• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni@NiO核-殼納米球的合成及其電化學(xué)生物傳感應(yīng)用研究

    2012-11-09 08:06:00季鵬宇姜立萍朱俊杰
    關(guān)鍵詞:生物

    彭 娟 李 曄 季鵬宇 姜立萍 朱俊杰

    (南京大學(xué)生命分析化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)化學(xué)化工學(xué)院,南京 210093)

    Ni@NiO核-殼納米球的合成及其電化學(xué)生物傳感應(yīng)用研究

    彭 娟 李 曄 季鵬宇 姜立萍*朱俊杰

    (南京大學(xué)生命分析化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)化學(xué)化工學(xué)院,南京 210093)

    利用無模板水熱法合成了鎳納米球,并通過部分氧化制備了Ni@NiO核殼結(jié)構(gòu)的納米復(fù)合物。合成的鎳球和Ni@NiO復(fù)合物的尺寸可以通過簡單調(diào)節(jié)反應(yīng)條件來控制。運(yùn)用XRD、EDS、TEM和SEM等測試方法對合成樣品的形貌和組成進(jìn)行了表征。Ni和Ni@NiO復(fù)合材料均有較好的磁性,其磁性用磁滯回線進(jìn)行了表征。此外,Ni@NiO納米復(fù)合物可以和血紅蛋白結(jié)合構(gòu)建過氧化氫生物傳感器,該生物傳感器對過氧化氫表現(xiàn)出很好的生物電催化活性,且具有較低的檢測限和較寬的線性響應(yīng)范圍。該復(fù)合材料對于血紅蛋白催化還原過氧化氫具有米氏響應(yīng)和較小的米氏常數(shù),表明Ni@NiO能較好地保持血紅蛋白原有的活性。

    Ni@NiO;核殼結(jié)構(gòu);納米球;血紅蛋白;生物傳感器

    Nanometer-sized magnetic particles have attracted considerable attention because oftheir unusual properties and potentialapplicationsin magnetic resonance imaging,biomedicine,data storage,catalysis, bioseparation and so on[1-3].Nickel(Ni)is one of the magnetic metals that exhibits interesting properties and applications,such as magnetic storage media[4-5],fuel cell electrodes[6-8]and catalysis[9-10].However,Ni nano-materials which are easy to be oxidized to nickel oxide (NiO),rarely have been utilized in biochemistry independently due to the lack of biochemical activity.Meanwhile,NiO nanomaterials have received considerable attention in recent years due to their wide applications in catalyst,battery cathode,gas sensors,electrochromic films[11-13].Particularly,NiO nanostructures have potential applications in biosensor since they have high chemical stability,excellent electrocatalytic property, and high electron transfer capability[14].

    Because of the wide application,the synthesis of Ni and NiO nanomaterials have draw more and more attention[15-18].Ni nanomaterials have also been synthesized through electrochemical reduction, high temperature organometallic decomposition,chemical reduction and microwave assisted method[19-22].Hydrothermal method has been proved to be a fast,simple and effective route for synthesis of nanostructured materials which depends on the solubility of minerals in hot water under high pressure.Furthermore,the shape and size of these nanomaterials could be controlled by simply adjusting the parameters such as temperature, the reaction time,the ratio of the reactants.Herein,the hydrothermal method was used to synthesize ferromagnetic Ni nanospheres with different sizes.

    The Ni and NiO nanocomposies can combine the advantages of both ferromagnetism and good electrocatalytic activity together,which can open up the multiple functional applications of them.Currently,the synthesis of Ni@NiO core-shell nanomaterials were limited probably because of the difficulty in reducing the Ni2+into metallic nickel through a liquid chemical process using common reducing agents.Only a few literatures have reported the synthesis of Ni@NiO coreshell nanomaterial[23-24].For instance,Li et al.prepared Ni/NiO core-shell nanoparticles by complex precipitation of Ni precursors in glycerol and thermal decomposition of the dried precipitate[23].Lee et al.reported the synthesis of Ni@NiO core-shell nanoparticles and application in protein separation and purification[24].However,these works always involved complicated steps and pretreatment.Therefore,a facile way to make Ni@NiO nanocomposites is still a great challenge and highly desirable.

    In this work,we reported a facile method to synthesize size-controlled Ni nanospheres and Ni@NiO core-shell nanocomposites through hydrothermal method.The Ni@NiO nanocomposites exhibited some improved properties such as excellent electrochemical bioactivity,ferromagnetic property,and good dispersity in water,which made them attractive in applications for bioseparation and biosensor.Herein,Hb was assembled on the prepared nanocomposites and was further employed to fabricate a novel biosensor for the determination of H2O2.

    1 Experimental

    1.1 Materials and apparatus

    Nickel chloride,NaH2PO2·H2O and 30%H2O2solution were purchased from Sinopharm Chemical Reagent Co.,Ltd.All chemicals were of analytical grade and used without further purification.Phosphate buffer solution(PBS,0.1 mol·L-1pH 7.0)was prepared by mixing stock standard solutions of Na2HPO4and NaH2PO4.

    XRD patterns were obtained with a Philips X′pert Pro X-ray diffractometer(Cu K radiation,λ=0.154 18 nm).EDS analysis was carried out by using a SEM equipped with an energy-dispersive X-ray detector (Shimadzu,SSX-550).SEM and TEM images were taken on a LEO-1530VP field-emission scanning electron microscope and a FEI Tecnai-12 microscope with an accelerating voltage of 120 kV,respectively.Magnetic measurements were performed on a Quantum Design MPMS SQUID magnetometer at room temperature.

    1.2 Synthesis of Ni nanospheres and Ni@NiO core-shell nanospheres

    0.1 mmol nickel chloride and 0.6 mmol KOH were dissolved separately in 5 mL of water and mixed together,then 5 mL NaH2PO2·H2O (~0.6 mmol)was added under the nitrogen atmosphere.The mixture was transferred into Teflon-lined autoclave of 15 mL capacity.The autoclave was sealed and maintained at 140℃for 40 min.After cooled to room temperature, the black precipitates were rinsed with deionized water and ethanolrespectively by magnetic separation. Finally,the Ni nanosphere was produced after dried at 60℃for 4 h.Ni/NiO nanocomposites could be obtained by heating the as-prepared Ni nanospheres at 400℃for 1 h in the air.

    1.3 Immobilization of Hb and construction of biosensor

    Electrochemical measurements were performed on a CHI 630 electrochemical workstation(Chenhua, Shanghai,China)with a conventional three-electrode system.A platinum wire was used as the auxiliary electrode,and a saturated calomel electrode(SCE)was the reference electrode.Electrochemical experiments were carried out at room temperature.

    For the assembly of Hb,2 mL Hb(5 mg·mL-1)was mixed with 2 mL Ni@NiO nanocomposites(≈1.4wt%). Then the mixture was equilibrated for 24 h at room temperature,then rinsed and separated with an external magnet.The obtained Hb-Ni@NiO nanocomposites were used for further electrochemical test.Glass carbon electrode (GCE)was polished with 1.0,0.3,and 0.05 μm alumina powder successively,followed by successive sonication in acetone and water and dried at room temperature.The Hb-Ni@NiO nanocomposites were suspended in 1 mL water,and 10 μL of the suspension was dropped onto the surface of GCE and then dried in desiccator.Finally,the Hb-Ni@NiO modified electrode was stored at 4℃for the following test.

    2 Results and discussion

    2.1 Characterizations of Ni nanospheres and Ni@NiO nanocomposites

    Fig.1 (A)XRD pattern of the Ni nanospheres(a),Ni@NiO nanocomposites(b)(B)EDS data for the Ni@NiO nanocomposits; SEM images of Ni nanospheres(C)and Ni@NiO nanocomposites(D)(insert:TEM image of Ni@NiO nanocomposites)

    XRD was used to characterize the Ni nanospheres and Ni@NiO nanocomposites.First,Ni nanospheres wereprepared by hydrothermalmethod.Allthe reflection peaks of prepared Ni are assigned to Ni(PDF No.04-0850) (curve b in Fig.1A).After the partly oxidation process of Ni nanospheres,Ni@NiO nanocomposites were obtained.The newly-appeared diffraction peaks located at 37.28°,43.26°and 62.88°, corresponded to the (111),(200)and (220)lattice planes of NiO,respectively.This result agreed well with face-centered cubic NiO(PDF No.78-0643)(curve a in Fig.1A).The as-prepared Ni@NiO nanocomposites also have been characterized by EDS,which indicated that the products were of high purity(Fig.1B).

    The hysteresis loops at room temperature was used to study the magnetic properties of the as-prepared Ni@NiO nanocomposites.The result indicated that all the particles had the symmetric hysteresis loops behavior of ferromagnetic materials(Fig.2A).Most of the hydrothermally synthesized Niand Ni@NiO nanospheres aggregated and precipitated within a few minutes,however,they can be redispersed in water by vigorous shaking or sonication to form a clear darkbrown-colored dispersion.Moreover,they can be easily separated by using an external magnet,as shown in Fig.2B.

    Fig.2 (A)A hysteresis loop showing ferromagnetic properties of Ni and Ni@NiO nanospheres; (B)Pictures showing magnetic response of prepared Ni@NiO nanoparticles

    2.2 Controlled synthesis of Ni@NiO nanocomposites

    Since Ni@NiO nanocomposites were obtained by the oxidization of Ni nanospheres,the size of the nanocomposites depended on the size of Ni nanospheres.Among the widely used reducing agents for electroless Ni plating,NaH2PO2·H2O was found to be unique for the formation of Ni nanospheres in the present synthesis system.Ni nanospheres were obtained by deoxidized NiCl2using NaH2PO2as reducing agents in the present of KOH.The redox reaction during the hydrothermal process could be formulated as[25]

    Table 1 Reaction parameters to prepare Ni nanospheres with different sizes

    To investigate the influence of the reaction parameters and obtain the resulted nanostructures with different sizes,various reactions were carried out with differentconcentrations ofreagentand different reaction temperatures.Table 1 shows the different reaction conditions to synthesize different samples which were depicted in Fig.3.The concentration of the reductive agent had an obvious effect on the size of obtained Ni nanospheres.In general,increasing the concentration of the reducing agent improves the reduction rate of metal ions,leading to smaller metal nanoparticles[26],as shown in Fig.3.In addition, heightening the reaction temperature,larger sized, better dispersed and more uniform products could be obtained according to the SEM images from sample 4 to 6 in Fig.3,which was probably attributed to that the high temperature can accelerate the reaction velocity to form larger particles.

    Fig.3 SEM images of different samples under reaction condition(see Table 1)

    Fig.4 SEM images of the Ni nanospheres synthesized using hydrothermal method with the reducing agent concentration of 0.04 g·mL-1for different reaction time:(A)40 min,(B)1 h,(C)2 h,(d)10 h

    In order to investigate the growth process of the Ni nanospheres,the evolution of the morphology in the hydrothermal synthesis was studied.The SEM images of these samples are shown in Fig.4.When the reaction time was 40~60 min,Ni nanospheres with uniform, perfect spherical shape and small sizes were obtained.Therefore,in the present system,the product with perfect morphology could be achieved under the reaction time of 40~60 min.When the reaction time was prolonged,the product grew larger and became abnormity(Fig.4C and 4D),which might be attributed to the Ostwald ripening process[27].The size of Ni nanospheres can be controlled by adjusting the reaction conditions such as the concentration of reducing agent and reactive temperature to obtain Ni nanospheres with different sizes.Besides,Ni@NiO core-shell nanocomposites were obtained by partly oxidation of Ni nanospheres.

    The thickness of the nanocomposite shell could be adjusted by controlling the oxidizing time and temperature of Ni nanospheres.In this way,the controlled synthesis of ferromagnetic Ni nanospheres and Ni@NiO core-shell nanocomposites can be realized successfully.

    2.3 Electrochemical application of Ni@NiO nanocomposites

    2.3.1 Direct electrochemistry of Hb-Ni@NiO

    The electrochemical behaviors of the Hb-Ni@NiO modified electrode in the absence and presence of H2O2were studied by cyclic voltammetry.No redox response was observed on Ni@NiO modified GCE for H2O2in the potential range from 0.1 V to-0.8 V (curve a in Fig.5A).After the assembly of Hb on the Ni@NiO modified electrode,a pair of stable redox peaks appeared in curve b Fig.5A.The anodic and cathodic peaks were located at-0.307 V and-0.413 V (vs SCE)respectively.As shown in Fig.5A (curve c),the reduction peak current was greatly enhanced after the addition of H2O2,which further indicateed that Hb was successfully immobilized and still retained their electrochemical activity.

    The dependence of the peak currents on the scan rate was also investigated.As shown in Fig.5B(inset), the cathodic and anodic peak currents increased linearly with the scan rate from 50 to 300 mV·s-1, indicating that the Hb adsorbed on the surface underwentasurface-controlledelectrontransferprocess.According to Faradays law (Q=nFAΓ),where Q is the total amount of charge,n is the number of electron transferred,F is Faraday′s constant,and A is the electron area,the average Γ values of electroactive Hb was estimated to be 6.36×10-10mol·cm-2,which was much larger than the theoretical monolayer coverage of Hb (≈1.89×10-11mol·cm-2).This indicated that a multilayer of proteins participated in the electrontransfer process in the composites.The electron transfer rate constant (ks)between Hb and electrode was estimated to be (2.8±0.3)s-1according to Laviron′s method[28],indicating that the Ni@NiO nanocomposite was an excellent promoter for the electron transfer between Hb and the electrode.

    2.3.2 Determination of hydrogen peroxide

    Fig.5 (A)Cyclic voltammograms of Ni@NiO/GCE(a),Hb-Ni@NiO/GCE(b),Hb-Ni@NiO/GCE with 50 μmol·L-1H2O2(c) in 0.1 mol·L-1pH 7.0 PBS solution;(B)Cyclic voltammograms of Hb-Ni@NiO/GCE in PBS(0.1 mol·L-1,pH 7.0) at different scan rates(from inner to outer curve:50,100,150,200,250,300 mV·s-1),and (inset)plots of cathodic and anodic peak currents vs Scan rates

    Fig.6A shows the cyclic voltammograms for Hb-Ni@NiO modified GCE in PBS(pH 7.0)in the present of H2O2with different concentration.The reduction peak at approximately-0.30 V was greatly enhanced, while the anodic peak decreased,suggesting that an electrocatalytic reduction of H2O2occurred.Moreover, the reduction current increased dramatically with the increasing concentration of H2O2,and the anodic peak led tothegradualdisappearancesimultaneously.However,this phenomenon was not observed on Ni@NiO modified GCE,therefore,the catalytic reduction of H2O2was only due to the presence of Hb.The peak current increased with the concentration of H2O2(Fig.6B),and the linear regression equation was I (μA)=0.0121C(μmol·L-1)+0.045,with a correlation coefficient of 0.997 and a detection range of 1.3~710 μmol·L-1.From the slope of 0.0121 μA·μmol-1·L,the detection limit of the biosensor towards hydrogen peroxide was estimated to be 0.4 μmol·L-1at 3σ.

    When the concentration of H2O2was higher than 600 μmol·L-1,a platform emerged in the catalytic peak current,showing the characteristics of Michaelis-Menten kinetics.The apparentMichaelis-Menten constant (Kmapp),which gives an indication of the enzyme-substrate kinetics,can be obtained from the Lineweaver-Burk equation[29]:

    Where,Issis the steady-state current after the addition of substrate,C is the bulk concentration of substrate and Imaxis the maximum current measured undersaturated substrate solution.Kmappcan be obtained by the analysis of slope and intercept of the plot of the reciprocals of the steadystate current versusH2O2concentration.The Michaelis-Menten constant of the system(Kmapp)was found to be 1.07 mmol ·L-1,which was smaller than the previous reports[23], implying that the prepared Ni@NiO nanocomposites had good biocompatibility and could retain the original enzymatic activity of Hb.The reproducibility of the biosensor was estimated by determining same concentration of H2O2for five replicate measurements with relative standard deviations (RSD)in the range from-4.2%to 4.8%.The result indicated that the biosensor show satisfactory reproducibility.The stability of the prepared biosensor was investigated.The modified electrode was stored in phosphate buffer solution at pH 7.0 in the refrigerator at 4℃ for a week and no obvious change was found.The biosensor retained 90% of itsoriginalresponseafterone month.

    Fig.6 (A)Cyclic voltammpgrams of the Hb-Ni@NiO/GCE at scan rate of 0.1 V·s-1in 0.1 mol·L-1pH 7.0 PBS solution with(a)0,(b)187.0,(c)317.0,(d)497.0 μmol·L-1H2O2;(B)Plots of the electrocatalytic current(i)vs H2O2 concentration

    3 Conclusions

    Ni@NiO nanocomposites have been prepared by a simple template-free hydrothermal synthesis of Ni nanospheres and a subsequent oxidation process.The core-shell nanostructure showed good magnetic property,satisfactory biocompatibility and chemical stability.Hb was further assembled on the Ni@NiO composites to construct a novel H2O2biosensor with a wide linear range and a low detection limit. Additionally,Ni@NiO enhanced the direct electron transfer between Hb and GCE and retained the native activity of Hb.The proposed method provided a new and simple strategy towards the fabrication of Ni and Ni@NiO nanospheres.The prepared Ni@NiO core-shell nanostructure would probably provide a novel and promising platform forthe construction ofother biosensor in the future.

    [1]Mornet S,Vasseur S,Grasset F,et al.J.Mater.Chem.,2004, 14:2161-2175

    [2]Huh Y M,Jun Y W,Song H T,et al.J.Am.Chem.Soc.,2005, 127:12387-12391

    [3]Gu H W,Xu K M,Xu C J,et al.Chem.Commun.,2006:941-949

    [4]Zhang P,Zuo F,Urban F K,et al.J.Magn.Magn.Mater., 2001,225:337-345

    [5]Cordente N,Amiens C,Chaudret B,et al.J.Appl.Phys., 2003,94:6358-6365

    [6]Hu W K,Noreus D.Chem.Mater.,2003,15:974-978

    [7]Saitou M,Hashiguchi R.J.Phys.Chem.B,2003,107:9404-9408

    [8]Waraksa C C,Chen G Y,Macdonald D D,et al.J.Electrochem. Soc.,2003,150:E429-E437

    [9]Sato S,Kawabata A,Nihei M,et al.Chem.Phys.Lett.,2003, 382:361-366

    [10]Tu Y,Huang Z P,Wang D Z,et al.Appl.Phys.Lett.,2002, 80:4018-4020

    [11]Carnes C L,Klabunde K J.J.Mol.Catal.A:Chem.,2003, 194:227-236

    [12]Biju V,Khadar M A.Mater.Res.Bull.,2001,36:21-33

    [13]Ichiyanagi Y,Wakabayashi N,Yamazaki J,et al.Physica BCondensed Matter.,2003,329:862-863

    [14]Li C,Liu Y,Li L,et al.Talanta,2008,77:455-459

    [15]Beach E R,Shqau K,Brown S E,et al.Mater.Chem.Phys., 2009,115:371-377

    [16]Davar F,Fereshteh Z,Salavati-Niasari M.J.Alloys Compd., 2009,476:797-801

    [17]ZHOU Li-Qun(周立群),YANG Nian-Hua(楊念華),ZHOU Li-Rong(周麗榮),et al.Chin.J.Appl.Chem.(Yingyong Huaxue Xuebao),2006,23(6):682-684

    [18]ZHAO Sheng-Li(趙勝利),WEN Jiu-Ba(文九巴),WANG Hong-Kang(王紅康),et al.Chin.J.Mater.Res.(Cailiao Yanjiu Xuebao),2008,22(4):415-419

    [19]Hou Y,Kondoh H,Ohta T,et al.Appl.Surf.Sci.,2005,241: 218-222

    [20]Donegan K P,Godsell J F,Otway D J,et al.J.Nanopart.Res., 2012,14:670-

    [21]Cheng G J,Puntes V F,Guo T.J.Colloid Interface Sci., 2006,293:430-436

    [22]Li D S,Komarneni S.J.Am.Ceram.Soc.,2006,89:1510-1517

    [23]Li Y,Cai M,Rogers J,et al.Mater.Lett.,2006,60:750-753

    [24]Lee I S,Lee N,Park J,et al.J.Am.Chem.Soc.,2006,128: 10658-10659

    [25]Liu Z P,Li S,Yang Y,et al.Adv.Mater.,2003,15:1946-1499

    [26]Teranishi T,Miyake M.Chem.Mater.,1998,10:594-600

    [27]Madras G,McCoy B J.J.Chem.Phys.,2002,117:8042-8049

    [28]Laviron E.J.Electroanal.Chem.,1979,101:19-28

    [29]Kamin R A,Wilson G S.Anal.Chem.,1980,52:1198-1205

    Synthesis of Ni@NiO Core-Shell Nanospheres and Application for Fabrication of Electrochemical Biosensor

    PENG Juan LI Ye JI Peng-Yu JIANG Li-Ping*ZHU Jun-Jie
    (State Key Laboratory of Analytical Chemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210093,China)

    Ni nanospheres have been successfully synthesized through a template-free hydrothermal method. Ni@NiO core-shell nanocomposites were obtained by a subsequent oxidation of Ni nanospheres.The size of the final product could be controlled via simply adjusting the experimental parameters.The morphology and structure of the Ni@NiO nanocomposites were confirmed by transmission electron microscopy (TEM),field emission scanning electron microscopy(FESEM),energy-dispersive X-ray spectrometry(EDS)and X-ray diffraction(XRD). The hysteresis loops were used to study the magnetic properties of Ni and Ni@NiO.Additionally,hemoglobin (Hb)was assembled on the Ni@NiO composites to construct a novel biosensor for the determination of H2O2.The prepared biosensor showed an excellent electrocatalytic activity towards H2O2with a wide linear range and a low detection limit.The lower Michaelis-Menten constant indicated that the Hb immobilized on the Ni@NiO nanocomposites could retain its native activity.

    Ni@NiO;core-shell;nanospheres;hemoglobin;biosensor

    We greatly appreciate the support of National Natural Science Foundation of China (No.21075061) and the Natural Science Foundation of Jiangsu Province of China (BK2010363).We also appreciate the support of Jinchuan Group Co.,LTD.

    O613.71

    A

    1001-4861(2012)06-1251-08

    2012-04-23。收修改稿日期:2012-05-07。

    國家自然科學(xué)基金(No.21075061)和江蘇省自然科學(xué)基金(No.BK2010363)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:jianglp@nju.edu.cn,Tel:025-83597204

    猜你喜歡
    生物
    生物多樣性
    生物多樣性
    上上生物
    發(fā)現(xiàn)不明生物
    史上“最黑暗”的生物
    軍事文摘(2020年20期)2020-11-28 11:42:50
    第12話 完美生物
    航空世界(2020年10期)2020-01-19 14:36:20
    最初的生物
    自然生物被直銷
    清晨生物初歷直銷
    生物的多樣性
    国产有黄有色有爽视频| 国产99久久九九免费精品| 最近最新免费中文字幕在线| 欧美午夜高清在线| 老汉色∧v一级毛片| 国产区一区二久久| 母亲3免费完整高清在线观看| 欧美激情 高清一区二区三区| 丝袜在线中文字幕| 人人澡人人妻人| 久久精品成人免费网站| 极品教师在线免费播放| 日韩成人在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲精品久久午夜乱码| 亚洲伊人久久精品综合| 天堂中文最新版在线下载| 另类亚洲欧美激情| 999久久久国产精品视频| 一本综合久久免费| 国产成人av激情在线播放| 性少妇av在线| 狠狠狠狠99中文字幕| 久久天堂一区二区三区四区| 纯流量卡能插随身wifi吗| 亚洲精品成人av观看孕妇| 三级毛片av免费| 一级,二级,三级黄色视频| 亚洲男人天堂网一区| 亚洲伊人色综图| 国产亚洲一区二区精品| 国产免费视频播放在线视频| 久久久久久亚洲精品国产蜜桃av| 国产精品偷伦视频观看了| 久久人妻熟女aⅴ| 老司机影院毛片| 在线永久观看黄色视频| 久久精品国产a三级三级三级| 五月天丁香电影| 精品国内亚洲2022精品成人 | av免费在线观看网站| 精品国产乱子伦一区二区三区| 久久久久久亚洲精品国产蜜桃av| 男人操女人黄网站| 99国产精品一区二区蜜桃av | 久久精品aⅴ一区二区三区四区| 中文字幕制服av| 免费在线观看影片大全网站| 咕卡用的链子| 国产人伦9x9x在线观看| 国产精品秋霞免费鲁丝片| 夜夜爽天天搞| 天堂中文最新版在线下载| 十八禁网站免费在线| 日韩 欧美 亚洲 中文字幕| 久久婷婷成人综合色麻豆| 国产在视频线精品| 国产av国产精品国产| 国产精品亚洲av一区麻豆| 91国产中文字幕| 精品免费久久久久久久清纯 | 91精品三级在线观看| 日本五十路高清| 另类精品久久| 美女国产高潮福利片在线看| 久久 成人 亚洲| 黄色怎么调成土黄色| 欧美另类亚洲清纯唯美| 99久久国产精品久久久| 交换朋友夫妻互换小说| 亚洲av电影在线进入| 国产在线观看jvid| 午夜视频精品福利| 老熟妇乱子伦视频在线观看| 久久午夜综合久久蜜桃| 99久久精品国产亚洲精品| cao死你这个sao货| 国内毛片毛片毛片毛片毛片| 精品少妇黑人巨大在线播放| 亚洲欧美色中文字幕在线| 蜜桃国产av成人99| 人人妻,人人澡人人爽秒播| 日韩免费av在线播放| 纯流量卡能插随身wifi吗| 水蜜桃什么品种好| 久久 成人 亚洲| 伦理电影免费视频| 最新在线观看一区二区三区| 69精品国产乱码久久久| 国产黄色免费在线视频| 老司机影院毛片| 亚洲男人天堂网一区| 国产又爽黄色视频| 中文字幕制服av| 日本黄色视频三级网站网址 | 侵犯人妻中文字幕一二三四区| a级毛片黄视频| 国精品久久久久久国模美| 精品国产乱子伦一区二区三区| av网站在线播放免费| 99热网站在线观看| 国产欧美日韩综合在线一区二区| 中国美女看黄片| 亚洲精品中文字幕一二三四区 | 正在播放国产对白刺激| 狂野欧美激情性xxxx| 日韩有码中文字幕| 欧美成狂野欧美在线观看| 久久午夜亚洲精品久久| 中国美女看黄片| 91av网站免费观看| 成人亚洲精品一区在线观看| 国产亚洲欧美在线一区二区| 亚洲精品美女久久av网站| 热99久久久久精品小说推荐| 在线观看一区二区三区激情| 黑人巨大精品欧美一区二区蜜桃| 黄网站色视频无遮挡免费观看| www日本在线高清视频| 香蕉久久夜色| 在线观看免费高清a一片| 淫妇啪啪啪对白视频| 亚洲国产中文字幕在线视频| 日本vs欧美在线观看视频| 性少妇av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 交换朋友夫妻互换小说| 色94色欧美一区二区| 黄色视频,在线免费观看| 啦啦啦 在线观看视频| www.999成人在线观看| 久久久欧美国产精品| 精品视频人人做人人爽| 99re在线观看精品视频| 少妇精品久久久久久久| 国产在线一区二区三区精| 在线亚洲精品国产二区图片欧美| 婷婷成人精品国产| 超碰97精品在线观看| 激情视频va一区二区三区| 久久国产精品影院| 欧美激情久久久久久爽电影 | 国产1区2区3区精品| 国产成人av激情在线播放| 久久人人爽av亚洲精品天堂| 两个人看的免费小视频| 欧美久久黑人一区二区| 91大片在线观看| 久久ye,这里只有精品| 最新美女视频免费是黄的| 可以免费在线观看a视频的电影网站| 国产精品美女特级片免费视频播放器 | 国产男女超爽视频在线观看| 亚洲熟妇熟女久久| 国产精品自产拍在线观看55亚洲 | h视频一区二区三区| 日韩视频在线欧美| 少妇精品久久久久久久| 精品一品国产午夜福利视频| 国产在线观看jvid| 久久精品aⅴ一区二区三区四区| 两个人免费观看高清视频| 久久狼人影院| 国产欧美日韩一区二区三| 另类亚洲欧美激情| kizo精华| 少妇被粗大的猛进出69影院| 他把我摸到了高潮在线观看 | 亚洲国产av影院在线观看| 在线观看免费午夜福利视频| 青草久久国产| 桃红色精品国产亚洲av| 欧美日韩福利视频一区二区| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 麻豆av在线久日| 亚洲av第一区精品v没综合| 一级,二级,三级黄色视频| 天堂中文最新版在线下载| 男女下面插进去视频免费观看| 国产亚洲精品久久久久5区| 日本a在线网址| 欧美成狂野欧美在线观看| av超薄肉色丝袜交足视频| 男女边摸边吃奶| 高清黄色对白视频在线免费看| 国产精品久久久久久人妻精品电影 | 后天国语完整版免费观看| 一区二区av电影网| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 欧美黄色淫秽网站| 丰满人妻熟妇乱又伦精品不卡| 50天的宝宝边吃奶边哭怎么回事| 两个人看的免费小视频| 国产成人精品久久二区二区免费| 亚洲av成人一区二区三| 咕卡用的链子| 老司机亚洲免费影院| 一级a爱视频在线免费观看| 久久久久久免费高清国产稀缺| 精品人妻1区二区| 黄片小视频在线播放| 成在线人永久免费视频| 亚洲一区二区三区欧美精品| 91国产中文字幕| 一本—道久久a久久精品蜜桃钙片| 成人18禁在线播放| 欧美乱码精品一区二区三区| 日韩中文字幕欧美一区二区| 精品人妻1区二区| 国产欧美日韩一区二区三| 91精品三级在线观看| 国产精品自产拍在线观看55亚洲 | 国产男女超爽视频在线观看| 麻豆av在线久日| 国产成人av教育| 男女高潮啪啪啪动态图| 91精品国产国语对白视频| 美女国产高潮福利片在线看| 精品国产超薄肉色丝袜足j| 亚洲少妇的诱惑av| 亚洲精品一二三| 免费观看人在逋| 黄片大片在线免费观看| 极品人妻少妇av视频| 久久国产精品人妻蜜桃| 午夜91福利影院| 不卡一级毛片| 国产高清激情床上av| 极品教师在线免费播放| 大香蕉久久成人网| 国产97色在线日韩免费| 国产高清videossex| 日日摸夜夜添夜夜添小说| 下体分泌物呈黄色| 国产高清视频在线播放一区| 天天影视国产精品| 日本精品一区二区三区蜜桃| 亚洲人成77777在线视频| 夜夜爽天天搞| 欧美人与性动交α欧美精品济南到| 成人国语在线视频| 在线av久久热| 日本av手机在线免费观看| 午夜福利影视在线免费观看| 女同久久另类99精品国产91| 丁香欧美五月| 国产精品自产拍在线观看55亚洲 | 狠狠狠狠99中文字幕| 国产黄频视频在线观看| 国产国语露脸激情在线看| 亚洲第一欧美日韩一区二区三区 | 男男h啪啪无遮挡| 五月天丁香电影| 在线观看www视频免费| 女人高潮潮喷娇喘18禁视频| 岛国毛片在线播放| 亚洲国产精品一区二区三区在线| 人成视频在线观看免费观看| 欧美精品一区二区免费开放| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区mp4| 国产精品麻豆人妻色哟哟久久| 国产成人精品久久二区二区91| 可以免费在线观看a视频的电影网站| 色老头精品视频在线观看| 精品人妻在线不人妻| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 久热这里只有精品99| 69精品国产乱码久久久| 亚洲av片天天在线观看| 丁香欧美五月| 青草久久国产| 亚洲午夜理论影院| 国产精品久久久av美女十八| 久久中文字幕一级| 一本色道久久久久久精品综合| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 黄频高清免费视频| 色综合欧美亚洲国产小说| 美女国产高潮福利片在线看| 国产高清激情床上av| 超色免费av| 国产成人av激情在线播放| 亚洲国产成人一精品久久久| 国产日韩欧美在线精品| 在线天堂中文资源库| 狠狠狠狠99中文字幕| 1024视频免费在线观看| 这个男人来自地球电影免费观看| 欧美日韩成人在线一区二区| 亚洲伊人久久精品综合| 最近最新中文字幕大全免费视频| 老鸭窝网址在线观看| 一本—道久久a久久精品蜜桃钙片| 一本久久精品| 黑人巨大精品欧美一区二区蜜桃| 久久久水蜜桃国产精品网| av超薄肉色丝袜交足视频| 精品熟女少妇八av免费久了| 欧美日韩亚洲国产一区二区在线观看 | 国产精品.久久久| 中文字幕色久视频| 黄色成人免费大全| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 国产亚洲午夜精品一区二区久久| 欧美精品啪啪一区二区三区| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 精品久久蜜臀av无| 欧美日韩av久久| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 久久久久精品国产欧美久久久| 狠狠精品人妻久久久久久综合| 狠狠狠狠99中文字幕| 一级毛片女人18水好多| 欧美成人午夜精品| 99精品欧美一区二区三区四区| 日本wwww免费看| 高清欧美精品videossex| 成年动漫av网址| 亚洲精品自拍成人| 2018国产大陆天天弄谢| 97人妻天天添夜夜摸| 欧美激情 高清一区二区三区| 久久精品亚洲av国产电影网| 亚洲精品久久午夜乱码| 国产精品影院久久| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 在线观看66精品国产| 日韩欧美三级三区| 国产av又大| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 99国产精品一区二区蜜桃av | 国产精品久久电影中文字幕 | 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 亚洲性夜色夜夜综合| 亚洲综合色网址| 老熟妇乱子伦视频在线观看| 国产精品影院久久| 日韩欧美三级三区| 麻豆国产av国片精品| 亚洲avbb在线观看| 蜜桃国产av成人99| 十八禁高潮呻吟视频| 香蕉丝袜av| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 欧美日韩国产mv在线观看视频| 精品国产亚洲在线| 欧美老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 亚洲av成人一区二区三| 巨乳人妻的诱惑在线观看| 一级,二级,三级黄色视频| 色视频在线一区二区三区| 久久精品国产a三级三级三级| 69av精品久久久久久 | 午夜福利乱码中文字幕| 超色免费av| 99九九在线精品视频| 国产xxxxx性猛交| 亚洲av国产av综合av卡| 久久99热这里只频精品6学生| 欧美+亚洲+日韩+国产| 夜夜爽天天搞| 最近最新中文字幕大全电影3 | 中文字幕人妻丝袜一区二区| 女人精品久久久久毛片| 亚洲精品成人av观看孕妇| 大陆偷拍与自拍| av一本久久久久| 欧美亚洲日本最大视频资源| 国产精品自产拍在线观看55亚洲 | 国产精品一区二区免费欧美| 无遮挡黄片免费观看| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 久久影院123| 亚洲国产欧美日韩在线播放| 久久久国产精品麻豆| 免费不卡黄色视频| 免费在线观看视频国产中文字幕亚洲| 国产淫语在线视频| 嫁个100分男人电影在线观看| 精品少妇久久久久久888优播| 每晚都被弄得嗷嗷叫到高潮| av网站免费在线观看视频| 欧美精品av麻豆av| 在线亚洲精品国产二区图片欧美| 91成年电影在线观看| 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 1024视频免费在线观看| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 国产成人精品在线电影| 亚洲综合色网址| 九色亚洲精品在线播放| 欧美激情 高清一区二区三区| 制服诱惑二区| 中文字幕高清在线视频| 搡老岳熟女国产| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 成人av一区二区三区在线看| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色 | 久久天堂一区二区三区四区| 多毛熟女@视频| 国产精品国产高清国产av | 精品一品国产午夜福利视频| 一进一出抽搐动态| 久久久久网色| 久久中文字幕人妻熟女| 啦啦啦在线免费观看视频4| 免费少妇av软件| 国产精品偷伦视频观看了| 亚洲国产欧美网| 欧美午夜高清在线| 成人国语在线视频| 丝袜在线中文字幕| 91av网站免费观看| 欧美国产精品一级二级三级| 亚洲精品国产区一区二| 国产亚洲精品久久久久5区| 国产99久久九九免费精品| 国产精品香港三级国产av潘金莲| 亚洲一卡2卡3卡4卡5卡精品中文| 下体分泌物呈黄色| 国产男女超爽视频在线观看| 久久热在线av| 国产xxxxx性猛交| 亚洲人成电影观看| 人妻久久中文字幕网| 亚洲国产成人一精品久久久| 精品免费久久久久久久清纯 | 午夜久久久在线观看| 少妇粗大呻吟视频| 亚洲av欧美aⅴ国产| 丝袜美足系列| 亚洲,欧美精品.| 亚洲精品乱久久久久久| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 怎么达到女性高潮| 久久亚洲精品不卡| 十分钟在线观看高清视频www| 高清欧美精品videossex| 天天影视国产精品| 日韩人妻精品一区2区三区| 国产高清国产精品国产三级| 午夜视频精品福利| 天天添夜夜摸| 中文字幕最新亚洲高清| 不卡一级毛片| 亚洲国产欧美网| 纵有疾风起免费观看全集完整版| 婷婷丁香在线五月| 999精品在线视频| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 一区福利在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽 | 午夜福利视频在线观看免费| 国产精品成人在线| 一本综合久久免费| 99精品欧美一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| 中文亚洲av片在线观看爽 | 十八禁网站网址无遮挡| av又黄又爽大尺度在线免费看| 蜜桃国产av成人99| 最近最新中文字幕大全免费视频| 亚洲色图综合在线观看| 成年动漫av网址| 视频区图区小说| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲 | 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 免费观看av网站的网址| 日日夜夜操网爽| 91麻豆精品激情在线观看国产 | 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 91精品国产国语对白视频| 国产精品免费一区二区三区在线 | 国内毛片毛片毛片毛片毛片| 国精品久久久久久国模美| 免费在线观看完整版高清| 午夜久久久在线观看| 丁香六月天网| 亚洲伊人久久精品综合| 亚洲精品国产区一区二| 亚洲国产中文字幕在线视频| 99国产精品99久久久久| 欧美老熟妇乱子伦牲交| 久久精品国产99精品国产亚洲性色 | 亚洲av美国av| svipshipincom国产片| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产av国片精品| 999久久久精品免费观看国产| 色精品久久人妻99蜜桃| 亚洲专区字幕在线| 黄色视频不卡| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 久久久国产一区二区| 亚洲欧美色中文字幕在线| 国产一区二区在线观看av| 久久久精品区二区三区| 麻豆av在线久日| 777久久人妻少妇嫩草av网站| 日本a在线网址| 午夜91福利影院| 老司机影院毛片| 99九九在线精品视频| 一个人免费在线观看的高清视频| 国产免费视频播放在线视频| 精品少妇黑人巨大在线播放| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线 | 欧美在线一区亚洲| 一本久久精品| 亚洲中文av在线| 亚洲精品国产色婷婷电影| 亚洲美女黄片视频| 美女主播在线视频| 黄色成人免费大全| 99国产精品一区二区蜜桃av | 欧美国产精品一级二级三级| 乱人伦中国视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩黄片免| 国产成人影院久久av| 色老头精品视频在线观看| 男女之事视频高清在线观看| 国产在视频线精品| 叶爱在线成人免费视频播放| 丰满少妇做爰视频| 老司机影院毛片| 精品卡一卡二卡四卡免费| 午夜福利在线免费观看网站| 国产1区2区3区精品| 人人妻人人澡人人爽人人夜夜| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 色综合婷婷激情| 色94色欧美一区二区| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花| 99久久99久久久精品蜜桃| 老司机影院毛片| 亚洲av片天天在线观看| 免费高清在线观看日韩| 美女福利国产在线| 美女高潮到喷水免费观看| 真人做人爱边吃奶动态| 大香蕉久久网| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 国产精品九九99| 美女福利国产在线| 国产在线免费精品| 一级毛片精品| 国产欧美亚洲国产| 中文字幕av电影在线播放| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 精品高清国产在线一区| 一个人免费在线观看的高清视频| 亚洲国产欧美网| 俄罗斯特黄特色一大片| 久久精品亚洲精品国产色婷小说| 日韩欧美免费精品| 中文字幕高清在线视频| 美女高潮到喷水免费观看| 国精品久久久久久国模美| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 美女高潮到喷水免费观看| 一区二区三区乱码不卡18| 男女免费视频国产| 少妇 在线观看| 欧美精品一区二区免费开放| 亚洲国产欧美日韩在线播放| 国产一区二区在线观看av| 欧美精品高潮呻吟av久久| 欧美中文综合在线视频| 国产伦理片在线播放av一区| 天堂8中文在线网| 日本精品一区二区三区蜜桃| 日本av手机在线免费观看| 国产在线视频一区二区| 午夜福利视频精品| 99国产综合亚洲精品| av电影中文网址|