• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni@NiO核-殼納米球的合成及其電化學(xué)生物傳感應(yīng)用研究

    2012-11-09 08:06:00季鵬宇姜立萍朱俊杰
    關(guān)鍵詞:生物

    彭 娟 李 曄 季鵬宇 姜立萍 朱俊杰

    (南京大學(xué)生命分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)化學(xué)化工學(xué)院,南京 210093)

    Ni@NiO核-殼納米球的合成及其電化學(xué)生物傳感應(yīng)用研究

    彭 娟 李 曄 季鵬宇 姜立萍*朱俊杰

    (南京大學(xué)生命分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)化學(xué)化工學(xué)院,南京 210093)

    利用無(wú)模板水熱法合成了鎳納米球,并通過(guò)部分氧化制備了Ni@NiO核殼結(jié)構(gòu)的納米復(fù)合物。合成的鎳球和Ni@NiO復(fù)合物的尺寸可以通過(guò)簡(jiǎn)單調(diào)節(jié)反應(yīng)條件來(lái)控制。運(yùn)用XRD、EDS、TEM和SEM等測(cè)試方法對(duì)合成樣品的形貌和組成進(jìn)行了表征。Ni和Ni@NiO復(fù)合材料均有較好的磁性,其磁性用磁滯回線進(jìn)行了表征。此外,Ni@NiO納米復(fù)合物可以和血紅蛋白結(jié)合構(gòu)建過(guò)氧化氫生物傳感器,該生物傳感器對(duì)過(guò)氧化氫表現(xiàn)出很好的生物電催化活性,且具有較低的檢測(cè)限和較寬的線性響應(yīng)范圍。該復(fù)合材料對(duì)于血紅蛋白催化還原過(guò)氧化氫具有米氏響應(yīng)和較小的米氏常數(shù),表明Ni@NiO能較好地保持血紅蛋白原有的活性。

    Ni@NiO;核殼結(jié)構(gòu);納米球;血紅蛋白;生物傳感器

    Nanometer-sized magnetic particles have attracted considerable attention because oftheir unusual properties and potentialapplicationsin magnetic resonance imaging,biomedicine,data storage,catalysis, bioseparation and so on[1-3].Nickel(Ni)is one of the magnetic metals that exhibits interesting properties and applications,such as magnetic storage media[4-5],fuel cell electrodes[6-8]and catalysis[9-10].However,Ni nano-materials which are easy to be oxidized to nickel oxide (NiO),rarely have been utilized in biochemistry independently due to the lack of biochemical activity.Meanwhile,NiO nanomaterials have received considerable attention in recent years due to their wide applications in catalyst,battery cathode,gas sensors,electrochromic films[11-13].Particularly,NiO nanostructures have potential applications in biosensor since they have high chemical stability,excellent electrocatalytic property, and high electron transfer capability[14].

    Because of the wide application,the synthesis of Ni and NiO nanomaterials have draw more and more attention[15-18].Ni nanomaterials have also been synthesized through electrochemical reduction, high temperature organometallic decomposition,chemical reduction and microwave assisted method[19-22].Hydrothermal method has been proved to be a fast,simple and effective route for synthesis of nanostructured materials which depends on the solubility of minerals in hot water under high pressure.Furthermore,the shape and size of these nanomaterials could be controlled by simply adjusting the parameters such as temperature, the reaction time,the ratio of the reactants.Herein,the hydrothermal method was used to synthesize ferromagnetic Ni nanospheres with different sizes.

    The Ni and NiO nanocomposies can combine the advantages of both ferromagnetism and good electrocatalytic activity together,which can open up the multiple functional applications of them.Currently,the synthesis of Ni@NiO core-shell nanomaterials were limited probably because of the difficulty in reducing the Ni2+into metallic nickel through a liquid chemical process using common reducing agents.Only a few literatures have reported the synthesis of Ni@NiO coreshell nanomaterial[23-24].For instance,Li et al.prepared Ni/NiO core-shell nanoparticles by complex precipitation of Ni precursors in glycerol and thermal decomposition of the dried precipitate[23].Lee et al.reported the synthesis of Ni@NiO core-shell nanoparticles and application in protein separation and purification[24].However,these works always involved complicated steps and pretreatment.Therefore,a facile way to make Ni@NiO nanocomposites is still a great challenge and highly desirable.

    In this work,we reported a facile method to synthesize size-controlled Ni nanospheres and Ni@NiO core-shell nanocomposites through hydrothermal method.The Ni@NiO nanocomposites exhibited some improved properties such as excellent electrochemical bioactivity,ferromagnetic property,and good dispersity in water,which made them attractive in applications for bioseparation and biosensor.Herein,Hb was assembled on the prepared nanocomposites and was further employed to fabricate a novel biosensor for the determination of H2O2.

    1 Experimental

    1.1 Materials and apparatus

    Nickel chloride,NaH2PO2·H2O and 30%H2O2solution were purchased from Sinopharm Chemical Reagent Co.,Ltd.All chemicals were of analytical grade and used without further purification.Phosphate buffer solution(PBS,0.1 mol·L-1pH 7.0)was prepared by mixing stock standard solutions of Na2HPO4and NaH2PO4.

    XRD patterns were obtained with a Philips X′pert Pro X-ray diffractometer(Cu K radiation,λ=0.154 18 nm).EDS analysis was carried out by using a SEM equipped with an energy-dispersive X-ray detector (Shimadzu,SSX-550).SEM and TEM images were taken on a LEO-1530VP field-emission scanning electron microscope and a FEI Tecnai-12 microscope with an accelerating voltage of 120 kV,respectively.Magnetic measurements were performed on a Quantum Design MPMS SQUID magnetometer at room temperature.

    1.2 Synthesis of Ni nanospheres and Ni@NiO core-shell nanospheres

    0.1 mmol nickel chloride and 0.6 mmol KOH were dissolved separately in 5 mL of water and mixed together,then 5 mL NaH2PO2·H2O (~0.6 mmol)was added under the nitrogen atmosphere.The mixture was transferred into Teflon-lined autoclave of 15 mL capacity.The autoclave was sealed and maintained at 140℃for 40 min.After cooled to room temperature, the black precipitates were rinsed with deionized water and ethanolrespectively by magnetic separation. Finally,the Ni nanosphere was produced after dried at 60℃for 4 h.Ni/NiO nanocomposites could be obtained by heating the as-prepared Ni nanospheres at 400℃for 1 h in the air.

    1.3 Immobilization of Hb and construction of biosensor

    Electrochemical measurements were performed on a CHI 630 electrochemical workstation(Chenhua, Shanghai,China)with a conventional three-electrode system.A platinum wire was used as the auxiliary electrode,and a saturated calomel electrode(SCE)was the reference electrode.Electrochemical experiments were carried out at room temperature.

    For the assembly of Hb,2 mL Hb(5 mg·mL-1)was mixed with 2 mL Ni@NiO nanocomposites(≈1.4wt%). Then the mixture was equilibrated for 24 h at room temperature,then rinsed and separated with an external magnet.The obtained Hb-Ni@NiO nanocomposites were used for further electrochemical test.Glass carbon electrode (GCE)was polished with 1.0,0.3,and 0.05 μm alumina powder successively,followed by successive sonication in acetone and water and dried at room temperature.The Hb-Ni@NiO nanocomposites were suspended in 1 mL water,and 10 μL of the suspension was dropped onto the surface of GCE and then dried in desiccator.Finally,the Hb-Ni@NiO modified electrode was stored at 4℃for the following test.

    2 Results and discussion

    2.1 Characterizations of Ni nanospheres and Ni@NiO nanocomposites

    Fig.1 (A)XRD pattern of the Ni nanospheres(a),Ni@NiO nanocomposites(b)(B)EDS data for the Ni@NiO nanocomposits; SEM images of Ni nanospheres(C)and Ni@NiO nanocomposites(D)(insert:TEM image of Ni@NiO nanocomposites)

    XRD was used to characterize the Ni nanospheres and Ni@NiO nanocomposites.First,Ni nanospheres wereprepared by hydrothermalmethod.Allthe reflection peaks of prepared Ni are assigned to Ni(PDF No.04-0850) (curve b in Fig.1A).After the partly oxidation process of Ni nanospheres,Ni@NiO nanocomposites were obtained.The newly-appeared diffraction peaks located at 37.28°,43.26°and 62.88°, corresponded to the (111),(200)and (220)lattice planes of NiO,respectively.This result agreed well with face-centered cubic NiO(PDF No.78-0643)(curve a in Fig.1A).The as-prepared Ni@NiO nanocomposites also have been characterized by EDS,which indicated that the products were of high purity(Fig.1B).

    The hysteresis loops at room temperature was used to study the magnetic properties of the as-prepared Ni@NiO nanocomposites.The result indicated that all the particles had the symmetric hysteresis loops behavior of ferromagnetic materials(Fig.2A).Most of the hydrothermally synthesized Niand Ni@NiO nanospheres aggregated and precipitated within a few minutes,however,they can be redispersed in water by vigorous shaking or sonication to form a clear darkbrown-colored dispersion.Moreover,they can be easily separated by using an external magnet,as shown in Fig.2B.

    Fig.2 (A)A hysteresis loop showing ferromagnetic properties of Ni and Ni@NiO nanospheres; (B)Pictures showing magnetic response of prepared Ni@NiO nanoparticles

    2.2 Controlled synthesis of Ni@NiO nanocomposites

    Since Ni@NiO nanocomposites were obtained by the oxidization of Ni nanospheres,the size of the nanocomposites depended on the size of Ni nanospheres.Among the widely used reducing agents for electroless Ni plating,NaH2PO2·H2O was found to be unique for the formation of Ni nanospheres in the present synthesis system.Ni nanospheres were obtained by deoxidized NiCl2using NaH2PO2as reducing agents in the present of KOH.The redox reaction during the hydrothermal process could be formulated as[25]

    Table 1 Reaction parameters to prepare Ni nanospheres with different sizes

    To investigate the influence of the reaction parameters and obtain the resulted nanostructures with different sizes,various reactions were carried out with differentconcentrations ofreagentand different reaction temperatures.Table 1 shows the different reaction conditions to synthesize different samples which were depicted in Fig.3.The concentration of the reductive agent had an obvious effect on the size of obtained Ni nanospheres.In general,increasing the concentration of the reducing agent improves the reduction rate of metal ions,leading to smaller metal nanoparticles[26],as shown in Fig.3.In addition, heightening the reaction temperature,larger sized, better dispersed and more uniform products could be obtained according to the SEM images from sample 4 to 6 in Fig.3,which was probably attributed to that the high temperature can accelerate the reaction velocity to form larger particles.

    Fig.3 SEM images of different samples under reaction condition(see Table 1)

    Fig.4 SEM images of the Ni nanospheres synthesized using hydrothermal method with the reducing agent concentration of 0.04 g·mL-1for different reaction time:(A)40 min,(B)1 h,(C)2 h,(d)10 h

    In order to investigate the growth process of the Ni nanospheres,the evolution of the morphology in the hydrothermal synthesis was studied.The SEM images of these samples are shown in Fig.4.When the reaction time was 40~60 min,Ni nanospheres with uniform, perfect spherical shape and small sizes were obtained.Therefore,in the present system,the product with perfect morphology could be achieved under the reaction time of 40~60 min.When the reaction time was prolonged,the product grew larger and became abnormity(Fig.4C and 4D),which might be attributed to the Ostwald ripening process[27].The size of Ni nanospheres can be controlled by adjusting the reaction conditions such as the concentration of reducing agent and reactive temperature to obtain Ni nanospheres with different sizes.Besides,Ni@NiO core-shell nanocomposites were obtained by partly oxidation of Ni nanospheres.

    The thickness of the nanocomposite shell could be adjusted by controlling the oxidizing time and temperature of Ni nanospheres.In this way,the controlled synthesis of ferromagnetic Ni nanospheres and Ni@NiO core-shell nanocomposites can be realized successfully.

    2.3 Electrochemical application of Ni@NiO nanocomposites

    2.3.1 Direct electrochemistry of Hb-Ni@NiO

    The electrochemical behaviors of the Hb-Ni@NiO modified electrode in the absence and presence of H2O2were studied by cyclic voltammetry.No redox response was observed on Ni@NiO modified GCE for H2O2in the potential range from 0.1 V to-0.8 V (curve a in Fig.5A).After the assembly of Hb on the Ni@NiO modified electrode,a pair of stable redox peaks appeared in curve b Fig.5A.The anodic and cathodic peaks were located at-0.307 V and-0.413 V (vs SCE)respectively.As shown in Fig.5A (curve c),the reduction peak current was greatly enhanced after the addition of H2O2,which further indicateed that Hb was successfully immobilized and still retained their electrochemical activity.

    The dependence of the peak currents on the scan rate was also investigated.As shown in Fig.5B(inset), the cathodic and anodic peak currents increased linearly with the scan rate from 50 to 300 mV·s-1, indicating that the Hb adsorbed on the surface underwentasurface-controlledelectrontransferprocess.According to Faradays law (Q=nFAΓ),where Q is the total amount of charge,n is the number of electron transferred,F is Faraday′s constant,and A is the electron area,the average Γ values of electroactive Hb was estimated to be 6.36×10-10mol·cm-2,which was much larger than the theoretical monolayer coverage of Hb (≈1.89×10-11mol·cm-2).This indicated that a multilayer of proteins participated in the electrontransfer process in the composites.The electron transfer rate constant (ks)between Hb and electrode was estimated to be (2.8±0.3)s-1according to Laviron′s method[28],indicating that the Ni@NiO nanocomposite was an excellent promoter for the electron transfer between Hb and the electrode.

    2.3.2 Determination of hydrogen peroxide

    Fig.5 (A)Cyclic voltammograms of Ni@NiO/GCE(a),Hb-Ni@NiO/GCE(b),Hb-Ni@NiO/GCE with 50 μmol·L-1H2O2(c) in 0.1 mol·L-1pH 7.0 PBS solution;(B)Cyclic voltammograms of Hb-Ni@NiO/GCE in PBS(0.1 mol·L-1,pH 7.0) at different scan rates(from inner to outer curve:50,100,150,200,250,300 mV·s-1),and (inset)plots of cathodic and anodic peak currents vs Scan rates

    Fig.6A shows the cyclic voltammograms for Hb-Ni@NiO modified GCE in PBS(pH 7.0)in the present of H2O2with different concentration.The reduction peak at approximately-0.30 V was greatly enhanced, while the anodic peak decreased,suggesting that an electrocatalytic reduction of H2O2occurred.Moreover, the reduction current increased dramatically with the increasing concentration of H2O2,and the anodic peak led tothegradualdisappearancesimultaneously.However,this phenomenon was not observed on Ni@NiO modified GCE,therefore,the catalytic reduction of H2O2was only due to the presence of Hb.The peak current increased with the concentration of H2O2(Fig.6B),and the linear regression equation was I (μA)=0.0121C(μmol·L-1)+0.045,with a correlation coefficient of 0.997 and a detection range of 1.3~710 μmol·L-1.From the slope of 0.0121 μA·μmol-1·L,the detection limit of the biosensor towards hydrogen peroxide was estimated to be 0.4 μmol·L-1at 3σ.

    When the concentration of H2O2was higher than 600 μmol·L-1,a platform emerged in the catalytic peak current,showing the characteristics of Michaelis-Menten kinetics.The apparentMichaelis-Menten constant (Kmapp),which gives an indication of the enzyme-substrate kinetics,can be obtained from the Lineweaver-Burk equation[29]:

    Where,Issis the steady-state current after the addition of substrate,C is the bulk concentration of substrate and Imaxis the maximum current measured undersaturated substrate solution.Kmappcan be obtained by the analysis of slope and intercept of the plot of the reciprocals of the steadystate current versusH2O2concentration.The Michaelis-Menten constant of the system(Kmapp)was found to be 1.07 mmol ·L-1,which was smaller than the previous reports[23], implying that the prepared Ni@NiO nanocomposites had good biocompatibility and could retain the original enzymatic activity of Hb.The reproducibility of the biosensor was estimated by determining same concentration of H2O2for five replicate measurements with relative standard deviations (RSD)in the range from-4.2%to 4.8%.The result indicated that the biosensor show satisfactory reproducibility.The stability of the prepared biosensor was investigated.The modified electrode was stored in phosphate buffer solution at pH 7.0 in the refrigerator at 4℃ for a week and no obvious change was found.The biosensor retained 90% of itsoriginalresponseafterone month.

    Fig.6 (A)Cyclic voltammpgrams of the Hb-Ni@NiO/GCE at scan rate of 0.1 V·s-1in 0.1 mol·L-1pH 7.0 PBS solution with(a)0,(b)187.0,(c)317.0,(d)497.0 μmol·L-1H2O2;(B)Plots of the electrocatalytic current(i)vs H2O2 concentration

    3 Conclusions

    Ni@NiO nanocomposites have been prepared by a simple template-free hydrothermal synthesis of Ni nanospheres and a subsequent oxidation process.The core-shell nanostructure showed good magnetic property,satisfactory biocompatibility and chemical stability.Hb was further assembled on the Ni@NiO composites to construct a novel H2O2biosensor with a wide linear range and a low detection limit. Additionally,Ni@NiO enhanced the direct electron transfer between Hb and GCE and retained the native activity of Hb.The proposed method provided a new and simple strategy towards the fabrication of Ni and Ni@NiO nanospheres.The prepared Ni@NiO core-shell nanostructure would probably provide a novel and promising platform forthe construction ofother biosensor in the future.

    [1]Mornet S,Vasseur S,Grasset F,et al.J.Mater.Chem.,2004, 14:2161-2175

    [2]Huh Y M,Jun Y W,Song H T,et al.J.Am.Chem.Soc.,2005, 127:12387-12391

    [3]Gu H W,Xu K M,Xu C J,et al.Chem.Commun.,2006:941-949

    [4]Zhang P,Zuo F,Urban F K,et al.J.Magn.Magn.Mater., 2001,225:337-345

    [5]Cordente N,Amiens C,Chaudret B,et al.J.Appl.Phys., 2003,94:6358-6365

    [6]Hu W K,Noreus D.Chem.Mater.,2003,15:974-978

    [7]Saitou M,Hashiguchi R.J.Phys.Chem.B,2003,107:9404-9408

    [8]Waraksa C C,Chen G Y,Macdonald D D,et al.J.Electrochem. Soc.,2003,150:E429-E437

    [9]Sato S,Kawabata A,Nihei M,et al.Chem.Phys.Lett.,2003, 382:361-366

    [10]Tu Y,Huang Z P,Wang D Z,et al.Appl.Phys.Lett.,2002, 80:4018-4020

    [11]Carnes C L,Klabunde K J.J.Mol.Catal.A:Chem.,2003, 194:227-236

    [12]Biju V,Khadar M A.Mater.Res.Bull.,2001,36:21-33

    [13]Ichiyanagi Y,Wakabayashi N,Yamazaki J,et al.Physica BCondensed Matter.,2003,329:862-863

    [14]Li C,Liu Y,Li L,et al.Talanta,2008,77:455-459

    [15]Beach E R,Shqau K,Brown S E,et al.Mater.Chem.Phys., 2009,115:371-377

    [16]Davar F,Fereshteh Z,Salavati-Niasari M.J.Alloys Compd., 2009,476:797-801

    [17]ZHOU Li-Qun(周立群),YANG Nian-Hua(楊念華),ZHOU Li-Rong(周麗榮),et al.Chin.J.Appl.Chem.(Yingyong Huaxue Xuebao),2006,23(6):682-684

    [18]ZHAO Sheng-Li(趙勝利),WEN Jiu-Ba(文九巴),WANG Hong-Kang(王紅康),et al.Chin.J.Mater.Res.(Cailiao Yanjiu Xuebao),2008,22(4):415-419

    [19]Hou Y,Kondoh H,Ohta T,et al.Appl.Surf.Sci.,2005,241: 218-222

    [20]Donegan K P,Godsell J F,Otway D J,et al.J.Nanopart.Res., 2012,14:670-

    [21]Cheng G J,Puntes V F,Guo T.J.Colloid Interface Sci., 2006,293:430-436

    [22]Li D S,Komarneni S.J.Am.Ceram.Soc.,2006,89:1510-1517

    [23]Li Y,Cai M,Rogers J,et al.Mater.Lett.,2006,60:750-753

    [24]Lee I S,Lee N,Park J,et al.J.Am.Chem.Soc.,2006,128: 10658-10659

    [25]Liu Z P,Li S,Yang Y,et al.Adv.Mater.,2003,15:1946-1499

    [26]Teranishi T,Miyake M.Chem.Mater.,1998,10:594-600

    [27]Madras G,McCoy B J.J.Chem.Phys.,2002,117:8042-8049

    [28]Laviron E.J.Electroanal.Chem.,1979,101:19-28

    [29]Kamin R A,Wilson G S.Anal.Chem.,1980,52:1198-1205

    Synthesis of Ni@NiO Core-Shell Nanospheres and Application for Fabrication of Electrochemical Biosensor

    PENG Juan LI Ye JI Peng-Yu JIANG Li-Ping*ZHU Jun-Jie
    (State Key Laboratory of Analytical Chemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210093,China)

    Ni nanospheres have been successfully synthesized through a template-free hydrothermal method. Ni@NiO core-shell nanocomposites were obtained by a subsequent oxidation of Ni nanospheres.The size of the final product could be controlled via simply adjusting the experimental parameters.The morphology and structure of the Ni@NiO nanocomposites were confirmed by transmission electron microscopy (TEM),field emission scanning electron microscopy(FESEM),energy-dispersive X-ray spectrometry(EDS)and X-ray diffraction(XRD). The hysteresis loops were used to study the magnetic properties of Ni and Ni@NiO.Additionally,hemoglobin (Hb)was assembled on the Ni@NiO composites to construct a novel biosensor for the determination of H2O2.The prepared biosensor showed an excellent electrocatalytic activity towards H2O2with a wide linear range and a low detection limit.The lower Michaelis-Menten constant indicated that the Hb immobilized on the Ni@NiO nanocomposites could retain its native activity.

    Ni@NiO;core-shell;nanospheres;hemoglobin;biosensor

    We greatly appreciate the support of National Natural Science Foundation of China (No.21075061) and the Natural Science Foundation of Jiangsu Province of China (BK2010363).We also appreciate the support of Jinchuan Group Co.,LTD.

    O613.71

    A

    1001-4861(2012)06-1251-08

    2012-04-23。收修改稿日期:2012-05-07。

    國(guó)家自然科學(xué)基金(No.21075061)和江蘇省自然科學(xué)基金(No.BK2010363)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:jianglp@nju.edu.cn,Tel:025-83597204

    猜你喜歡
    生物
    生物多樣性
    生物多樣性
    上上生物
    發(fā)現(xiàn)不明生物
    史上“最黑暗”的生物
    軍事文摘(2020年20期)2020-11-28 11:42:50
    第12話 完美生物
    航空世界(2020年10期)2020-01-19 14:36:20
    最初的生物
    自然生物被直銷
    清晨生物初歷直銷
    生物的多樣性
    免费在线观看视频国产中文字幕亚洲| 欧美 日韩 精品 国产| 在线观看人妻少妇| 欧美日韩中文字幕国产精品一区二区三区 | av天堂在线播放| 1024香蕉在线观看| 天天操日日干夜夜撸| 十分钟在线观看高清视频www| 日日夜夜操网爽| 久久久精品区二区三区| 国产伦理片在线播放av一区| 亚洲五月婷婷丁香| 久久久久精品国产欧美久久久| 色婷婷久久久亚洲欧美| 亚洲精品在线观看二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人免费av在线播放| 热99久久久久精品小说推荐| 黄频高清免费视频| 欧美日韩一级在线毛片| 精品一区二区三区av网在线观看 | 欧美激情高清一区二区三区| 狂野欧美激情性xxxx| 99九九在线精品视频| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 一边摸一边抽搐一进一小说 | 五月天丁香电影| 波多野结衣av一区二区av| 国产不卡av网站在线观看| 国产一卡二卡三卡精品| 国产成人精品久久二区二区91| 欧美在线一区亚洲| 色综合欧美亚洲国产小说| 热re99久久国产66热| 久久久久久免费高清国产稀缺| 国产淫语在线视频| 电影成人av| 高清av免费在线| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 国产精品九九99| 亚洲人成电影免费在线| 黄片播放在线免费| 久久久久久久大尺度免费视频| 他把我摸到了高潮在线观看 | 天天躁夜夜躁狠狠躁躁| 一个人免费在线观看的高清视频| 国产区一区二久久| 一边摸一边抽搐一进一出视频| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯 | 成人永久免费在线观看视频 | 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 人妻一区二区av| 亚洲黑人精品在线| 一本色道久久久久久精品综合| 午夜福利视频精品| 久久久国产欧美日韩av| 久久久国产精品麻豆| 三级毛片av免费| 精品高清国产在线一区| 亚洲成人免费av在线播放| 国产成人精品在线电影| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲| 国产高清激情床上av| 51午夜福利影视在线观看| 99热网站在线观看| 久久精品亚洲精品国产色婷小说| 欧美精品高潮呻吟av久久| 狠狠婷婷综合久久久久久88av| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 欧美精品高潮呻吟av久久| 亚洲性夜色夜夜综合| 日本vs欧美在线观看视频| 美女福利国产在线| 亚洲精品在线观看二区| cao死你这个sao货| 欧美久久黑人一区二区| 国产一区二区三区视频了| 亚洲精品美女久久av网站| 免费人妻精品一区二区三区视频| 免费一级毛片在线播放高清视频 | 性少妇av在线| 欧美人与性动交α欧美软件| 成年动漫av网址| 国产精品 国内视频| av一本久久久久| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 欧美精品一区二区大全| 久久热在线av| 日韩制服丝袜自拍偷拍| 99在线人妻在线中文字幕 | 中文字幕最新亚洲高清| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产 | 天堂中文最新版在线下载| 夜夜夜夜夜久久久久| 亚洲av片天天在线观看| 国产男靠女视频免费网站| 国产午夜精品久久久久久| 国产成人av教育| 天天躁日日躁夜夜躁夜夜| 国产精品影院久久| 电影成人av| 亚洲情色 制服丝袜| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 极品人妻少妇av视频| 亚洲中文日韩欧美视频| 日韩视频在线欧美| 两性夫妻黄色片| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| 美女国产高潮福利片在线看| 国产91精品成人一区二区三区 | 国产精品久久久av美女十八| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 久久精品国产a三级三级三级| 亚洲av电影在线进入| 国产成人免费观看mmmm| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 在线天堂中文资源库| aaaaa片日本免费| 亚洲va日本ⅴa欧美va伊人久久| 国产在线观看jvid| 亚洲五月婷婷丁香| 精品高清国产在线一区| 日本欧美视频一区| 后天国语完整版免费观看| 看免费av毛片| 久久国产精品男人的天堂亚洲| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美精品综合一区二区三区| 性高湖久久久久久久久免费观看| 国产精品免费大片| 国产高清视频在线播放一区| 纵有疾风起免费观看全集完整版| 一级毛片女人18水好多| 国产男靠女视频免费网站| 欧美精品一区二区大全| 国产成人免费无遮挡视频| 999久久久国产精品视频| 亚洲九九香蕉| 搡老乐熟女国产| 亚洲成人免费电影在线观看| 国产av精品麻豆| 国产精品久久电影中文字幕 | 嫩草影视91久久| 亚洲性夜色夜夜综合| 免费久久久久久久精品成人欧美视频| 久久久久久久大尺度免费视频| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 亚洲成人手机| 国产精品久久久人人做人人爽| 欧美乱妇无乱码| 亚洲国产欧美网| 久久狼人影院| 18禁黄网站禁片午夜丰满| 色播在线永久视频| 1024香蕉在线观看| 国产麻豆69| 高潮久久久久久久久久久不卡| 久久人人97超碰香蕉20202| 极品教师在线免费播放| 国产成人啪精品午夜网站| 国产成人欧美| 亚洲人成77777在线视频| 欧美中文综合在线视频| 日韩制服丝袜自拍偷拍| 狠狠狠狠99中文字幕| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| 18禁美女被吸乳视频| 国产精品 欧美亚洲| 建设人人有责人人尽责人人享有的| 国产免费现黄频在线看| 欧美大码av| 亚洲精品在线美女| 高清黄色对白视频在线免费看| 人人澡人人妻人| 亚洲全国av大片| 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| av天堂久久9| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 人人澡人人妻人| 少妇精品久久久久久久| 超色免费av| 99久久99久久久精品蜜桃| 久久毛片免费看一区二区三区| 三级毛片av免费| 欧美日韩精品网址| 大陆偷拍与自拍| 高清在线国产一区| 国产成人系列免费观看| 99热国产这里只有精品6| 岛国在线观看网站| 亚洲av电影在线进入| 久久久国产一区二区| 午夜两性在线视频| 国产有黄有色有爽视频| 少妇的丰满在线观看| 欧美性长视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品乱久久久久久| 美女视频免费永久观看网站| 在线看a的网站| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 天天影视国产精品| 满18在线观看网站| 色视频在线一区二区三区| 精品亚洲乱码少妇综合久久| 精品福利永久在线观看| 亚洲欧美一区二区三区久久| 日本黄色日本黄色录像| 一级片'在线观看视频| 飞空精品影院首页| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 搡老岳熟女国产| av福利片在线| 一级黄色大片毛片| 日韩熟女老妇一区二区性免费视频| www.精华液| 久久精品国产a三级三级三级| 一级片免费观看大全| 精品国产国语对白av| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月 | 夜夜骑夜夜射夜夜干| 日本精品一区二区三区蜜桃| 成人三级做爰电影| 国产深夜福利视频在线观看| 18在线观看网站| 99国产精品99久久久久| 日韩欧美一区视频在线观看| 两人在一起打扑克的视频| 一级a爱视频在线免费观看| 精品久久久久久久毛片微露脸| 夫妻午夜视频| 极品少妇高潮喷水抽搐| 一区二区av电影网| 午夜精品国产一区二区电影| 一边摸一边抽搐一进一小说 | 欧美在线黄色| 首页视频小说图片口味搜索| 97在线人人人人妻| 日本wwww免费看| 九色亚洲精品在线播放| av有码第一页| 国精品久久久久久国模美| av视频免费观看在线观看| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址 | 夫妻午夜视频| 久久国产精品男人的天堂亚洲| 国产麻豆69| 亚洲精品国产区一区二| 日韩人妻精品一区2区三区| av电影中文网址| 国产精品九九99| 国产精品 欧美亚洲| tube8黄色片| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 51午夜福利影视在线观看| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 丁香欧美五月| 少妇的丰满在线观看| 99久久人妻综合| 成人黄色视频免费在线看| 女同久久另类99精品国产91| 欧美日韩亚洲综合一区二区三区_| 日日摸夜夜添夜夜添小说| 日韩欧美一区视频在线观看| 亚洲第一欧美日韩一区二区三区 | 国产一区二区激情短视频| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 欧美黄色淫秽网站| 国产野战对白在线观看| av片东京热男人的天堂| 亚洲专区中文字幕在线| 69精品国产乱码久久久| 在线观看www视频免费| 亚洲av日韩在线播放| 99九九在线精品视频| 国产一区二区激情短视频| 黄色a级毛片大全视频| 一进一出好大好爽视频| 黄色丝袜av网址大全| 国产精品久久久av美女十八| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 日韩一区二区三区影片| 欧美日韩成人在线一区二区| 亚洲熟女毛片儿| 男女边摸边吃奶| 久久精品亚洲精品国产色婷小说| 少妇裸体淫交视频免费看高清 | 国产成人av教育| 亚洲熟女毛片儿| 亚洲一区二区三区欧美精品| 一边摸一边做爽爽视频免费| 超色免费av| 黑人巨大精品欧美一区二区mp4| 欧美在线一区亚洲| 国产精品一区二区精品视频观看| 夜夜爽天天搞| av免费在线观看网站| 天天操日日干夜夜撸| 欧美国产精品va在线观看不卡| 大陆偷拍与自拍| 大片免费播放器 马上看| av有码第一页| 大片免费播放器 马上看| 美女高潮到喷水免费观看| 精品国产乱子伦一区二区三区| 1024香蕉在线观看| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 黑人猛操日本美女一级片| h视频一区二区三区| 最新在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜福利在线观看视频 | 日韩大码丰满熟妇| 动漫黄色视频在线观看| 嫁个100分男人电影在线观看| 色婷婷久久久亚洲欧美| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区| 露出奶头的视频| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 不卡av一区二区三区| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看 | 12—13女人毛片做爰片一| 麻豆av在线久日| www日本在线高清视频| 男女免费视频国产| 9热在线视频观看99| 天天操日日干夜夜撸| 欧美日韩av久久| 久久精品国产亚洲av高清一级| 在线十欧美十亚洲十日本专区| 国产免费福利视频在线观看| 在线十欧美十亚洲十日本专区| 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 日本a在线网址| 欧美国产精品va在线观看不卡| 国产精品av久久久久免费| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区| 国产精品国产高清国产av | 一级片'在线观看视频| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频| 他把我摸到了高潮在线观看 | 老司机影院毛片| 99九九在线精品视频| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 最近最新中文字幕大全免费视频| 97人妻天天添夜夜摸| 一级,二级,三级黄色视频| 女同久久另类99精品国产91| 一级,二级,三级黄色视频| 欧美成人午夜精品| 18在线观看网站| 九色亚洲精品在线播放| 电影成人av| 国产精品一区二区精品视频观看| 汤姆久久久久久久影院中文字幕| 美女视频免费永久观看网站| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 首页视频小说图片口味搜索| 国产精品香港三级国产av潘金莲| 男女高潮啪啪啪动态图| 亚洲成av片中文字幕在线观看| 看免费av毛片| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一出视频| 久久天躁狠狠躁夜夜2o2o| 国产日韩欧美视频二区| 最黄视频免费看| 老熟女久久久| 大码成人一级视频| 他把我摸到了高潮在线观看 | 啦啦啦 在线观看视频| 在线观看免费高清a一片| 亚洲中文av在线| 午夜91福利影院| 日本a在线网址| 亚洲欧美精品综合一区二区三区| 成年人黄色毛片网站| 男人舔女人的私密视频| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 午夜免费鲁丝| 老司机影院毛片| 免费日韩欧美在线观看| 久久免费观看电影| 每晚都被弄得嗷嗷叫到高潮| 99久久精品国产亚洲精品| 啦啦啦免费观看视频1| 免费av中文字幕在线| 久久av网站| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 五月天丁香电影| 人成视频在线观看免费观看| 亚洲精品在线美女| 日本vs欧美在线观看视频| 国产xxxxx性猛交| 男女高潮啪啪啪动态图| 19禁男女啪啪无遮挡网站| 咕卡用的链子| 电影成人av| 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 99re在线观看精品视频| 日韩有码中文字幕| 国产精品久久久久久精品古装| 中文字幕人妻熟女乱码| 日本五十路高清| 可以免费在线观看a视频的电影网站| 国产淫语在线视频| 人人妻人人添人人爽欧美一区卜| 免费高清在线观看日韩| 亚洲色图av天堂| 如日韩欧美国产精品一区二区三区| 丝瓜视频免费看黄片| 精品午夜福利视频在线观看一区 | 老司机午夜福利在线观看视频 | 久久久国产一区二区| 黄片小视频在线播放| 亚洲色图综合在线观看| 精品国产乱码久久久久久男人| 精品福利观看| 久9热在线精品视频| 丁香六月天网| 搡老乐熟女国产| 美女高潮到喷水免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | www.999成人在线观看| 亚洲av片天天在线观看| 老鸭窝网址在线观看| 亚洲精品国产区一区二| 成人国产av品久久久| 可以免费在线观看a视频的电影网站| av视频免费观看在线观看| 久久青草综合色| 久久人妻福利社区极品人妻图片| 在线观看免费视频日本深夜| 视频区图区小说| 精品国产一区二区三区四区第35| 50天的宝宝边吃奶边哭怎么回事| 叶爱在线成人免费视频播放| 女同久久另类99精品国产91| 日本wwww免费看| avwww免费| 国产在线精品亚洲第一网站| 免费高清在线观看日韩| 在线观看66精品国产| 99精品久久久久人妻精品| 国产成人系列免费观看| 青青草视频在线视频观看| 精品国产一区二区三区久久久樱花| 黄色视频在线播放观看不卡| 久久久国产成人免费| 国产男靠女视频免费网站| 男女高潮啪啪啪动态图| 色94色欧美一区二区| 在线 av 中文字幕| 午夜精品久久久久久毛片777| 免费黄频网站在线观看国产| 久久人妻av系列| 亚洲性夜色夜夜综合| 又紧又爽又黄一区二区| 极品人妻少妇av视频| 久久精品国产亚洲av香蕉五月 | 女人被躁到高潮嗷嗷叫费观| 色综合欧美亚洲国产小说| 久久天堂一区二区三区四区| 99九九在线精品视频| 中国美女看黄片| 欧美+亚洲+日韩+国产| 法律面前人人平等表现在哪些方面| 黄色视频不卡| 下体分泌物呈黄色| 国产极品粉嫩免费观看在线| 男女无遮挡免费网站观看| 国产99久久九九免费精品| 日本a在线网址| 999精品在线视频| 久久久久国产一级毛片高清牌| 中文字幕人妻丝袜一区二区| 亚洲自偷自拍图片 自拍| 18在线观看网站| 新久久久久国产一级毛片| 国产高清国产精品国产三级| 天天添夜夜摸| 国产亚洲av高清不卡| 亚洲成a人片在线一区二区| 欧美老熟妇乱子伦牲交| 无限看片的www在线观看| 中文欧美无线码| 国产日韩欧美亚洲二区| 国产日韩一区二区三区精品不卡| 极品教师在线免费播放| 丰满饥渴人妻一区二区三| 亚洲成国产人片在线观看| 国产精品二区激情视频| www日本在线高清视频| 美女主播在线视频| 久久亚洲精品不卡| 亚洲国产欧美网| 又大又爽又粗| 91成人精品电影| 国产精品一区二区在线不卡| 国产精品av久久久久免费| 在线观看www视频免费| 成年女人毛片免费观看观看9 | 国产亚洲精品久久久久5区| 国产一区二区三区视频了| 色综合欧美亚洲国产小说| 亚洲精品粉嫩美女一区| 水蜜桃什么品种好| 老司机午夜十八禁免费视频| 免费在线观看完整版高清| 国产精品久久久久成人av| 免费观看a级毛片全部| 亚洲国产看品久久| 中文字幕高清在线视频| 亚洲精品自拍成人| 涩涩av久久男人的天堂| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全免费视频| 三上悠亚av全集在线观看| 亚洲精品国产一区二区精华液| 亚洲av日韩精品久久久久久密| 侵犯人妻中文字幕一二三四区| 老司机午夜十八禁免费视频| 国产精品免费一区二区三区在线 | 一区二区三区激情视频| 婷婷丁香在线五月| 美女高潮到喷水免费观看| 侵犯人妻中文字幕一二三四区| 十分钟在线观看高清视频www| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久精品电影小说| 黄色片一级片一级黄色片| 国产91精品成人一区二区三区 | 中文欧美无线码| 国产又色又爽无遮挡免费看| 精品少妇内射三级| 十八禁人妻一区二区| 国产日韩欧美在线精品| 少妇猛男粗大的猛烈进出视频| 久久精品成人免费网站| 国产一区有黄有色的免费视频| 日日爽夜夜爽网站| 一边摸一边抽搐一进一小说 | 国产成人精品久久二区二区91| www.自偷自拍.com| 丰满迷人的少妇在线观看| 满18在线观看网站| 国产精品影院久久| 亚洲欧美日韩高清在线视频 | 国产主播在线观看一区二区| 国产成人精品久久二区二区免费| 大香蕉久久成人网| 午夜福利欧美成人| 亚洲av成人一区二区三| 两性夫妻黄色片| 欧美黑人精品巨大| 久久精品亚洲精品国产色婷小说| 99精品久久久久人妻精品| kizo精华| 欧美激情久久久久久爽电影 | 午夜福利一区二区在线看| 成人永久免费在线观看视频 | 男女无遮挡免费网站观看| netflix在线观看网站| 久9热在线精品视频| 久久久欧美国产精品|