• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tumor-Imaging Core-Shell Nano-Models for Catalase

    2012-11-09 10:42:28YANGXiaCHENQiuYunSONGJingBao
    無機化學(xué)學(xué)報 2012年1期
    關(guān)鍵詞:甲胺核殼丙酸

    YANG Xia CHEN Qiu-Yun SONG Jing-Bao

    (School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China)

    Tumor-Imaging Core-Shell Nano-Models for Catalase

    YANG Xia CHEN Qiu-Yun*SONG Jing-Bao

    (School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang,Jiangsu212013,China)

    Microwave synthesis approach has been developed for preparing Mn-silica core-shell nano-complexes with fluorescent imaging by assembling the Mn(Ⅱ)complexes of bis(2-pyridylmethyl)amino-2-propionic acid(Adpa) on the surface of silica core-shell nanoparticles.IR,UV,TEM were used to characterize the structure of nanocomplexes.The results of H2O2disproportionation show that Mn-silica core-shell nano-complexes have good analog characteristics of catalase as a new kind of nano-models for catalase.Cell fluorescence image in vitro indicates that these Adpa modified nanoparticles locate outside of tumor cells,in contrast,Mn-silica core-shell nano-complexes could enter tumor cells which enables simultaneous tumor-targeting and good fluorescent imaging as a new tumor imaging agent.

    core-shell nanosphere;nano-complex;imaging,cancer

    0 Introduction

    Multifunctionalnanoparticles with a core-shell architecture,which combine many functionalities such as imaging,targeting,drug delivery,and therapy in a single stable construct,show greatpromise in biomedical applications[1-3]. Silica is a hydrophilic material that is photophysically inert and the surface of the organic-modified silica nanoparticles can be functionalized with a variety of active groups such as amine and carboxyl groups for specific function[4-5]. Rhodamine B isothiocyanate doped silica-coated coreshell fluorescent dye nanoparticles can specifically recognize early-stage apoptotic cells through the binding of surface conjugated Annexin V to the phosphatidylserine on the outer membrane of apoptoticcells[6].Manganese(Ⅱ) ions are the required co-factor for many ubiquitous enzymes and mitochondria can accumulate Mn(Ⅱ) ions through an ATP-dependent Ca transporter[7].The complex of Mn(Ⅱ)-dpa (dpa=di (picolyl)amines)modified SiO2@Mn(Ⅱ)-dpa nanoparticles was used to targetcancer cells through intracellular Ca2+signaling mitochondria accumulating in vivo formagnetic resonance imaging (MRI) detection[8].In addition to attenuation of the absorption of calcium in mitochondria,most transition metal complexes of di(picolyl)amine were reported as models of non-heme dioxygenase[9].Manganese(Ⅱ) complexes [Mn2(μ-O2CCH3)3L2]+(L=bis(pyridylmethyl)amine)and aminopyridine manganese(Ⅱ) complexes were studied for their ability to disproportionate H2O2and to produce highly value intermediates[10].These mean that manganese(Ⅱ)complexes with the derivatives of bis(2-pyridylmethyl)amine could disproportionate H2O2or react with H2O2to produce oxidant.Cellular levels of H2O2play directly orindirectly a key role in maglignant transformation and sensitize cancer cells to death.Overpression of H2O2-detoxifying enzymes or human catalase in vivo can result in H2O2concentration decreasing and cancer cells reverting to normalappearance[11].Recently,we found that carboxylate-bridged dimanganese(Ⅱ)systems were good models for catalase and exhibited good inhibition on the proliferation ofU251 and HeLa cells.The inhibiting activity of these manganese(Ⅱ) complexes on thetumorcellsin vitroisrelated totheir disproportionating H2O2activity[12].It is reported that nano-particles with size of 1~100 nm can accumulate in cancer cells selectively[13-14].Here,we report a class of core-shell architecture to assemble the Mn(Ⅱ)complexes of Adpa(Adpa=bis(2-pyridylmethyl)amino-2-propionicacid)on thesurface ofsilica shell nanoparticles and nano complexes with imaging and mimics of catalase.

    1 Experimental

    1.1 Instruments and Materials

    Rhodamine B isothiocyanate (RBITC),Triton X-100, 3-aminopropyltrimethoxysilane (APTS), ammonium hydroxide,N,N-dicyclohexylcarbodiimide (DCC),N-hydroxysuccinimide (NHS),cetyltrimethylam-monium bromide (CTAB)and solvents were of analytical grade.Water was purified with a Millipore Milli-Q system (25℃:18.2 MΩ·cm,7.20×10-2N· m-1).Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC@SiO2)and bis(2-pyridylmethyl)amino-2-propionic acid (Adpa)were prepared according to the reported method[5,7].TEM was performed at room temperature on a JEOL JEM-200CX transmission electron microscope using an accelerating voltage of 200 kV.FTIR characterizations were performed using a Nicolet Nexus 470 FTIR spectrophotometer in the spectral range of 4 000~400 cm-1.The electronic absorption spectrum was recorded using a UV-2450 UV-Vis spectrophotometer at room temperature.Photoluminescent emission spectraweremeasured on Varian CarryEclipse spectrofluorometer.The content of Mn(Ⅱ) ions in the nanoparticle wasmeasured by TAS-986 Atomic absorption spectrophotometer.

    1.2 Synthesis of RBITC@SiO2-Adpa and RBITC @SiO2-AdpaMn

    The Adpa molecules were covalently linked with 3-aminopropyltriethoxysilane(APTS)to form an APTSAdpa conjugate.DCC was used to ensure that the carboxylic group of Adpa selectively reacts with the amino group of APTS.Adpa (0.1 mL,0.35 mmol), DCC (22.5 mg,0.11 mmol)and NHS (40.3 mg,0.35 mmol)were sequentially added into a 5.0 mL N,N-dimethyl-formamide(DMF)solution.The mixture was stirred for 12 h at room temperature.After the filtration,85.3 mg(0.38 mmol)of APS was added into the solution and the solution was stirred for 24 h at room temperature.The obtained solution was directly used without further treatment.

    0.044 8 g Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles(RBITC-SiO2) was dispersed in 25 mL of toluene,0.1 mL of asprepared Adpa-APTS conjugates and 20 μL APS were added into the above solution.After the solution was transferred into a flask under nitrogen for 10 minutes, the reaction was allowed to proceed for 1.5 h at 70℃ in microwave reactor.After centrifuged and washed with ethanol,nanoparticles(RBITC@SiO2-Adpa)were then obtained.

    The obtained RBITC@SiO2-Adpa (0.485 g)was dispersed in ethanol(25 mL),MnAc2·4H2O(0.068 g, 0.014 mmol)was added into the solution and the solution was stirred for 2 h at room temperature. Nanoparticles(RBITC@SiO2-AdpaMn)were obtained after centrifuging and washing with methanol.The amount of Mn(Ⅱ) ions in RBITC@SiO2-dpa-Mn was evaluated by atomic absorption spectra after the nanoparticles were cooked with excess amount of nitric acids at 70℃for 3 h.The content of Mn(Ⅱ) in the nanoparticles is 1.13%.

    1.3 Catalase-like Activity

    All of the reactions between the nano-complexes and dihydrogen peroxide were performed in buffered (Tris/Tris-HCl,0.1 mol·L-1,NaClO40.1 mol·L-1,pH= 7.1)solutions at 0℃ and 37℃.The reactivity of the complexes with H2O2was first investigated in buffered solutions via UV-Vis spectroscopy titration at 0℃and 37℃.After the solution (5 mL)of nano-complexes (0.1 mol·L-1)was stirred at 0℃ and 37℃ for 30 min,0.5 mL of H2O2aqueous solution (30%)was added,and the spectra were recorded at 10 min intervals at 0℃ or 2 min intervals at 37℃.The volumetric measurements of the evolved dioxygen produced during the reaction of the complexes with H2O2were performed in triplicate as follows:a 10 mL round-bottom flask containing a nano-complex(3×10-4mol·L-1,3.0 mL)in a buffered system was placed in an ice (273.0±0.1 K)bath.The flask was closed with a rubber septum,and a cannula was used to connect the reaction flask to an inverted graduated pipet,filled with water.While the solution containing the nanocomplex was stirred,a solution of 0.5 mL of H2O2aqueous solution was added through the septum using a microsyringe.The volume of oxygen produced was measured in the pipet.The kinetic measurements for nano-complexes were performed in Tris/Tris-HCl solution at37 ℃.Differentconcentrations of dihydrogen peroxide were prepared by diluting the 30% H2O2aqueous solution with Tris/Tris-HCl solution.The optimum reaction order of the substrate with respect to the complexes was determined by reacting different concentrations of complexes with a constant concentration of substrate.Similarly,the optimum reaction order of the complexes with respect to the substrate was determined by reacting different concentrations of substrate with a constant concentration of complexes.

    1.4 Cellular uptake and imaging

    Human cancer cell line HeLa was obtained from Cancer Cell Repository (Shanghai cell bank).Cells were maintained in RPMI-1640 medium and DMEM medium (Gibco,USA)supplemented with 10%(V/V) heat-inactivated fetal bovine serum,antibiotics(100 U·mL-1penicillin and 100 U·mL-1streptomycin),at 37°C in a humidified atmosphere of 5%CO2.HeLa cells(2.4×104)were seeded into 24-well plates(Every plate was 100 μL)and cultured for 24 h,then nanoparticles (testnanoparticles (2.0 mg)were dispersed in H2O and diluted with culture media)were added and incubated for 3 h.At last,cells were washed with PBS twice to remove the free nanoparticles.Nanoparticles uptake and imaging of HeLa cells were observed using Nikon Ti-E2000 microscope with live cell system (LCS)which can provide CO2,temperature control and position fixing. The bright and fluorescence imaging of cells(ex.555 nm)were recorded and analyzed.

    2 Results and discussion

    2.1 Synthesis and characterization

    Scheme 1 Synthetic route of RBITC@SiO2-AdpaMn

    Scheme 1 sketches this synthesis procedure from fluorescent dye molecules towards fluorescence coreshell nano-models forcatalase.Normally,reverse microemulsion method was used to prepare rhodamine B isothiocyanate doped silica-coated(RBITC@SiO2) and furthermodification ofAPS derivativeswas carried out by refluxing for 24 h in toluene[5].Although the process is useful,it takes long reaction time and produces by-products thatlimitbioapplications.Here higher yielded grafted nanomodels were obtained through the microwave synthesis.These indicate that microwave assisted synthesis approach is effective and fast to the modification of silica.

    FTIR spectra (Table 1)ofthe two silica nanoparticles confirmed the existence of amino in the purified nanoparticles,showing characteristic peaks around 3 417 and 2 928 cm-1that correspond to stretching bands of N-H and C-H.The IR spectra show pyridyl ring bands of νas(C=N)at approximately 1 609 cm-1and the δ(CH)vibration of the pyridyl ring at 794 cm-1.The peaks at 1 659 cm-1indicates the existence of-CO-NH of Adpa.The strong peaks around 1 100 cm-1in Table 1 confirm the existence of SiO2which corresponds to stretching band of Si-O.

    Table 1 IR bands(cm-1)of RBITC@SiO2-Adpa and RBITC@SiO2-AdpaMn

    The bands at 278 nm of pyridyl rings dominate the UV spectra for RBITC@SiO2-AdpaMn nanoparticles and RBITC@SiO2-Adpa nanoparticles confirming the existence of Mn(Ⅱ)-Adpa grafted silica nanoparticles.558 nm ofπ-π* transition bands belongs to rhodamine B isothiocyanate(Fig.1).

    Fig.1 UV spectra for RBITC@SiO2(a,2.1 mg), RBITC@SiO2-AdpaMn(b,3.3 mg), RBITC@SiO2-Adpa(c,2.9 mg)dispersed in Tris-HCl(pH=7.1)(10 mL)

    The content of surface modified Adpa in the nano-models is 0.08 mmol·L-1according to the bands at 278 nm of free Adpa.The emission bands at 582 nm show thatthe fluorescence intensity ofthe RBITC@iO2-Adpa system little decreases upon the surface modification with Mn (Fig.3 line a).The hypochromism possibly is due to the self-quench of the Mn ions because the transition-metal ions (Mn2+) have unsaturated d-layer electrons[14].However,the fluorescence intensity at 582 nm of RBITCSiO2@AdpaMn increases after addition of 0.5 mLH2O2,indicating the nano-complex could possibly bind with H2O2to produce new intermediates.The nanoparticle suspension was added drop-wise onto a carbon-coated copper membrane and dried at room temperature.Particle size wasmeasured with a Hitachi-800 transmission electron microscope.The diameters of RBITC@SiO2-Adpa and RBITC@SiO2-AdpaMn are 90~100 nm(Fig.3)

    Fig.2 Fluorescence emission spectra for RBITC@SiO2-AdpaMn(a,3.3 mg),RBITC@SiO2-Adpa (b,2.9 mg)and H2O2added to RBITC@SiO2-AdpaMn(c,3.3 mg)in Tris-HCl(pH=7.1) (10 mL),the slit widths at the excitation and emission of the spectrofluorimeter is 5

    Fig.3(a)TEM images for RBITC@SiO2-Adpa

    Fig.3(b)TEM images for RBITC@SiO2-AdpaMn

    2.2 Catalase-likeactivitymeasuredbyO2evolution -kinetics studies

    The O2volume evolution was used for the study ofkinetic ofH2O2disproportionation.The H2O2disproportionation promoted by RBITC@SiO2-AdpaMn was carried out in Tris-HCl at 0 ℃ and 37 ℃. RBITC@SiO2-AdpaMn can disproportionate dihydrogen peroxide to generate dioxygen.The volume of oxygen produced every 2 min and the rates of the O2evolution of the RBITC@SiO2-AdpaMn at different conditions are shown in Fig.4.1.The kinetic plot is shown in Fig.4.2 and Fig.4.3.The obtained plot of initialrate vs concentration ofthe dihydrogen peroxide (E)is fitted by Hill equationAccording to the equation,the value of KMis 0.2150 mmol·L-1,turnover Number Kcatcalculated from the equation Kcat=Vmax/cE,tis 0.5368 s-1[16].The value of kcat/KMis used to evaluate the catalase activity.kcat/KMof the nano-model is 2 496.7,which shows that the nano-complex has good activity.The condition of the reaction carried out at 37℃ in Tris-HClsolution is mimetic condition ofthe cell environment.So we deduce that nano-complex would also show good catalase activity in vitro.

    Fig.4.1 Rates of the O2evolution for the RBITC@SiO2-AdpaMn(nano-complex)at different conditions, cnano-complex=0.3 mmol·L-1,30%H2O2 aqueous solution 0.5 mL,Vsolvent=3 mL.37℃in Tris-HCl(■),0℃in Tris-HCl(□)

    Fig.4.2 V0vs Concentration of H2O2plots of RBITC@ SiO2-AdpaMn(0.3 mmol·L-1)in Tris-HCl,37℃

    Fig.4.3 Initial rate(V0)of substrate consumption vs concentration of RBITC@SiO2-AdpaMn in Tris-HCl 37℃

    2.3 Cell uptake and imaging

    The fluorescence images of the RBITC@SiO2-Adpa and RBITC@SiO2-AdpaMn were assayed using HeLa cellline.For HeLa cells treated with RBITC@SiO2-Adpa, the red fluorescence image indicates these nanoparticles located outside of HeLa cells due to that the relative larger size and low water solubility result in no internalization of the nontarget control.On the contrary,the intense fluorescence image of cell is observed when HeLa cells incubate with the RBITC@SiO2-AdpaMn.The results are shown in Fig.5.A total of about 95%of cells display the RBITC signal.All emissions from the nanoparticle containing culture medium surrounding the cells are removed by washing the cells with PBS.Electron micrographs of the cells provide direct evidence that a large numberof RBITC@SiO2-AdpaMn are possibly endocytosed by the HeLa cells.The mitochondrial membrane potentials of tumor cells are higher than those of normal cells,most agents have a positively charged moiety that takes advantage of electrostatic forces in locating its target[17].These preliminary data reveal that the targeting ability of nanospheres to HeLa cells is enhanced greatly due to the Adpa-Mn complex conjugation onto the surface of the RBITC@SiO2producing the positive charged RBITC@SiO2-AdpaMn and allowing passive accumulating and mitochondrial membrane of cancer cells induced accumulation.

    Fig.5 Fluorescence images of HeLa cells treated with nanoparticles

    3 Conclusions

    A Nano-complex (RBITC@SiO2-AdpaMn)with catalase activity was synthesized and characterized. It is found that the nano-complex could disproportionate H2O2effectively to oxygen,so it is a good mimic of catalase.Furthermore,we found that RBITC@SiO2-AdpaMn could target and imaging tumor cell by allowing passive accumulating and mitochondrialmembraneofcancercellsinduced accumulation.

    [1]Sanvicens N,Marco M P.Trends Biotechnol.,2008,26(8):42-433

    [2]Wu W T,Shen J,Banerjee P,et al.Biomater.,2010,31(29): 7555-7566

    [3]Zhang R R,Wu C L,Tong L L,et al.Langmuir,2009,25 (17):10153-10158

    [4]Bonacchi S,Genovese D,Juris R,et al.Angew.Chem.Int. Ed.,2011,50(18):4056-4066

    [5]Tao G P,Chen Q Y,Yang X,et al.Colloids Surf.B:Biointerf., 2011,86(1):106-110

    [6]Shi H,He X X,Wang K M,et al.Nanomed.Nanotechnol. Biol.Med.,2007,3(4):266-272

    [7]Chen Q Y,Zhou D F,Huang J,et al.J.Inorg.Biochem., 2010,104(11):1141-1147

    [8]Chen Q Y,Wang L Y,Zhang L R,et al.Sci.China Chem., 2010,53(8):1728-1731

    [9]CHEN Qiu-Yun(陳秋云),HUANG Juan(黃娟),LI Jun-Feng (李軍峰),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao).,2008,24(11):1789-1793

    [10]Romero I,Dubois L,Collomb M N,et al.Inorg.Chem., 2002,41(7):1795-1806

    [11]López-Lázaro M.Cancer Lett.,2007,252(1):1-8

    [12]Zhou D F,Chen Q Y,Qi Y,et al.Inorg.Chem.,2011,doi. org/10.1021/ic200004y

    [13]Bahadur N M,Furusawa T,Sato M,et al.J.Colloid Interf. Sci.,2011,355(2):312-320

    [14]CHEN Qiu-Yun(陳秋云),WANG Lin-Yun(王玲昀),CHEN Hao(陳浩),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2010,26(10):1784-1789

    [15]Groni S,Blain G,Guillot R,et al.Inorg.Chem.,2007,46(6): 1951-1953

    [16]Shin B K,Kim M Y,Han J H.Polyhedron,2010,29(12): 2560-2568

    [17]Jasuja K,Linn J,Melton S,et al.J.Phys.Chem.Lett., 2010,1(12):1853-1860

    具有腫瘤熒光成像性能的核殼納米過氧化氫酶模擬物

    楊 霞 陳秋云*宋京寶

    (江蘇大學(xué)化學(xué)化工學(xué)院,鎮(zhèn)江 212013)

    運用微波法在硅核殼熒光材料的表面修飾了2-(二吡啶甲胺基)丙酸的錳配合物,獲得具有熒光性能的錳-硅核殼納米結(jié)構(gòu)復(fù)合物,運用IR,UV,TEM等方法表征了納米復(fù)合物的結(jié)構(gòu)。H2O2岐化實驗顯示錳-硅核殼納米復(fù)合物具有較好的過氧化氫酶模擬特性,是一種新的納米過氧化氫酶模擬物。體外細胞熒光成像研究表明2-(二吡啶甲胺基)丙酸修飾的納米球不能進入腫瘤細胞內(nèi),而錳-硅核殼納米復(fù)合物能進入腫瘤細胞內(nèi),具備良好的腫瘤靶向性,顯著提高腫瘤熒光成像效果,可作為新型的腫瘤成像劑。

    核殼納米球;納米復(fù)合物;成像;腫瘤

    O627.41

    A

    1001-4861(2012)01-0164-07

    2011-07-06。收修改稿日期:2011-08-24。

    國家自然科學(xué)基金(No.20971059)資助項目。

    *通訊聯(lián)系人。E-mail:chenqy@ujs.edu.cn

    猜你喜歡
    甲胺核殼丙酸
    氟尼辛葡甲胺注射液的制備及性狀初步研究
    飼料博覽(2021年11期)2022-01-08 14:57:12
    核殼型量子點(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    固相萃取—離子色譜測定大氣顆粒物的甲胺類及其氧化產(chǎn)物
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    食品中丙酸鈉、丙酸鈣測定方法的改進
    4-甲胺基-6-三氟甲基-2-甲砜基嘧啶的合成及其晶體結(jié)構(gòu)
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    HPLC-ELSD法測定注射用福沙匹坦二甲葡胺中葡甲胺含量
    K/γ-Al2O3催化丙酸甲酯合成甲基丙烯酸甲酯
    化工進展(2015年3期)2015-11-11 09:07:41
    2-18F-氟丙酸在正常小鼠體內(nèi)的生物學(xué)分布
    国产精品亚洲av一区麻豆| 日本一本二区三区精品| 一进一出抽搐动态| 国产亚洲av嫩草精品影院| 国产精华一区二区三区| 香蕉丝袜av| 久久精品aⅴ一区二区三区四区| 男女做爰动态图高潮gif福利片| 97人妻精品一区二区三区麻豆 | 亚洲精品美女久久av网站| 欧美成人一区二区免费高清观看 | 国产成人av教育| 国产精品一区二区免费欧美| 午夜两性在线视频| 天堂动漫精品| 精品欧美国产一区二区三| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 国产成人影院久久av| 亚洲男人的天堂狠狠| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 久久中文字幕一级| 成熟少妇高潮喷水视频| 久久精品亚洲精品国产色婷小说| 国产av在哪里看| 国产三级黄色录像| 日韩一卡2卡3卡4卡2021年| 一级毛片高清免费大全| av中文乱码字幕在线| 色综合站精品国产| 成人国语在线视频| 岛国在线观看网站| 男女做爰动态图高潮gif福利片| 久久久久久久精品吃奶| 国产精品永久免费网站| 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 麻豆av在线久日| www.精华液| 日韩精品中文字幕看吧| 久久国产精品影院| 老汉色∧v一级毛片| 久久欧美精品欧美久久欧美| 久久久久亚洲av毛片大全| 大型黄色视频在线免费观看| 麻豆久久精品国产亚洲av| 亚洲自偷自拍图片 自拍| 国产精品99久久99久久久不卡| 欧美精品啪啪一区二区三区| 少妇熟女aⅴ在线视频| 亚洲专区国产一区二区| 久久香蕉精品热| 日本黄色视频三级网站网址| 国产精品二区激情视频| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 精品不卡国产一区二区三区| 亚洲av成人av| 女警被强在线播放| 亚洲av成人一区二区三| 91成人精品电影| 国产亚洲精品久久久久5区| 日本撒尿小便嘘嘘汇集6| 人人妻人人看人人澡| 亚洲 国产 在线| 国产一区二区激情短视频| 成年人黄色毛片网站| 欧美一级a爱片免费观看看 | 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 日日干狠狠操夜夜爽| 久久草成人影院| 99国产精品一区二区三区| 精华霜和精华液先用哪个| 亚洲欧美一区二区三区黑人| 国产高清videossex| 变态另类成人亚洲欧美熟女| 亚洲,欧美精品.| 国产av又大| 窝窝影院91人妻| 18禁观看日本| 免费看美女性在线毛片视频| 日韩欧美在线二视频| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 亚洲欧美精品综合久久99| 亚洲国产精品合色在线| 亚洲男人天堂网一区| 久久午夜亚洲精品久久| 中文资源天堂在线| 久久亚洲精品不卡| 99精品久久久久人妻精品| 麻豆一二三区av精品| 亚洲精品在线观看二区| 满18在线观看网站| 精品一区二区三区av网在线观看| 亚洲 国产 在线| 99国产综合亚洲精品| 男人操女人黄网站| 午夜福利成人在线免费观看| 真人做人爱边吃奶动态| 天天一区二区日本电影三级| 欧美三级亚洲精品| 自线自在国产av| 日本 av在线| 一区福利在线观看| 99精品欧美一区二区三区四区| 国产亚洲欧美在线一区二区| 日韩欧美免费精品| 1024视频免费在线观看| 欧美日韩福利视频一区二区| 亚洲av电影不卡..在线观看| 久久人妻av系列| 日韩国内少妇激情av| av中文乱码字幕在线| 亚洲七黄色美女视频| 精品久久久久久成人av| 国产午夜福利久久久久久| 天堂√8在线中文| 久久久精品国产亚洲av高清涩受| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 人妻久久中文字幕网| 一级黄色大片毛片| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 嫩草影视91久久| 久久人妻福利社区极品人妻图片| 国产区一区二久久| 欧洲精品卡2卡3卡4卡5卡区| 黑丝袜美女国产一区| 免费搜索国产男女视频| 欧美乱妇无乱码| 最近最新免费中文字幕在线| 嫁个100分男人电影在线观看| 桃色一区二区三区在线观看| xxx96com| 成人欧美大片| 手机成人av网站| 亚洲专区国产一区二区| 亚洲国产精品sss在线观看| 日本精品一区二区三区蜜桃| videosex国产| 亚洲五月天丁香| 99久久国产精品久久久| 午夜成年电影在线免费观看| 在线播放国产精品三级| 日韩国内少妇激情av| 香蕉av资源在线| 久久久国产成人免费| 国产亚洲精品av在线| 久久狼人影院| 亚洲五月婷婷丁香| 国产精品亚洲美女久久久| av在线播放免费不卡| 午夜精品在线福利| 欧美精品啪啪一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产视频内射| www日本在线高清视频| 久久国产乱子伦精品免费另类| 国产一区二区在线av高清观看| 欧美zozozo另类| 久久久久久亚洲精品国产蜜桃av| 黄片播放在线免费| 国产亚洲av高清不卡| 好男人电影高清在线观看| 91成人精品电影| 男女床上黄色一级片免费看| 欧美性猛交黑人性爽| a级毛片在线看网站| 国产成人av教育| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 99久久久亚洲精品蜜臀av| 亚洲激情在线av| 中文字幕另类日韩欧美亚洲嫩草| 久久这里只有精品19| 村上凉子中文字幕在线| av视频在线观看入口| 久久热在线av| 久久国产精品男人的天堂亚洲| 黄片大片在线免费观看| 国产熟女xx| 国产精品久久久人人做人人爽| 国产真实乱freesex| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 在线看三级毛片| 少妇 在线观看| 国产一区二区在线av高清观看| 精品欧美一区二区三区在线| 嫩草影视91久久| 母亲3免费完整高清在线观看| 日日夜夜操网爽| 美女午夜性视频免费| 成年人黄色毛片网站| 熟妇人妻久久中文字幕3abv| 在线天堂中文资源库| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 国产精品av久久久久免费| 级片在线观看| 97人妻精品一区二区三区麻豆 | 高潮久久久久久久久久久不卡| 欧美日本亚洲视频在线播放| 成年人黄色毛片网站| 又黄又粗又硬又大视频| av有码第一页| 久久国产精品人妻蜜桃| 久久狼人影院| 亚洲一区高清亚洲精品| 黄网站色视频无遮挡免费观看| 免费看美女性在线毛片视频| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区| aaaaa片日本免费| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲| 我的亚洲天堂| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx| 国产99白浆流出| 男女之事视频高清在线观看| 看片在线看免费视频| 国产免费av片在线观看野外av| 99热6这里只有精品| 欧美成人午夜精品| 久久久久久久精品吃奶| 波多野结衣巨乳人妻| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 精品日产1卡2卡| 欧美性长视频在线观看| 人人妻人人澡欧美一区二区| 国产一区二区三区在线臀色熟女| 人人妻人人澡人人看| 99久久综合精品五月天人人| 日韩国内少妇激情av| 神马国产精品三级电影在线观看 | 免费看美女性在线毛片视频| 国产国语露脸激情在线看| xxx96com| 亚洲专区字幕在线| 美国免费a级毛片| 777久久人妻少妇嫩草av网站| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 国产av又大| 在线国产一区二区在线| 国产黄a三级三级三级人| 亚洲精品国产一区二区精华液| 波多野结衣高清无吗| 久久久久九九精品影院| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 18禁国产床啪视频网站| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人成人乱码亚洲影| 非洲黑人性xxxx精品又粗又长| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 国产亚洲精品一区二区www| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 国产野战对白在线观看| 美女 人体艺术 gogo| 精品一区二区三区视频在线观看免费| 麻豆av在线久日| 日本熟妇午夜| 欧美激情高清一区二区三区| 国产高清videossex| 欧美一区二区精品小视频在线| 天天添夜夜摸| 亚洲欧美激情综合另类| 日韩欧美免费精品| 18美女黄网站色大片免费观看| 亚洲avbb在线观看| 变态另类成人亚洲欧美熟女| 一区二区日韩欧美中文字幕| 久久香蕉激情| 国产乱人伦免费视频| 在线天堂中文资源库| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 免费搜索国产男女视频| 午夜免费鲁丝| 男女下面进入的视频免费午夜 | 午夜久久久久精精品| 欧美一区二区精品小视频在线| 亚洲久久久国产精品| 午夜福利视频1000在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 一a级毛片在线观看| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合久久99| 国产乱人伦免费视频| 丁香欧美五月| 成人午夜高清在线视频 | 国产av在哪里看| 天天添夜夜摸| 精品久久蜜臀av无| 岛国在线观看网站| 欧美午夜高清在线| bbb黄色大片| 91九色精品人成在线观看| 2021天堂中文幕一二区在线观 | 熟妇人妻久久中文字幕3abv| av欧美777| 久久中文字幕人妻熟女| 欧美黄色淫秽网站| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 嫩草影院精品99| 国产视频内射| 国产成+人综合+亚洲专区| 久久亚洲精品不卡| 久久久久国内视频| 中文在线观看免费www的网站 | av中文乱码字幕在线| 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 成人国产综合亚洲| 久久亚洲真实| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清 | 国产亚洲精品一区二区www| 午夜福利免费观看在线| 久久青草综合色| 日韩欧美三级三区| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 国产精品久久电影中文字幕| 亚洲片人在线观看| 十分钟在线观看高清视频www| 变态另类成人亚洲欧美熟女| 老汉色av国产亚洲站长工具| 老司机午夜十八禁免费视频| 久热爱精品视频在线9| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 欧美av亚洲av综合av国产av| 好男人在线观看高清免费视频 | 欧美激情高清一区二区三区| 国产av一区在线观看免费| 女人高潮潮喷娇喘18禁视频| 一级作爱视频免费观看| 欧美性长视频在线观看| 国产精品日韩av在线免费观看| 午夜老司机福利片| 女同久久另类99精品国产91| 欧美日韩亚洲综合一区二区三区_| 久久国产精品人妻蜜桃| 国产一区在线观看成人免费| 免费在线观看黄色视频的| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 国产成人欧美在线观看| 老司机靠b影院| 老鸭窝网址在线观看| 亚洲国产欧美网| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 自线自在国产av| 在线观看免费日韩欧美大片| 激情在线观看视频在线高清| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 亚洲全国av大片| 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 国产精品综合久久久久久久免费| 久久人妻福利社区极品人妻图片| 成人三级做爰电影| 久热爱精品视频在线9| 深夜精品福利| 久久午夜亚洲精品久久| 日日爽夜夜爽网站| 亚洲精品一区av在线观看| 日韩欧美免费精品| 亚洲在线自拍视频| 日韩精品青青久久久久久| 成人午夜高清在线视频 | 天天躁夜夜躁狠狠躁躁| 久久亚洲真实| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品色激情综合| 我的亚洲天堂| 成人亚洲精品一区在线观看| 欧美绝顶高潮抽搐喷水| 日韩av在线大香蕉| 麻豆成人av在线观看| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 精品熟女少妇八av免费久了| 国产爱豆传媒在线观看 | 欧美乱码精品一区二区三区| 亚洲一码二码三码区别大吗| 黑人巨大精品欧美一区二区mp4| 午夜免费激情av| 国产一区二区三区视频了| 在线观看日韩欧美| 国产精品影院久久| 91麻豆av在线| 国产私拍福利视频在线观看| 成人一区二区视频在线观看| 俄罗斯特黄特色一大片| 亚洲一区中文字幕在线| 这个男人来自地球电影免费观看| 悠悠久久av| 中文字幕精品亚洲无线码一区 | 一进一出抽搐动态| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 变态另类丝袜制服| 91老司机精品| 国产视频一区二区在线看| 黄网站色视频无遮挡免费观看| 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 一区福利在线观看| 国产主播在线观看一区二区| 亚洲狠狠婷婷综合久久图片| 观看免费一级毛片| 日韩精品免费视频一区二区三区| 99久久精品国产亚洲精品| 久久精品91蜜桃| 免费搜索国产男女视频| 黑人操中国人逼视频| 变态另类丝袜制服| 精品久久久久久久久久久久久 | 久久午夜亚洲精品久久| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 国产av一区在线观看免费| 国产精品二区激情视频| netflix在线观看网站| 搡老妇女老女人老熟妇| 熟女电影av网| 国产成人一区二区三区免费视频网站| www日本黄色视频网| 国产片内射在线| 中文字幕人妻丝袜一区二区| 欧美日本视频| 母亲3免费完整高清在线观看| 久久精品91蜜桃| 三级毛片av免费| 美女免费视频网站| xxx96com| 国产精品精品国产色婷婷| 亚洲一区中文字幕在线| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 99热这里只有精品一区 | 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 美女免费视频网站| 黑人欧美特级aaaaaa片| 免费高清在线观看日韩| 国产黄片美女视频| 国产真实乱freesex| 久久国产乱子伦精品免费另类| 亚洲国产精品久久男人天堂| 啦啦啦 在线观看视频| 又黄又粗又硬又大视频| 久久久久九九精品影院| 国产精品影院久久| 日本三级黄在线观看| 99精品欧美一区二区三区四区| 亚洲av成人一区二区三| 国产精品久久久久久人妻精品电影| 精品国产亚洲在线| 国产视频内射| 香蕉av资源在线| 一级毛片高清免费大全| 69av精品久久久久久| 亚洲电影在线观看av| 国产麻豆成人av免费视频| 亚洲国产精品sss在线观看| 国产人伦9x9x在线观看| 琪琪午夜伦伦电影理论片6080| 色婷婷久久久亚洲欧美| 国产成人影院久久av| 老司机靠b影院| 亚洲免费av在线视频| 国产蜜桃级精品一区二区三区| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| 亚洲国产欧美网| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 亚洲片人在线观看| 十八禁人妻一区二区| 校园春色视频在线观看| 国产主播在线观看一区二区| 亚洲第一电影网av| 在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 国产精品久久久av美女十八| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 我的亚洲天堂| 欧美午夜高清在线| 国产在线精品亚洲第一网站| 免费高清视频大片| 久久久久久久久中文| 日韩欧美免费精品| 女性被躁到高潮视频| 欧美日韩亚洲综合一区二区三区_| 国产熟女xx| 黄色视频,在线免费观看| 成人永久免费在线观看视频| 亚洲中文av在线| 看片在线看免费视频| 女性生殖器流出的白浆| 窝窝影院91人妻| 一个人免费在线观看的高清视频| netflix在线观看网站| 成人午夜高清在线视频 | 满18在线观看网站| 欧美精品亚洲一区二区| 黄片大片在线免费观看| 亚洲成人久久性| 日韩有码中文字幕| 日本五十路高清| 成人手机av| 久久婷婷成人综合色麻豆| 国产麻豆成人av免费视频| 老汉色∧v一级毛片| 中文字幕精品亚洲无线码一区 | 99国产精品一区二区蜜桃av| 一边摸一边做爽爽视频免费| 18禁黄网站禁片午夜丰满| av中文乱码字幕在线| 精品日产1卡2卡| 国产一卡二卡三卡精品| 国内精品久久久久精免费| 欧美日韩中文字幕国产精品一区二区三区| 脱女人内裤的视频| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 欧美日韩亚洲综合一区二区三区_| 久久久久国产精品人妻aⅴ院| 大型av网站在线播放| 一边摸一边做爽爽视频免费| 俺也久久电影网| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱色亚洲激情| 国产亚洲精品久久久久5区| 欧美不卡视频在线免费观看 | 国产av又大| 最好的美女福利视频网| 99热这里只有精品一区 | 日韩欧美在线二视频| 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 国产精品精品国产色婷婷| 伦理电影免费视频| 国产一区二区激情短视频| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 欧美日韩黄片免| 欧美人与性动交α欧美精品济南到| 午夜福利在线在线| www.精华液| 亚洲av美国av| 国产激情偷乱视频一区二区| 一夜夜www| 欧美日韩精品网址| 久久久久九九精品影院| 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 亚洲国产毛片av蜜桃av| 国产片内射在线| 国产av不卡久久| 亚洲国产欧美网| 一个人观看的视频www高清免费观看 | 一a级毛片在线观看| 久久久久久久久免费视频了| 琪琪午夜伦伦电影理论片6080| 亚洲av成人一区二区三| 成人午夜高清在线视频 | 人人妻人人看人人澡| 淫秽高清视频在线观看| 两性夫妻黄色片| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区精品| 成年人黄色毛片网站| 国产成人av激情在线播放| 波多野结衣av一区二区av| 久9热在线精品视频| 在线十欧美十亚洲十日本专区| 神马国产精品三级电影在线观看 | 久9热在线精品视频| 一边摸一边做爽爽视频免费| a级毛片在线看网站| 亚洲中文字幕日韩| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片|