊视频| av国产精品久久久久影院| 欧美日本亚洲视频在线播放| 在线观看免费日韩欧美大片| 不卡av一区二区三区| 岛国视频午夜一区免费看| 女警被强在线播放| 黑人巨大精品欧美一区二区mp4| 99精品欧美一区二区三区四区| 美女 人体艺术 gogo| www日本在线高清视频| 在线免费观看的www视频| 精品国产一区二区久久| 国产精品亚洲一级av第二区| 免费女性裸体啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 无遮挡黄片免费观看| 久久天躁狠狠躁夜夜2o2o| 一级毛片女人18水好多| 日韩欧美一区二区三区在线观看| 日本撒尿小便嘘嘘汇集6| 欧美不卡视频在线免费观看 | 国产成人精品久久二区二区免费| 免费av毛片视频| 精品熟女少妇八av免费久了| 777久久人妻少妇嫩草av网站| 一二三四社区在线视频社区8| 极品人妻少妇av视频| 亚洲午夜精品一区,二区,三区| 久久久水蜜桃国产精品网| 成人三级做爰电影| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 可以在线观看毛片的网站| 亚洲成人免费av在线播放| 丝袜人妻中文字幕| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 91麻豆av在线| 悠悠久久av| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 精品人妻1区二区| 99热只有精品国产| 久久精品国产亚洲av高清一级| 国产精品久久视频播放| 中文字幕人妻熟女乱码| www.熟女人妻精品国产| 日韩免费高清中文字幕av| 免费日韩欧美在线观看| 妹子高潮喷水视频| 国产无遮挡羞羞视频在线观看| 天天影视国产精品| 亚洲精品久久成人aⅴ小说| 亚洲av熟女| 成人18禁在线播放| 男女午夜视频在线观看| 欧美色视频一区免费| 国产精品乱码一区二三区的特点 | 久久性视频一级片| 国产精品1区2区在线观看.| 亚洲狠狠婷婷综合久久图片| 我的亚洲天堂| 国产一卡二卡三卡精品| 欧美成人免费av一区二区三区| ponron亚洲| 视频在线观看一区二区三区| 亚洲一区中文字幕在线| 日本免费a在线| 夜夜躁狠狠躁天天躁| 国产一区在线观看成人免费| 人人妻人人澡人人看| 中文亚洲av片在线观看爽| 激情视频va一区二区三区| 国产成人精品在线电影| 级片在线观看| 久久久国产欧美日韩av| 别揉我奶头~嗯~啊~动态视频| 国产精品1区2区在线观看.| 极品教师在线免费播放| 99国产精品99久久久久| 免费高清视频大片| 成人影院久久| 两个人免费观看高清视频| 十分钟在线观看高清视频www| 激情视频va一区二区三区| 亚洲一码二码三码区别大吗| 高清欧美精品videossex| 男女床上黄色一级片免费看| 精品久久久久久成人av| 免费看a级黄色片| 91国产中文字幕| 老司机亚洲免费影院| 91成年电影在线观看| 伦理电影免费视频| 黄色女人牲交| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 免费观看精品视频网站| 中文字幕人妻丝袜一区二区| 色尼玛亚洲综合影院| 免费在线观看影片大全网站| 国产成人精品在线电影| 日本vs欧美在线观看视频| 国产1区2区3区精品| 亚洲欧美激情在线| 一级a爱片免费观看的视频| 亚洲熟妇熟女久久| 性少妇av在线| 久久久久国产精品人妻aⅴ院| 99国产极品粉嫩在线观看| 国产一区二区在线av高清观看| 最近最新免费中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 美国免费a级毛片| 亚洲少妇的诱惑av| 久久人妻熟女aⅴ| 多毛熟女@视频| 精品国产超薄肉色丝袜足j| 国产一区二区三区综合在线观看| 18禁黄网站禁片午夜丰满| 亚洲一区中文字幕在线| 亚洲av成人av| 日本撒尿小便嘘嘘汇集6| 热99国产精品久久久久久7| 亚洲 国产 在线| 99国产综合亚洲精品| av网站在线播放免费| 精品一区二区三区av网在线观看| 久久久久久久久中文| 亚洲成人精品中文字幕电影 | 国产精品 国内视频| 9色porny在线观看| 国产高清视频在线播放一区| 亚洲人成77777在线视频| 电影成人av| 淫妇啪啪啪对白视频| 精品电影一区二区在线| 亚洲欧美一区二区三区黑人| 色综合欧美亚洲国产小说| 国产无遮挡羞羞视频在线观看| videosex国产| www.精华液| 国产亚洲精品第一综合不卡| 人成视频在线观看免费观看| 制服人妻中文乱码| av免费在线观看网站| 亚洲成人国产一区在线观看| 亚洲九九香蕉| 国产精品久久电影中文字幕| 热re99久久精品国产66热6| 亚洲av成人不卡在线观看播放网| 90打野战视频偷拍视频| 免费在线观看黄色视频的| av电影中文网址| 国产免费av片在线观看野外av| 男女下面插进去视频免费观看| 一级片'在线观看视频| 日韩中文字幕欧美一区二区| 久热这里只有精品99| 1024视频免费在线观看| 我的亚洲天堂| 最好的美女福利视频网| 日韩高清综合在线| 成人精品一区二区免费| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av香蕉五月| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 国产成人欧美在线观看| 国产亚洲精品第一综合不卡| 可以免费在线观看a视频的电影网站| 91成人精品电影| 十分钟在线观看高清视频www| 免费看a级黄色片| aaaaa片日本免费| 日韩欧美国产一区二区入口| 女人精品久久久久毛片| 免费少妇av软件| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 亚洲第一欧美日韩一区二区三区| av在线播放免费不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产xxxxx性猛交| 中文字幕色久视频| 巨乳人妻的诱惑在线观看| 91麻豆av在线| 久热这里只有精品99| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| 男女高潮啪啪啪动态图| 欧美老熟妇乱子伦牲交| 国产精品一区二区免费欧美| 在线天堂中文资源库| 国产精品野战在线观看 | 精品国产国语对白av| 日韩视频一区二区在线观看| 99国产精品一区二区三区| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| а√天堂www在线а√下载| 欧美人与性动交α欧美软件| 亚洲黑人精品在线| 中文亚洲av片在线观看爽| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| bbb黄色大片| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三卡| 午夜久久久在线观看| 午夜a级毛片| 亚洲精品国产一区二区精华液| 久热这里只有精品99| 国产人伦9x9x在线观看| 长腿黑丝高跟| 99国产精品99久久久久| 午夜亚洲福利在线播放| 国产精品一区二区精品视频观看| 国产精品偷伦视频观看了| 欧美亚洲日本最大视频资源| 免费在线观看黄色视频的| 波多野结衣高清无吗| 精品久久久久久电影网| 巨乳人妻的诱惑在线观看| 亚洲男人的天堂狠狠| 久久精品aⅴ一区二区三区四区| 伦理电影免费视频| 亚洲熟妇熟女久久| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| xxx96com| 亚洲成人国产一区在线观看| 窝窝影院91人妻| 亚洲av电影在线进入| netflix在线观看网站| 黄频高清免费视频| 一二三四在线观看免费中文在| 热re99久久精品国产66热6| 欧美乱妇无乱码| 三上悠亚av全集在线观看| 免费在线观看亚洲国产| 日韩 欧美 亚洲 中文字幕| 男女高潮啪啪啪动态图| 久久精品影院6| 黄色毛片三级朝国网站| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| 好男人电影高清在线观看| 国产97色在线日韩免费| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 99国产精品免费福利视频| 窝窝影院91人妻| 国产精品自产拍在线观看55亚洲| 欧美国产精品va在线观看不卡| 麻豆av在线久日| 久久婷婷成人综合色麻豆| 69精品国产乱码久久久| 无遮挡黄片免费观看| 日韩欧美在线二视频| 深夜精品福利| 精品高清国产在线一区| 99国产精品一区二区蜜桃av| 亚洲精品成人av观看孕妇| 国产熟女午夜一区二区三区| 村上凉子中文字幕在线| www.精华液| 88av欧美| 国产熟女xx| 电影成人av| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 亚洲精品在线观看二区| 午夜久久久在线观看| 亚洲成av片中文字幕在线观看| 看黄色毛片网站| 国产亚洲精品久久久久5区| 一级a爱视频在线免费观看| 成人手机av| 男人舔女人的私密视频| 国产单亲对白刺激| 亚洲成人国产一区在线观看| 美女福利国产在线| 欧美在线一区亚洲| 国产亚洲精品久久久久久毛片| 99热国产这里只有精品6| 国产野战对白在线观看| www.精华液| www.999成人在线观看| 咕卡用的链子| 视频在线观看一区二区三区| 亚洲全国av大片| 亚洲成国产人片在线观看| 国产主播在线观看一区二区| 久久久久久久久免费视频了| 国产免费现黄频在线看| 欧美日韩瑟瑟在线播放| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| www.精华液| 久久久水蜜桃国产精品网| 又黄又粗又硬又大视频| 大香蕉久久成人网| 国产深夜福利视频在线观看| 婷婷丁香在线五月| 国产精品免费一区二区三区在线| 一级毛片高清免费大全| 电影成人av| 老熟妇仑乱视频hdxx| 国产区一区二久久| a级片在线免费高清观看视频| 黄色毛片三级朝国网站| 日韩av在线大香蕉| 天堂√8在线中文| 亚洲午夜理论影院| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 三级毛片av免费| 久久亚洲精品不卡| 国产1区2区3区精品| 大型av网站在线播放| 999精品在线视频| 久久精品国产99精品国产亚洲性色 | 国产精品99久久99久久久不卡| 午夜精品久久久久久毛片777| 免费看a级黄色片| 天堂影院成人在线观看| 大陆偷拍与自拍| 国产亚洲av高清不卡| 老司机午夜十八禁免费视频| 久久天堂一区二区三区四区| 中文字幕高清在线视频| 18美女黄网站色大片免费观看| 久久人人97超碰香蕉20202| 老司机福利观看| 日本黄色日本黄色录像| 又黄又爽又免费观看的视频| 91国产中文字幕| 久久国产乱子伦精品免费另类| 精品第一国产精品| 日本免费a在线| 亚洲精品成人av观看孕妇| 老司机午夜十八禁免费视频| 国产一卡二卡三卡精品| 午夜福利影视在线免费观看| 两性夫妻黄色片| 美女大奶头视频| 黑人欧美特级aaaaaa片| 亚洲av第一区精品v没综合| 身体一侧抽搐| 成熟少妇高潮喷水视频| 国产三级黄色录像| 一二三四在线观看免费中文在| 久久久精品国产亚洲av高清涩受| 国产精品国产av在线观看| 黑人操中国人逼视频| 十八禁人妻一区二区| 91成人精品电影| 人人澡人人妻人| 欧美日韩亚洲综合一区二区三区_| 夜夜看夜夜爽夜夜摸 | 大型黄色视频在线免费观看| 国产精品永久免费网站| 90打野战视频偷拍视频| 国产亚洲精品久久久久久毛片| 女人精品久久久久毛片| 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一品国产午夜福利视频| 丝袜美足系列| 一区二区三区精品91| 在线观看一区二区三区激情| 精品一区二区三区av网在线观看| 欧美成人性av电影在线观看| 欧美亚洲日本最大视频资源| 欧美另类亚洲清纯唯美| 久久久久久大精品| 亚洲三区欧美一区| 欧美一级毛片孕妇| 琪琪午夜伦伦电影理论片6080| 国产精品1区2区在线观看.| 日本vs欧美在线观看视频| 亚洲av美国av| 一边摸一边抽搐一进一出视频| 三级毛片av免费| 国产精品免费一区二区三区在线| 不卡av一区二区三区| 久99久视频精品免费| 久久精品aⅴ一区二区三区四区| 亚洲av片天天在线观看| 国产精品成人在线| 国产又色又爽无遮挡免费看| 啦啦啦在线免费观看视频4| 色精品久久人妻99蜜桃| 亚洲成人免费av在线播放| 国产99久久九九免费精品| 久久中文字幕一级| 一级黄色大片毛片| 午夜精品久久久久久毛片777| 国产亚洲精品第一综合不卡| 欧美激情 高清一区二区三区| 亚洲五月天丁香| ponron亚洲| 国产亚洲欧美精品永久| 国产av一区二区精品久久| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av香蕉五月| 免费在线观看日本一区| 久久久水蜜桃国产精品网| 一级毛片高清免费大全| 亚洲九九香蕉| 亚洲欧美激情在线| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区mp4| 国产av精品麻豆| 一级毛片精品| 国产成年人精品一区二区 |