• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    玻色—愛因斯坦凝聚現(xiàn)象中幾個問題的探討

    2012-09-20 02:29:16潘營利
    渭南師范學(xué)院學(xué)報 2012年10期
    關(guān)鍵詞:玻色相平衡等溫線

    潘營利

    (渭南師范學(xué)院物理與電氣工程學(xué)院,陜西渭南714000)

    玻色—愛因斯坦凝聚現(xiàn)象是玻色統(tǒng)計中的一種重要現(xiàn)象,許多文獻[1-4]都從不同角度對此做了闡述,但對其量子相變過程則討論得較少.本文以理想玻色—愛因斯坦氣體為例,從量子統(tǒng)計出發(fā),對量子相變過程中的幾個問題作以全面探討,旨在使人們對此有一個全面的認識.

    1 相變點方程及相變點曲線

    對于理想玻色—愛因斯坦氣體,由玻色統(tǒng)計有[5]:

    此即為用P,V表示的相變點方程,由該方程可得相變點曲線如圖1所示.

    圖1 玻色—愛因斯坦氣體相變點曲線

    應(yīng)該注意,玻色—愛因斯坦氣體出現(xiàn)凝聚相意味著不穩(wěn)定發(fā)生,這一點利用穩(wěn)定性判據(jù)即可看出[6].在T>TC時,凝聚相的粒子數(shù)為零,故

    在T,V不變的條件下把(8)式對化學(xué)勢μ求導(dǎo)數(shù),注意到μ=- kTα,則有

    這是臨界態(tài)的條件.由穩(wěn)定性判據(jù)知,若這個態(tài)是穩(wěn)定的,還要求=0.由于求導(dǎo)是在V不變下進行的,故求可換為求.同理(9) 式可寫為

    因此,這個臨界態(tài)是不穩(wěn)定的,要發(fā)生相的分離.

    2 等溫線方程及等溫線

    對于玻色—愛因斯坦氣體,當(dāng)T >TC時,μ≠0,α≠0;當(dāng)T <TC時,μ=0,α=0,所以,其等溫線方程在T>TC和T<TC時會表現(xiàn)出不同的形式.

    2.1 T > TC時

    此時壓強和粒子數(shù)滿足關(guān)系式(2)和(3),(3)/(2)得:

    (14)式即為T>TC時玻色—愛因斯坦氣體的物態(tài)方程,當(dāng)T一定時,即為T>TC時的等溫線方程,其α值可由(2)確定,且α僅依賴于溫度T.

    2.2 T < TC時

    此時,α→0,由于凝聚現(xiàn)象的發(fā)生,(2)式不再成立,其(3)式變?yōu)椋?/p>

    (15)式即為T<TC時玻色—愛因斯坦氣體的物態(tài)方程,可以看出,此壓強只依賴于溫度,與體積無關(guān),并隨T→0而趨于零.當(dāng)T一定時,即為T<TC時的等溫線方程.可以證明,當(dāng)T=TC時,(14)式和(15)式趨于一致.

    綜合以上討論可得玻色—愛因斯坦氣體的等溫線方程為:

    其等溫線如圖2所示.可見,等溫線在T=TC處是連續(xù)的,是一條連續(xù)的曲線.

    圖2 玻色—愛因斯坦氣體等溫線(實線為等溫線,虛線為相變點曲線)

    3 兩相平衡共存曲線方程和兩相平衡共存曲線

    兩相平衡共存時,有μ1(T,P)= μ2(T,P),從理論上講,由 μ1(T,P)= μ2(T,P) 可給出兩相平衡共存曲線.由于凝聚相的μ2(T,P)=0,故由兩相平衡共存條件得:

    同理,由 S=k(lnΞ + αN+ βU) 及(1)、(2)、(17)、(18)式可得摩爾熵為:

    (21)式即為兩相平衡共存曲線方程,由于兩相共存時T≤TC,所以,兩相平衡共存曲線有一個終點;同時可以看出,利用量子統(tǒng)計理論可以給出兩相平衡共存曲線所滿足的方程.由兩相平衡共存曲線方程可給出兩相平衡共存曲線如圖3所示.

    圖3 兩相平衡共存曲線

    4 克勞修斯—克拉伯龍方程

    克勞修斯—克拉伯龍方程描述的是兩相平衡共存曲線的斜率所滿足的方程.由(21)式可得:

    (22)式即為玻色—愛因斯坦氣體的克勞修斯—克拉伯龍方程.對于該方程,也可由兩相平衡共存條件來得到.由(17) 式得:dμ1=0,而 dμ1= - s1dT+ ν1dP,所以

    將(20)式代入(23)式即可得(22)式.

    值得注意的是,這里所說的相變是在推廣的意義上來理解的,因為這里的相變不是發(fā)生在真實空間,而是發(fā)生在動量空間里,因此,有些概念的理解不能完全和真實空間的相變過程一樣理解.

    以上我們對玻色—愛因斯坦凝聚現(xiàn)象中的幾個問題作了全面的說明,了解這些對于全面掌握玻色—愛因斯坦凝聚現(xiàn)象是非常有用的.

    [1]余學(xué)才,莫影.勢場中玻色—愛因斯坦凝聚的臨界溫度[J].物理學(xué)報,2004,53(12):4075-4080.

    [2]李紅,林振權(quán).重力場中相對論玻色氣體的凝聚[J].曲阜師范大學(xué)學(xué)報(自然科學(xué)版),2011,37(3):58-61.

    [3]余學(xué)才,葉玉堂,程琳.勢阱中玻色—愛因斯坦凝聚氣體的勢場有效性和粒子數(shù)極限判據(jù)[J].物理學(xué)報,2006,55(2):551-554.

    [4]劉澤專,楊志安.噪聲對雙勢阱玻色—愛因斯坦凝聚體系自俘獲現(xiàn)象的影響[J].物理學(xué)報,2007,56(3):1245-1251.

    [5]汪志誠.熱力學(xué)統(tǒng)計物理[M].第3版.北京:高等教育出版社,2003.293.

    [6]龔昌德.熱力學(xué)統(tǒng)計物理學(xué)[M].北京:人民教育出版社,1982.241,243.

    [7][美]L.E.雷克.統(tǒng)計物理現(xiàn)代教程[M].北京:北京大學(xué)出版社,1983.291,338.

    猜你喜歡
    玻色相平衡等溫線
    低溫吸附劑的低溫低壓吸附等溫線分布研究
    天然氣水合物相平衡模型研究
    抗衰老成分玻色因是天然成分?
    SVOC氣相-顆粒相平衡時間研究
    思維導(dǎo)圖在相平衡教學(xué)過程的應(yīng)用
    Lennard-Jones流體相平衡性質(zhì)的Monte Carlo模擬
    Lennard-Jones流體相平衡性質(zhì)的Monte Carlo模擬
    玻色-愛因斯坦凝聚的研究
    科技視界(2015年13期)2015-08-15 00:54:11
    如何在新課改背景下突破等溫線判讀中的難點
    諧振子勢阱囚禁玻色氣體的玻色-愛因斯坦凝聚
    浦县| 葵青区| 石狮市| 榕江县| 玛纳斯县| 青浦区| 慈利县| 临汾市| 高雄市| 喀喇沁旗| 虹口区| 阳城县| 安阳市| 九龙城区| 布拖县| 泸溪县| 临湘市| 姚安县| 小金县| 桂平市| 德江县| 孟津县| 株洲县| 高台县| 达州市| 信丰县| 佳木斯市| 沽源县| 府谷县| 利津县| 宣武区| 宁河县| 革吉县| 枞阳县| 神木县| 陵川县| 马鞍山市| 裕民县| 六枝特区| 云阳县| 齐河县|