• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    永磁電機研究的新進展

    2012-09-16 04:47:38諸自強
    電工技術(shù)學報 2012年3期
    關(guān)鍵詞:新進展永磁電機

    1 Introduction

    A major feature of permanent magnet(PM) machines,in addition to high power/torque density and high efficiency, is that there are numerous PM machine topologies, each of which may be found to be more suitable for one specific application. Before 1980s, some pioneering work was carried out on PM machines,primarily based on ferrite magnets[1-5]. However, over last 30 years, there have been significant advances on magnetic materials, electrical machines, power electronics,microprocessors and controls. Most notably, NdFeB magnet[6], IGBT[7], space-vector PWM[8], direct torque control[9-11], and in addition to switched reluctance machines[12], surface-mounted PM (SPM) and interior PM(IPM) machine topologies[13-19]were developed and/or investigated in 1980s. They continue for further improvement[20-24], while many new and novel PM machine topologies are still emerging and being developed.

    This paper briefly overviews some novel PM brushless machine topologies, their features and applications, as well as some research activities which are being undertaken world-wide on applications of PM machines to various market sectors.

    2 Current states and general trends

    For electrical machines and drives over last 30 years,PM brushless machines become more popular for numerous applications, ranging from domestic appliances,electric vehicles/hybrid electric vehicles[25,26], more electric aircrafts[27], to wind power generations[28].

    In general, the power and torque rating of a PM machine can now be much higher, so does the power and torque density. It was used to consider PM machines to be only suitable for applications which require a few hundred watts to a few kilowatts, it is now possible for the PM machines to produce power of hundred kilowatts upto several megawatts. Fig.1 shows 5MW, 147r/min PM wind generator made by Prokon Nord and 18MW PM ship propulsion machine made by DRS technologies,respectively.

    Meanwhile, the operation speed can now reach over 100kr/min with added benefits of light weight and use of less expensive rare-earth magnets[29-35]. Fig.2 shows Dyson’s hand held vacuum cleaner which employs a 100kr/min PM motor.

    For low speed (10~20r/min) direct-drive wind power generators of several megawatts are commercially in operation with high reliability. Fig.3 shows Siemens’3MW direct-drive wind power PM generator.

    It is now fully aware that system level integration and design consideration are one of the key technologies[25]. Various design considerations at the machine/drive levels and system levels should be taken into account. Otherwise the PM machine may not be able to satisfy the system requirement and/or the drive and controller cannot fully exploit the potential capacity which a PM machine can offer. Fig.4a shows a typical FUDS driving cycle, while Fig.4b clearly shows that there is a mismatch between the motor’s high efficiency region and electric vehicle(EV)’s most frequently operating regions, and hence there is a need to match them well so as to extend the EV’s driving distance, as well be discussed further later. Another good example is the influence of PM machine topologies, cross-coupling effect, inverter non-linearity, and control strategies on sensorless controlled performance of the drives[36-40].

    Fig.1 Examples of high power PM machines

    Fig.2 Dyson handheld vacuum cleaner using 100kr/min PM motor

    Fig.3 Siemens’ 3MW direct-drive PM wind power generator

    Fig.4 Mismatch between machine high efficiency region and EV driving cycles

    Conventional SPM and IPM machines with distributed windings and their controls in brushless DC(BLDC) operation and brushless AC(BLAC)operation including vector and direct torque controls in the constant torque and constant power regions now became more mature[20-22,41-47], being extensively used for domestic appliances, servo, EV/HEV and wind power generation application.

    By way of example, it is shown in that for EV/HEV application[25], the maximum achievable output power and torque when a machine is operated in the BLAC mode are higher than that which can be achieved when the same machine is operated in 2-phase, 120°elec. conduction BLDC mode, irrespe-ctive of whether it has a trapezoidal or sinusoidal back-emf waveform. At high speed, the phase current waveform will approximate to a sinusoid even in a BLDC drive, due to the influence of the winding reactance, while any harmonics in the back-emf waveform will cause the flux-weakening performance to deteriorate. However, by employing a 3-phase, 180oelec. BLDC conduction strategy (6-step operation)together with phase control[42], the high speed power capability of the machine can be improved, although below base-speed its torque capability is reduced.

    SPM brushless machines which have a fractional number of slots per pole per phase and a concentrated winding, either single layer or double layer, have been the subject of recent research[24,48-50]. They have inherently low cogging torque, short end-windings and, hence, low copper loss, high efficiency, and high power density, as well as better flux-weakening performance[51]. Such machines were extensively used for BLDC drives in 1980s[20]and are now seriously considered for BLAC drives application[23,24].

    In fractional-slot, single layer, concentrated winding PM machines, the phase windings are effectively isolated, both magnetically and physically,and a high per-unit self-inductance can readily be achieved to limit the prospective short-circuit current,by utilizing relatively high airgap inductance and leakage flux at slot openings[49-53]. Due to the physical separation of the coils and the negligible mutual-inductance between phases, the possibility of a phase-to-phase fault is minimized. Therefore, the fault tolerance and flux-weakening capability of such machines can be significantly higher than for more conventional machine designs. Hence, such type of fault-tolerant PM machines driven by a single or multi-3-phase inverters have been developing for applications which require a high fault-tolerant capability, such as aerospace.

    Since in fractional-slot PM machines the torque is developed by the interaction of a stator space harmonic mmf with the permanent magnets a relatively high rotor eddy current loss can result from the fundamental and low order space harmonic mmfs which rotate relative to the rotor. The magnets can be segmented to reduce the eddy current loss.

    In general, fractional slot, concentrated winding SPM and IPM machines have attracted intensive research, Fig.5~Fig.8. The reluctance torque component will be significantly reduced or even negligible when an IPM rotor is employed. The most challenge is the rotor eddy current loss and protection of irreversible demagnetization. Many new types of PM machine topologies have been emerged and will be briefly reviewed in the next few sections.

    Fig.5 Toyota/Aisin HEV PM machine

    Fig.6 22-pole, 24-slot, 3-phase PM torque-boost machine

    Fig.7 Bosch battery powered lawn mower using SPM motor

    Fig.8 Panasonic air conditioner compressor using IPM motor

    3 Halbach magnetized PM machines[75]

    Halbach magnetized PM machines, Fig.9, in which a self-shielding, sinusoidal magnetization is employed[75,76], result in: ①An essentially sinusoidal airgap field distribution, which is desirable for low stator iron loss (conducive for high efficiency and suitable for high-speed operation), sinusoidal backemf waveform (most appropriate for brushless AC motors), and negligible cogging torque (low torque ripple and low acoustic noise and vibration). ②The rotor back-iron is not essential due to self-shielding magnetization so that the rotor mass and inertia can be reduced, which is conducive to good dynamic performance. ③Skew is not required in order to obtain sinusoidal back-emf waveform for brushless ac motors and to eliminate cogging torque, which is very attractive for low cost manufacturing. ④Concentrated non-overlapping stator winding can be employed,which results in a shorter end-winding, high torque density, low copper loss and high efficiency. ⑤A higher airgap flux density is possible and appropriate for slotless machines or slotted machines which need a large airgap.

    Fig.9 4-pole Halbach magnetized magnet

    In an ideal Halbach magnetized magnet ring,Fig.9a, the radial and circumferential magnetization distributions vary sinusoidally and cosinusoidally.When a Halbach magnetised magnet is realised from discrete magnet segments, usually sinterred NdFeB or SmCo, Fig.9b, the ideal magnetization distribution is approximated. As the number of magnet segments per pole is increased (typically 3~4) the airgap field distribution and back-emf waveform can become more sinusoidal and the cogging torque is reduced.

    The concept of Halbach magnetisation may be extended and utilised to reduce the flux leakage and enhance the airgap field in various PM machine topologies, as shown in Fig.10.

    Fig.10 Halbach concept for reduction of flux leakage

    Halbach magnetized PM machines have been developed for various applications, ranging from flywheel motor and generator, servo motor, electric assisted power steering, electric vehicles, aerospace,wheelchair, etc. By way of example, Fig.11 shows Halbach motor made by Aisin Seiki, and was adopted for the position control unit used in the Toyota’s advanced i-REAL personal mobility vehicle.

    Fig.11 Toyota’s advanced i-REAL personal mobility vehicle

    4 Variable flux PM machines

    The major advantages of PM machines are high torque/power density and high efficiency. However, PM machines also have the disadvantages of non-adjustable flux and potential irreversible demagnetisation, as well as expensive and also limited rare-earth magnet resources.

    Variable-flux PM (VFPM) machines are those which include some means of adjusting the level of PM flux and are of interest today as they allow flexibility in terms of optimizing efficiency across a machine operation cycle, enhancing low speed torque, extending high speed operation range, and reducing the likelihood of an excessively high back-emf being induced at high speed in the event of an inverter fault when a PM machine is operating in the flux-weakening region.

    There are many examples of VFPM machines,Fig.12, including hybrid-excited machines with field coils[54-63], machines with mechanical adjustment[64],or those that involve other means of varying the flux,such as memory machine[65]. Further, in the case of hybrid-excited machines by the nature of PM and coil excitation flux paths, series or parallel, and the location of coil excitation source, on stator or rotor.For example, in hybrid synchronous PM machines,Fig.13a, both are on the rotor, and in hybrid doubly salient PM machines both are on the stator, Fig.13b,while the consequent pole PM machine has the rotor mounted magnets and stator mounted coils, Fig.13c.Although series excitation is simple it requires a higher excitation mmf due to the low recoil permeability of the magnets. On the other hand,parallel excitation is more effective electromagnetically but leads to a more complex machine structure.Coil excitation on the stator is preferable since it does not require brush/slip-ring as required in the case of coil excitation on the rotor. Fig.14 shows a novel hybrid- excited switched flux PM machine and its variable flux characteristics[63].

    Fig.12 Categorization of VFPM machines

    Fig.13 Examples of hybrid-excited machines

    Fig.14 Novel hybrid-excited switched flux PM machine[63]

    Unlike hybrid-excited machines, mechanically adjusted VFPM machines have only PM excitation,but the flux is varied by mechanical adjustment, either involving additional actuation, or by utilizing torque or speed dependant mechanisms. Many different topologies are available, a few examples being shown in Fig.15[64].

    Fig.15 Mechanically adjusted VFPM machines[64]

    The major disadvantages of hybrid excited machines are that it needs an extra dc power supply and the coil excitation produces extra copper loss. It is usually much easier to weaken the flux but difficult to enhance the flux due to magnetic saturation and significantly weaker coil excitation than PM excitation. For mechanically adjusted VFPM machines, it needs an extra actuation system which makes the system more complex.

    There are also other VFPM machines which do not fit neatly into the categories above, most notably,memory motors[65,66], Fig.16. Unlike the conventional PM machines, variable flux memory motors are capable of changing the magnetization intensity of typically Alnico magnets by a pulse current through the stator windings for a very short time duration and memorizing the flux density level in the rotor magnets.They have potential advantages, such as simple structure, high efficiency, large starting torque, and wide operation speed range. Therefore, they have significant potential.

    Fig.16 Memory machine[65]

    5 Hybrid PM machines[25,26]

    PM can be integrated into any other types of machine technologies, such as induction machines,switched reluctance machines(SR), synchronous reluctance machines (SynR), wound field synchronous machines(i.e. hybrid excited machines which are described in the previous section), etc, but it will primarily have PM machine characteristics as long as there is PM.

    The earliest one combines induction and PM machines for line-starting, Fig.17. The main feature is that it is a low cost solution for starting without the need of an inverter. However, during starting the PMs produce a braking torque and the motor exhibits significant torque oscillation.

    Fig.17 Hybrid PM & induction machines

    The torque density can be enhanced by increasing the saliency ratio. Multiple layers of magnets[67-71], which integrate the SynR and PM machine technologies, Fig.18, may be employed to increase the saliency ratio, although, in practice, the number of layers is usually limited to 2 or 3[67].Meanwhile, the concept of PM assisted reluctance machine[70,71]can be utilized to reduce the amount of expensive NdFeB magnets or eliminate NdFeB magnets by employing ferrite magnets, while a wide flux-weakening capability and a high torque density is maintained, without the risk of generating an excessive back-emf should an inverter fault occur at high speeds.

    The short-duration torque capability is determined primarily by the demagnetization withstand capability of the magnets and the level of magnetic saturation.Reducing the d- and q-axis cross-coupling magnetic saturation by incorporating air flux barriers in q-axis,Fig.19, can enhance the overload capability[25], while its effect on d-axis flux is minimal, but the overload torque capability in constant torque operation range is significantly enhanced. However, reduction of the cross-coupling magnetic saturation in this way may also reduce the saliency ratio and consequently the reluctance torque. If the q-axis flux barrier is too large,d-axis inductance may become larger than q-axis inductance, and consequently, negative reluctance torque may exist in the flux-weakening operation,although in this case, it may be advantageous for high frequency signal injection based sensorless control.

    Fig.18 Hybrid PM and SynR rotors

    Fig.19 Hybrid PM and SynR rotors with q-axis flux barriers

    When the PMs are located on the stator, the rotor must have salient pole geometry, similar to that of an SR machine, which is simple and robust, and suitable for high-speed operation[25,72-74]. The stator carries a non-overlapping winding. The PMs can be mounted in the stator back-iron (doubly salient PM machines[72]),placed on the inner surface of the stator teeth (flux reversal PM machines[73]), or sandwiched in the stator teeth (switched flux PM machines[74]), Fig.20.Irrespective of their location, however, the torque results predominantly from the PM excitation torque,i.e. the reluctance torque is negligible, although the torque production mechanism relies on the rotor saliency. Compared with conventional PMM topologies, it is easier to limit the temperature rise of the magnets as heat can be removed more easily from the stator.

    A major disadvantage for doubly-salient PM machines[72]is that due to unipolar flux-linkage, the torque density is relatively low. This is significantly improved in switched flux PM machines, Fig.21a, in which flux-focusing may be readily incorporated[74],while the phase flux-linkage waveform is bipolar, the torque capability is significantly higher than that of a doubly-salient PM machines. Meanwhile, the back-emf waveform of switched-flux PM machines is essentially sinusoidal, which makes them more appropriate for brushless AC operation. Conventional switched flux PM machines use a high number of PMs,Fig.21a. It is possible to reduce the number of PMs by half, while maintaining its torque capability, Figs. 21b and 21c.

    Fig.20 Hybrid PM and SR machines having PMs on stator

    Fig.21 Hybrid PM and SR machines

    6 Other types of novel PM machines

    There are numerous other types of PM machines,from rotary and linear/tubular, radial field and axial field, spherical and 2-dimensional planar, to soft magnetic composite[77]and transverse flux PM machines[78,79], it is impossible to review all of them in this paper due to space limit. Here, only dual-rotor PM machines[80]and magnetic geared PM machines[81]will be briefly described.

    A dual-mechanical-port machine[80], Fig.22, has three parts, one stator, two rotors and two airgaps. The electromagnetic torque of the centre part is the sum from both inner and outer airgaps. Two rotors can be assigned arbitrary among the three although certain assignment of movable parts may be more favourable than the others in terms of construction, control and application. Two rotors have independent mechanical speeds and torque that are determined by the connected external loads, e.g. IC engine and wheel shaft via a gear box. Hence, it is eminently suitable for HEV application. A dual-rotor PM machine is a special type of dual-mechanical-port machine. It may be considered as a double-fed wound-field induction machine with a permanent magnet rotor being sandwiched between its stator and rotor. Fig.23 shows an example of dual-rotor PM machine used for HEV application. Its disadvantages include complex mechanical structure and the need of brushes/slip rings to supply the power to the rotor.

    Fig.22 Dual-mechanical-port machine[80]

    Fig.23 Dual-rotor PM machine and its application to HEV(provided by Prof. Ping Zheng at HIT)

    A magnetic gear also consists of 3 components: 2 free to rotate, the 3rd one mechanically earthed. The high and low speed PM rotors have lower and higher pole numbers, respectively, while intermediate rotor consists of iron poles, Fig.24. The ferromagnetic pole-pieces between two rotors serve to modulate the magnetic field which is produced by the permanent magnets on each rotor. In this way, each rotor produces a dominant asynchronous space harmonic having the same pole number as the other rotor to facilitate torque transmission and gearing. The gear ratio depends on the number of pole-pairs on each rotor and the number of ferromagnetic pole-pieces. It provides high torque transmission capability, inherent overload protection, and physical isolation between input and output shafts. Magnetically geared PM machine[81]can also be considered as a special type of dual-mechanical-port machine. It uniquely combines a magnetic gear within the space envelope of a brushless PM machine by attaching one of the PM rotors of the magnetic gear onto the stator of brushless machine, thus it allows to use high speed PM machines for low speed application (such as wind power generation), or vice verse. According to the operation principle of a dual-mechanical-port machine,it is possible to remove the PMs on the stator to significantly reduce the amount of PMs although in this case its torque density is found to be reduced.

    Fig.24 Magnetic geared PM machine

    7 Conclusions

    Over last 30 years, we have witnessed significant advances on magnetic materials, electrical machines,power electronics, microprocessors and controls, most notably, NdFeB magnet, IGBT, space-vector PWM,direct torque control, and digital signal processor. PM brushless machines have high power/torque density and high efficiency, and are now used extensively in different market sectors. Many new and novel machine topologies have been developed and are still emerging. Some of them are briefly reviewed in this paper.

    There are still many challenges and opportunities.Rare-earth PMs are still relatively expensive and there are concerns about their resources and prices. Hence,further significant improvements in PM machines should be expected, while some “magnetless”machines, using no magnet or less magnet, are being seriously investigated, including more conventional induction machines, switched and synchronous reluctance machines, as well as wound field machines.

    AcknowledgmentThe author thanks the financial support by the Engineering and Physics Science Research Council, UK, Ref. EP/F016506/1, and also his colleagues and PhD students at the University of Sheffield, UK.

    This paper is based on the author’s Keynote Speech verbally presented at IEEE International Electric Mchines and Drives Conference (IEMDC 2011), May 16-18, 2011, Niagara Falls, Canada.

    [1]Merrill F W. Permanent magnet excited synchronous motor[J]. IEE Trans., 1955, 74: 1754-1760.

    [2]Honsinger V P. Performance of polyphase permanent magnet machines[J]. IEEE Trans. Power Apparatus and Systems, 1980, 99(4): 1510-1518.

    [3]Binns K J, Barnard W R, Jabbar M A. Hybrid PM synchronous motors[J]. Proc. IEE-B, 1978, 125(3):203-208.

    [4]Binns K J, Jabbar M A, Parry G E. Choice of parameters in hybrid PM synchronous motor[J]. Proc.IEE, 1979, 126(8): 741-744.

    [5]Miyashita K, Yamashita S, Tanabe S, et al.Development of a high speed 2-pole permanent magnet synchronous motor[J]. IEEE Trans. on PAS,1980, 99(6): 2175-2181.

    [6]Parker. R J Advances in permanent magnetism[M].New York: John Wiley&Sons, 1990.

    [7]Bose B K. Power electronics and variable frequency drives[M]. New York: IEEE Press, 1997.

    [8]Broeck H W van Der, Skudelny H C, Stanke G V.Analysis and realization of a pulsewidth modulator based on voltage space vectors[J]. IEEE Trans. Ind.Appl., 1988, 24(1): 142-150.

    [9]Takahashi, Toshihiko N. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Trans. Ind. Appl., 1986, 22(5): 820-827.

    [10]Depenbrock M. Direct self-control of inverter-fed induction machine[J]. IEEE Trans. Power Electronics,1988, 3(4): 420-429.

    [11]Vas P. Sensorless vector and direct torque control[M].Oxford: Oxford University Press, 1998.

    [12]Lawrenson P J, Stephenson J M, Blenkinsop P T, et al.Variable-speed switched reluctance motors[J]. Proc.IEE-B, 1980, 127(4): 253-265.

    [13]Binns K J, Wong T M. Analysis and performance of a high-field PM synchronous machine[J]. Proc. IEE-B,1984, 131(6): 252-258.

    [14]Rahman M A, Little T A. Dynamic performance analysis of permanent magnet synchronous motors[J].IEEE Trans. Power Apparatus and Systems, 1984,103(6): 1277-1282.

    [15]Jahns T M. Torque production in permanent magnet synchronous motor drives with rectangular current excitation[J]. IEEE Trans. Ind. Appl., 1984, 20(4)803-813.

    [16]Chalmers B J, Hamed S A, Baines G D. Parameters and performances of a high-field PM synchronous motor for variable frequency operation[J]. Proc.IEE-B, 1985, 132(3): 117-124.

    [17]Uddin M N, Radwan T S, Rahman M A. Performance of interior permanent magnet motor drive over wide speed range[J]. IEEE Trans. Energy Conversion, 2002,17(1):79-84.

    [18]Rahman M A, Little T A, Slemon G R. Analytical models for interior-type PM synchronous motors[J].IEEE Trans. Magnetics, 1985, 21(5): 1741-1743.

    [19]Jahns T M, Kliman G B, Newmann T W. Interior permanent magnet synchronous motors for adjustablespeed drives[J]. IEEE Trans. Ind. Appl., 1986, 22(4):738-747.

    [20]Kenjo T, Nagamori S. Permanent magnet and brushless DC motors[M]. Oxford: Clarendon Press, 1985.

    [21]Hendershot J R, Miller T J E. Design of brushless permanent magnet motors[M]. Oxford: Magna Physics Publishing & Clarendon Press, 1994.

    [22]Gieras J F, Wing M. Permannet magnet motors technology-design and application[M]. 2nd ed. New York: Marcel Dekker, 2002.

    [23]Takeda Y, Matsui N, Morimoto S, et al. Design and analysis of interior permanent magnet synchronous motors[M]. Tokyo: Ohmsha, 2001.

    [24]Bianchi N. Theory and design of fractional-slot PM machines[M]. Padova: CLEUP, 2007.

    [25]Zhu Z Q, Howe D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles[J].Proc. IEEE,2007, 95(4): 746-765.

    [26]Zhu Z Q, Chan C C. Electrical machine topologies and technologies on electric, hybrid, and fuel cell vehicles[C]. IEEE Vehicle Power and Propulsion Conf. (VPPC), Keynote Speech- KN3, Paper No:H08787, 2008: 1-6.

    [27]Mecrow B C, Jack A G, Atkinson D J, et al. Design and testing of a four-phase fault-tolerant permanentmagnet machine for an engine fuel pump[J]. IEEE Trans. Energy Conv., 2004, 19(4): 671-678.

    [28]Polinder H, F F A van der Pijl, G J de Vilder, et al.Comparison of direct-drive and geared generator concepts for wind turbines[J]. IEEE Trans. Energy Conv., 2006, 21(3): 725-733.

    [29]Hesmondhalgh D E, Tipping D, Amrani M. Design and construction of a high-speed high performance direct-drive hand piece[J]. Proc. IEE-B, 1987, 134:286-294.

    [30]Ede J D, Zhu Z Q, Howe D. Rotor resonances of high-speed permanent-magnet brushless machines[J].IEEE Trans. Ind. Appl., 2002, 38(6): 1543-1548.

    [31]Paulides J H, Jewell G W, Howe D. An evaluation of alternative stator lamination materials for a highspeed, 1.5MW, permanent magnet generator[J]. IEEE Trans. Magnetics, 2004,40(4):2041-2043.

    [32]Zhu Z Q, Ede J D, Howe D. Design of high-speed brushless dc motors for sensorless operation[C]. Proc.16th Int. Conf. on Electrical Machines, ICEM 2004,Cracow, Poland, Paper No: 235, CD ROM.

    [33]Bianchi N, Bolognani S, Luise F. Analysis and design of a PM brushless motor for high-speed operations[J].IEEE Trans. Energy Conv., 2005, 20(3): 629-637.

    [34]Binder A, Schneider T, Klohr M. Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines[J]. IEEE Trans.Ind. Appl., 2006, 42(4): 1031-1037.

    [35]Kolondzovski Z, Arkkio A, Larjola J, et al. Power limits of high-speed permanent-magnet electrical machines for compressor applications[J]. IEEE Trans.Energy Conv., 2011, 26(1): 73-82.

    [36]Guglielmi P, Pastorelli M, Vagati A. Cross saturation effects in IPM motors and related impact on zerospeed sensorless control[J]. IEEE Trans. Ind. Appl,2006, 42 (6): 1516-1522.

    [37]Bianchi N, Bolognami S, Jang J H, et al.Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection[J].IEEE Trans. Power Electronics, 2007, 22(6): 2466-2475.

    [38]Li Y, Zhu Z Q, Howe D, et al. Improved rotor position estimation by signal Injection in brushless AC motors, accounting for cross-coupling magnetic saturation[J]. IEEE Trans. Ind. Appl., 2009, 45(5):1843-1849.

    [39]Zhu Z Q, Gong L M. Investigation of effectiveness of sensorless operation in carrier signal injection-based sensorless control methods[J]. IEEE Trans. Industrial Electronics, 2011, 58(8): 3431-3439.

    [40]Gong L M, Zhu Z Q. Modeling and compensation of inverter nonlinearity effects in carrier signal injection-based sensorless control methods from positive sequence carrier current distortion[J]. IEEE Trans. on Ind. Appl., 2011, 47(3): 1283-1292.

    [41]Jahns T M. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive[J]. IEEE Trans. Ind. Appl., 1987, 23(4): 681-689, 1987.

    [42]Bose B K. A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine[J].IEEE Trans. Ind. Appl., 1988, 24(6):987-997.

    [43]Schiferl R, Lipo T A. Power capability of salient pole permanent magnet synchronous motors in variable speed drive[J]. IEEE Trans. Ind. Appl., 1990, 26(1):115-123.

    [44]Soong W L, Miller T J E. Field-weakening performance of brushless synchronous AC motor drives[J]. Proc. IEE-EPA, 1994, 141: 331-340.

    [45]Morimoto S, Sanada M, Takeda Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator[J].IEEE Trans. Ind. Appl., 1994, 30(4): 920-926.

    [46]Morimoto S, Sanada M, Takeda Y. Inverter-driven synchronous motors for constant power[J]. IEEE Ind.Appl. Magazine, 1996, 2(6): 18-24.

    [47]Vaez S, John V I, Rahman M A. An on-line loss minimization controller for interior permanent magnet motor drives[J]. IEEE Trans. Energy Conv., 1999,14(4): 1435-1440.

    [48]Cros J, Viarouge P. Synthesis of high performance PM machines with concentrated windings[J]. IEEE Trans. Energy Conv., 2002, 17(2): 248-253.

    [49]El-Refaie A M. Fractional-slot concentrated winding synchronous permanent magnet machines: opportunities and challenges[J].IEEE Trans. Industrial Electronics, 2010, 57(1): 107-121.

    [50]Zhu Z Q. Fractional slot permanent magnet brushless machines and drives for electric and hybrid propulsion systems[J]. Int. Journal for Computation and Mathematics in Elec. and Elect. Eng. (COMPEL),2011, 30(1): 9-31.

    [51]Refaie A M El, Jahns T M. Optimal flux-weakening in surface PM machines using concentrated windings[J].IEEE Trans. Ind. Appl., 2005, 41(3):790-800.

    [52]Mecrow C, Jack A G, Haylock J A. Fault tolerant permanent magnet motors drives[J]. Proc. IEE-EPA,1996, 143(6): 433-437.

    [53]Jack G, Mecrow B C, Haylock J A. A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications[J]. IEEE Trans. Ind. Appl., 1996, 32(4): 889-895.

    [54]Spooner E, Khatab S A W, Nicolaou N G. Hybrid excitation of AC and DC machines[C]. Proc. IEE Int.Conf. Electrical Machines and Drives, 1989: 48-52.

    [55]Sugii Y, Yada M, Koga S. Applicability of various motors to electric vehicles[C]. Proc. 13th Int. Electric Vehicles Symp., 1996: 757-764.

    [56]Tapia J A, Leonardi F, Lipo T A. Consequent pole permanent magnet machine with field weakening capability[C]. Proc. IEEE Electric Machines and Drives Conference, 2001: 126-131.

    [57]Chan C C, Zhang R, Chau K T, et al.A novel brushless PM hybrid motor with a claw-type rotor topology for electric vehicles[C]. Proc. 13th International Electric Vehicle Symposium, 1996, II: 579-584.

    [58]Chan C C, Zhuang R, Chau K T, et al. Optimal efficiency control of PM hybrid motor drives for electric vehicles[C]. Proc. IEEE Power Electronics Specialists Conference, 1997: 363-368.

    [59]Luo X, Lipo T A. A synchronous/permanent magnet hybrid AC machine[J]. IEEE Trans. Energy Conv.,2000, 15(2): 203-210.

    [60]Leonardi F, Matsuo T, Li T Y, et al. Design considerations and test results for a doubly salient PM motor with flux control[C]. IEEE Ind. Appl. Society Annual Meeting, 1996: 458-463.

    [61]Hoang E, Lecrivain M, Gabsi M. A new structure of a switching flux synchronous polyphased machine with hybrid excitation[C]. Proc. European Conf. Power Electronics and Applications, 2007: 1-8.

    [62]Amara Y, Vido L, Gabsi M, et al. Hybrid excitation synchronous machines: energy efficient solution for vehicle propulsion[J]. IEEE Trans. Vehicular Technology, 2009, 58 (5): 2137-2149.

    [63]Chen J T, Zhu Z Q, Iwasaki S, et al.A novel hybrid excited switched-flux brushless AC machine for EV/HEV applications[J]. IEEE Trans. Vehicular Technology, 2011, 60(4): 1365-1373.

    [64]Owen R, Zhu Z Q, Wang J B, et al. Review of variable-flux permanent magnet machines[C]. Int.Conf. on Elec. Machines and Systems, 2011, Beijing,China, paper PS-PMM-60.

    [65]Ostovic V. Memory motors[J]. IEEE Trans. Ind.Appl., 2003, 99(1): 52-61.

    [66]Yu C, Chau K T. Design, analysis, and control of DC-excited memory motors[J]. IEEE Trans. Energy Conv., 2011, 26(2): 479-489.

    [67]Honda Y, Higaki T, Morimoto S, et al, Rotor design optimisation of a multi-layer interior permanentmagnet synchronous motor[J]. Proc. IEE-EPA, 1998,145(2): 119-124.

    [68]Soong W L, Staton D A, Miller T J E. Design of a new axially laminated interior permanent magnet motor[J].IEEE Trans. Ind. Appl., 1995, 31 (2): 358-367.

    [69]Lipo T A. Synchronous reluctance machines-a viable alternative for AC drives? [J]. Electric Machines and Power Systems, 1991, 19(6): 659-671.

    [70]Vagati, Pellegrino G, Guglielmi P. Design tradeoffs between constant power speed range, uncontrolled generator operation and rated current of IPM motor drives[C]. 2010 IEEE Energy Conversion Congress and Exposition (ECCE), 2010: 4107-4114.

    [71]Armando, Guglielmi P, Pellegrino G, et al.Accurate magnetic modelling and performance analysis of IPM-PMASR motors[C]. 2007 IEEE Ind. Appl.Society Annual Meeting, 2007: 133-140.

    [72]Liao Y, Liang F, Lipo T A. A novel permanent magnet machine with doubly salient structure[J].IEEE Trans. Ind. Appl., 1995, 3(5): 1069-1078.

    [73]Deodhar R P, Andersson S, Boldea I, et al. The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine[J]. IEEE Trans. Ind.Appl., 1997, 33(4): 925-934.

    [74]Zhu Z Q, Chen J T. Advanced flux-switching permanent magnet brushless machines[J]. IEEE Trans.Magnetics, 2010, 46(6): 1447-1453.

    [75]Zhu Z Q. Recent development of Halbach permanent magnet machines and applications[C]. The 4th Power Conversion Conference, JIEE, IEEE-IAS, 2-5 April 2007, Nagoya, Japan, 2007: K9-K16.

    [76]Atallah K, Howe D. The application of Halbach cylinders to brushless AC servo motors[J].IEEE Trans Magnetics,1998,34(1):2060-2062.

    [77]Jack A G, Mecrow B C, Dickinson P G, et al.Permanent-magnet machines with powdered iron cores and pre-pressed windings[J]. IEEE Trans.Ind. Appl., 2000,36(4):1077-1083.

    [78]Weh H, May H. Achievable force densities for permanent magnet excited machines in new configurations[C]. Proc. Int. Conf. Electrical Machines, 1986: 1107-1111.

    [79]Weh H, Hoffmann H, Landrath J. New permanent magnet excited synchronous machine with high efficiency at low speed[C]. Proc. Int. Conf. Electrical Machines, 1988: 1-6.

    [80]Xu L Y. A new breed of electric machines - basic analysis and applications of dual mechanical port electric machines[C]. Keynote Speech, International Conference on Electrical Machines and Systems,2005.

    [81]Atallah K, Rens J, Mezani S, et al. A novel ‘Pseudo’direct-drive brushless permanent magnet machine[J].IEEE Trans. Magnetics, 2008,44(2):4349-4352.

    猜你喜歡
    新進展永磁電機
    關(guān)于電機滾動軸承的選擇與計算
    防爆電機(2021年3期)2021-07-21 08:13:00
    永磁同步電動機的節(jié)能計算
    瞻望電機的更新?lián)Q代
    防爆電機(2021年1期)2021-03-29 03:02:52
    歡迎訂閱2022年《電機與控制應用》
    永磁同步電機兩種高頻信號注入法的比較
    防爆電機(2020年6期)2020-12-14 07:16:54
    科研新進展
    電機隱憂
    能源(2016年2期)2016-12-01 05:10:31
    蒙中西醫(yī)防治腦卒中(薩病)新進展
    2014醫(yī)改攻堅新進展
    成人正畸治療新進展
    99在线人妻在线中文字幕| 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 最近最新中文字幕大全免费视频| 精品久久蜜臀av无| 韩国av一区二区三区四区| 99久久久亚洲精品蜜臀av| 亚洲片人在线观看| 午夜福利在线观看吧| bbb黄色大片| 精品国产乱子伦一区二区三区| 黄色成人免费大全| 男女下面进入的视频免费午夜 | 精品一品国产午夜福利视频| 母亲3免费完整高清在线观看| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 视频区欧美日本亚洲| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 一边摸一边做爽爽视频免费| 十八禁网站免费在线| 俄罗斯特黄特色一大片| 成人亚洲精品一区在线观看| 亚洲av第一区精品v没综合| 欧美成人一区二区免费高清观看 | 好男人在线观看高清免费视频 | 欧美乱色亚洲激情| 亚洲国产精品999在线| av在线天堂中文字幕| 99精品久久久久人妻精品| www.精华液| 欧美绝顶高潮抽搐喷水| 国产主播在线观看一区二区| 亚洲五月天丁香| 免费久久久久久久精品成人欧美视频| 国产精品国产高清国产av| 神马国产精品三级电影在线观看 | 亚洲美女黄片视频| 久久中文字幕一级| 亚洲欧美精品综合久久99| 在线国产一区二区在线| 人人妻,人人澡人人爽秒播| 人人妻人人爽人人添夜夜欢视频| 日韩高清综合在线| 国产精品电影一区二区三区| 日本五十路高清| 亚洲狠狠婷婷综合久久图片| 久久久久国产一级毛片高清牌| 无限看片的www在线观看| 涩涩av久久男人的天堂| 亚洲精品中文字幕一二三四区| 可以免费在线观看a视频的电影网站| 亚洲自偷自拍图片 自拍| 久久人人精品亚洲av| 国产精品精品国产色婷婷| 操美女的视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲自拍偷在线| 国产精品av久久久久免费| e午夜精品久久久久久久| 9191精品国产免费久久| 国产亚洲精品第一综合不卡| 亚洲一码二码三码区别大吗| 正在播放国产对白刺激| 妹子高潮喷水视频| 亚洲无线在线观看| 欧美丝袜亚洲另类 | 亚洲av日韩精品久久久久久密| 两个人视频免费观看高清| 黑人操中国人逼视频| 亚洲国产日韩欧美精品在线观看 | 一级a爱视频在线免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲成av片中文字幕在线观看| а√天堂www在线а√下载| 亚洲欧美激情综合另类| 男男h啪啪无遮挡| 999久久久国产精品视频| 嫩草影视91久久| 欧美日本亚洲视频在线播放| 久久久国产欧美日韩av| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一av免费看| 在线天堂中文资源库| 国产成人影院久久av| 国产激情久久老熟女| 欧美绝顶高潮抽搐喷水| 亚洲国产看品久久| 亚洲黑人精品在线| 在线播放国产精品三级| 亚洲电影在线观看av| 国产一卡二卡三卡精品| 亚洲五月天丁香| 成人亚洲精品av一区二区| 可以在线观看毛片的网站| 美国免费a级毛片| 法律面前人人平等表现在哪些方面| 女人被狂操c到高潮| 人人妻人人澡人人看| 久久午夜亚洲精品久久| 两性夫妻黄色片| 级片在线观看| 精品不卡国产一区二区三区| 黄色视频不卡| 操美女的视频在线观看| 搡老熟女国产l中国老女人| 国产精品影院久久| 99国产综合亚洲精品| 日本一区二区免费在线视频| 成人亚洲精品av一区二区| 久久午夜综合久久蜜桃| 午夜久久久久精精品| 欧美绝顶高潮抽搐喷水| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩亚洲综合一区二区三区_| 欧美色欧美亚洲另类二区 | 1024视频免费在线观看| 丁香六月欧美| 亚洲第一av免费看| 一级片免费观看大全| 亚洲精品国产色婷婷电影| 在线观看66精品国产| 国产精品久久久久久精品电影 | 久久国产精品人妻蜜桃| 午夜视频精品福利| 大陆偷拍与自拍| 精品日产1卡2卡| 变态另类成人亚洲欧美熟女 | 91在线观看av| 亚洲国产看品久久| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 女人精品久久久久毛片| 成年版毛片免费区| 午夜精品国产一区二区电影| 神马国产精品三级电影在线观看 | 中文字幕色久视频| 日本三级黄在线观看| 精品卡一卡二卡四卡免费| 亚洲精品在线美女| 欧美黑人精品巨大| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 成人精品一区二区免费| 亚洲熟女毛片儿| 精品久久久久久,| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放 | www.999成人在线观看| 高清毛片免费观看视频网站| 精品久久久久久成人av| 亚洲一区二区三区不卡视频| 免费av毛片视频| 久久性视频一级片| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 国产一卡二卡三卡精品| 狂野欧美激情性xxxx| 757午夜福利合集在线观看| 91成人精品电影| 国产精品香港三级国产av潘金莲| 国产亚洲精品久久久久久毛片| 巨乳人妻的诱惑在线观看| 亚洲人成77777在线视频| av网站免费在线观看视频| 中亚洲国语对白在线视频| 可以免费在线观看a视频的电影网站| 成人亚洲精品av一区二区| 亚洲国产精品久久男人天堂| 搞女人的毛片| 一进一出抽搐gif免费好疼| 99久久99久久久精品蜜桃| 又黄又粗又硬又大视频| e午夜精品久久久久久久| 91精品国产国语对白视频| 国产精品98久久久久久宅男小说| 久久人人97超碰香蕉20202| 国产野战对白在线观看| 亚洲,欧美精品.| 亚洲精品中文字幕一二三四区| 免费在线观看黄色视频的| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站在线播放欧美日韩| 国产不卡一卡二| 免费高清视频大片| 丝袜人妻中文字幕| 99精品久久久久人妻精品| 欧美中文日本在线观看视频| 久久久久久久久免费视频了| 色婷婷久久久亚洲欧美| 精品久久久久久,| 免费看美女性在线毛片视频| 中文字幕色久视频| 国产1区2区3区精品| 女同久久另类99精品国产91| 欧美av亚洲av综合av国产av| 久久久国产精品麻豆| 人人妻人人澡人人看| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 国产精品av久久久久免费| 午夜福利成人在线免费观看| 精品一区二区三区av网在线观看| 亚洲电影在线观看av| 99国产精品免费福利视频| 18禁黄网站禁片午夜丰满| 国产成人精品在线电影| 国产成人一区二区三区免费视频网站| 级片在线观看| 午夜精品国产一区二区电影| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| 欧美日韩瑟瑟在线播放| 国产主播在线观看一区二区| 久久亚洲真实| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 亚洲欧美日韩无卡精品| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 女人爽到高潮嗷嗷叫在线视频| 男女午夜视频在线观看| 国产伦人伦偷精品视频| 桃色一区二区三区在线观看| 真人做人爱边吃奶动态| 999久久久国产精品视频| 一区二区日韩欧美中文字幕| 国产高清视频在线播放一区| 国产一区在线观看成人免费| 免费搜索国产男女视频| 自拍欧美九色日韩亚洲蝌蚪91| 可以在线观看毛片的网站| 999久久久精品免费观看国产| 男女床上黄色一级片免费看| 国产精品爽爽va在线观看网站 | 亚洲伊人色综图| 淫秽高清视频在线观看| 国内精品久久久久久久电影| 在线观看舔阴道视频| www.自偷自拍.com| 国内毛片毛片毛片毛片毛片| 日本撒尿小便嘘嘘汇集6| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 欧美午夜高清在线| 久久人妻福利社区极品人妻图片| 桃红色精品国产亚洲av| 日本在线视频免费播放| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 99在线视频只有这里精品首页| 我的亚洲天堂| 日本免费一区二区三区高清不卡 | 高潮久久久久久久久久久不卡| 久久精品国产综合久久久| 亚洲熟女毛片儿| 欧洲精品卡2卡3卡4卡5卡区| 岛国在线观看网站| 久久久国产欧美日韩av| 国内毛片毛片毛片毛片毛片| 可以免费在线观看a视频的电影网站| 黑人操中国人逼视频| 午夜福利高清视频| 国产精品,欧美在线| 欧美成人性av电影在线观看| 女人精品久久久久毛片| 久久久久国产精品人妻aⅴ院| av欧美777| 最近最新免费中文字幕在线| 久久热在线av| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 丁香六月欧美| 久热这里只有精品99| 给我免费播放毛片高清在线观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 国产精品98久久久久久宅男小说| 女人高潮潮喷娇喘18禁视频| 两个人视频免费观看高清| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美激情在线| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区 | av在线天堂中文字幕| 欧美中文综合在线视频| 亚洲专区国产一区二区| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 精品少妇一区二区三区视频日本电影| 亚洲国产精品成人综合色| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 啦啦啦韩国在线观看视频| 禁无遮挡网站| 日韩国内少妇激情av| 欧美av亚洲av综合av国产av| 日本a在线网址| 一进一出抽搐动态| 级片在线观看| 激情视频va一区二区三区| 大型av网站在线播放| 亚洲国产日韩欧美精品在线观看 | 久久久久久久久久久久大奶| 久久精品亚洲精品国产色婷小说| 99re在线观看精品视频| 日韩av在线大香蕉| www国产在线视频色| 国产亚洲精品综合一区在线观看 | 十分钟在线观看高清视频www| 色哟哟哟哟哟哟| 一个人观看的视频www高清免费观看 | ponron亚洲| 久久性视频一级片| 岛国在线观看网站| 一a级毛片在线观看| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 国产精品野战在线观看| 天天躁夜夜躁狠狠躁躁| a级毛片在线看网站| 久久精品亚洲精品国产色婷小说| 日本免费a在线| 欧美日本视频| 日韩精品免费视频一区二区三区| 亚洲成av人片免费观看| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 久久久国产成人精品二区| 757午夜福利合集在线观看| 中文字幕人妻丝袜一区二区| 精品国产一区二区久久| 日韩精品中文字幕看吧| 国产一区二区三区综合在线观看| 精品久久久久久成人av| 国产男靠女视频免费网站| 免费看十八禁软件| 啦啦啦观看免费观看视频高清 | 美女 人体艺术 gogo| 又黄又粗又硬又大视频| 精品一品国产午夜福利视频| 精品免费久久久久久久清纯| 老司机福利观看| 咕卡用的链子| 美女免费视频网站| 99久久国产精品久久久| 国产精品久久久久久亚洲av鲁大| 99久久国产精品久久久| 少妇粗大呻吟视频| 三级毛片av免费| 老熟妇仑乱视频hdxx| 久久香蕉激情| 嫩草影视91久久| 热99re8久久精品国产| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 国产精品免费视频内射| 男人舔女人下体高潮全视频| 亚洲黑人精品在线| 精品第一国产精品| 麻豆久久精品国产亚洲av| 日韩高清综合在线| 久久精品91蜜桃| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 9热在线视频观看99| 男女下面插进去视频免费观看| 色老头精品视频在线观看| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 91成年电影在线观看| 伦理电影免费视频| 亚洲一区二区三区不卡视频| 91成人精品电影| 午夜亚洲福利在线播放| 久久人人爽av亚洲精品天堂| 男女床上黄色一级片免费看| svipshipincom国产片| 手机成人av网站| 久热爱精品视频在线9| 日本 av在线| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 欧美激情 高清一区二区三区| 国产成人一区二区三区免费视频网站| 精品少妇一区二区三区视频日本电影| 女性生殖器流出的白浆| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 国产av精品麻豆| 窝窝影院91人妻| 国产精品免费一区二区三区在线| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 亚洲aⅴ乱码一区二区在线播放 | 村上凉子中文字幕在线| 麻豆av在线久日| 久久精品国产综合久久久| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 精品卡一卡二卡四卡免费| 亚洲,欧美精品.| 婷婷丁香在线五月| av中文乱码字幕在线| 性少妇av在线| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品久久男人天堂| 99热只有精品国产| 99国产精品99久久久久| 制服丝袜大香蕉在线| 欧美绝顶高潮抽搐喷水| 国产精品久久视频播放| 黄色 视频免费看| 免费在线观看黄色视频的| 亚洲精品在线观看二区| 色av中文字幕| 国产精品免费一区二区三区在线| 热re99久久国产66热| 天天添夜夜摸| 成人国产综合亚洲| 91国产中文字幕| 久久久久久人人人人人| 最新在线观看一区二区三区| 日韩精品免费视频一区二区三区| 亚洲情色 制服丝袜| 久久久水蜜桃国产精品网| 中文字幕高清在线视频| 18禁美女被吸乳视频| 亚洲精品一卡2卡三卡4卡5卡| 91国产中文字幕| 日韩免费av在线播放| 97超级碰碰碰精品色视频在线观看| 一级a爱片免费观看的视频| 国产激情久久老熟女| 精品乱码久久久久久99久播| 91精品国产国语对白视频| 丝袜美腿诱惑在线| 一级a爱视频在线免费观看| 久久午夜亚洲精品久久| 国产又色又爽无遮挡免费看| 成人18禁高潮啪啪吃奶动态图| 欧美日本中文国产一区发布| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 日本黄色视频三级网站网址| 女警被强在线播放| 日本欧美视频一区| 9色porny在线观看| 精品久久久久久久毛片微露脸| 少妇熟女aⅴ在线视频| 中亚洲国语对白在线视频| 不卡一级毛片| 两人在一起打扑克的视频| avwww免费| 国产精品一区二区免费欧美| 亚洲狠狠婷婷综合久久图片| 国产精品国产高清国产av| 视频在线观看一区二区三区| 18禁观看日本| 成人亚洲精品av一区二区| 欧美激情 高清一区二区三区| 国产1区2区3区精品| 黄频高清免费视频| 亚洲 欧美 日韩 在线 免费| 热99re8久久精品国产| 巨乳人妻的诱惑在线观看| 91大片在线观看| 成人免费观看视频高清| 在线十欧美十亚洲十日本专区| 久久精品成人免费网站| 成人国产一区最新在线观看| 日韩一卡2卡3卡4卡2021年| 日韩精品免费视频一区二区三区| 一级毛片女人18水好多| 搡老妇女老女人老熟妇| 国产视频一区二区在线看| tocl精华| 久久国产乱子伦精品免费另类| 久久伊人香网站| 欧美日本中文国产一区发布| 天天一区二区日本电影三级 | 亚洲精品中文字幕在线视频| 国产区一区二久久| 国产91精品成人一区二区三区| 精品高清国产在线一区| 亚洲aⅴ乱码一区二区在线播放 | 午夜两性在线视频| 日本撒尿小便嘘嘘汇集6| 男女做爰动态图高潮gif福利片 | 国产成年人精品一区二区| 精品国产国语对白av| 亚洲国产欧美一区二区综合| 18禁观看日本| 欧美中文综合在线视频| 亚洲中文av在线| 成人国产综合亚洲| 精品熟女少妇八av免费久了| av在线播放免费不卡| 人妻丰满熟妇av一区二区三区| 欧美激情高清一区二区三区| 亚洲熟女毛片儿| 日本vs欧美在线观看视频| 男女做爰动态图高潮gif福利片 | 十八禁网站免费在线| 亚洲专区字幕在线| 亚洲人成电影观看| 免费看a级黄色片| svipshipincom国产片| 美女高潮到喷水免费观看| 欧美日韩瑟瑟在线播放| 99香蕉大伊视频| 中文字幕人成人乱码亚洲影| 亚洲色图综合在线观看| 欧美在线一区亚洲| 男人舔女人的私密视频| 日本在线视频免费播放| 亚洲av电影在线进入| 变态另类成人亚洲欧美熟女 | 久久精品aⅴ一区二区三区四区| 日韩大尺度精品在线看网址 | 欧美日韩黄片免| www国产在线视频色| 中文字幕人妻丝袜一区二区| 国产精品乱码一区二三区的特点 | 在线视频色国产色| 欧美一级a爱片免费观看看 | 99国产综合亚洲精品| 久久香蕉精品热| 夜夜夜夜夜久久久久| 久久中文看片网| 国产成+人综合+亚洲专区| 一本久久中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 午夜亚洲福利在线播放| 国产一区二区三区视频了| 欧美一级毛片孕妇| 亚洲av成人av| 9热在线视频观看99| bbb黄色大片| 国产免费av片在线观看野外av| 国产成人精品久久二区二区免费| 麻豆av在线久日| av中文乱码字幕在线| 精品第一国产精品| а√天堂www在线а√下载| 一区二区三区高清视频在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成77777在线视频| 亚洲成人免费电影在线观看| 女人被狂操c到高潮| 免费高清视频大片| 精品福利观看| 日本撒尿小便嘘嘘汇集6| 99热只有精品国产| 少妇熟女aⅴ在线视频| 久99久视频精品免费| 国产av一区二区精品久久| 韩国av一区二区三区四区| 高清毛片免费观看视频网站| 美女大奶头视频| 丁香六月欧美| 丝袜人妻中文字幕| 国产在线观看jvid| 看片在线看免费视频| 一边摸一边抽搐一进一小说| 久久国产乱子伦精品免费另类| 看免费av毛片| a级毛片在线看网站| 国产男靠女视频免费网站| 国产成人av激情在线播放| cao死你这个sao货| 人人妻,人人澡人人爽秒播| 欧美久久黑人一区二区| 狠狠狠狠99中文字幕| 久久人人97超碰香蕉20202| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 欧美亚洲日本最大视频资源| 日韩欧美在线二视频| 99国产综合亚洲精品| 老司机靠b影院| 免费久久久久久久精品成人欧美视频| 一个人免费在线观看的高清视频| 亚洲 欧美 日韩 在线 免费| 欧美日韩亚洲国产一区二区在线观看| 淫秽高清视频在线观看| 在线观看www视频免费| 成人亚洲精品av一区二区| 国产一区二区三区在线臀色熟女| 国产一级毛片七仙女欲春2 | 亚洲精品一卡2卡三卡4卡5卡| 国产区一区二久久| 在线天堂中文资源库| 精品不卡国产一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲中文av在线| 久久精品91蜜桃| www.精华液| 亚洲性夜色夜夜综合| 亚洲成人久久性| 国产精品永久免费网站| 男女之事视频高清在线观看| 自线自在国产av| 亚洲在线自拍视频| 色播亚洲综合网| 色在线成人网| 看片在线看免费视频| 两性夫妻黄色片|