• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified theoretical stage-discharge relation for circular sharp-crested weirs

    2012-08-16 09:04:01RasoolGHOBADIANEnsiyehMERATIFASHI
    Water Science and Engineering 2012年1期

    Rasool GHOBADIAN*, Ensiyeh MERATIFASHI

    Department of Water Engineering, Razi University, Kermanshah 6715685438, Iran

    Modified theoretical stage-discharge relation for circular sharp-crested weirs

    Rasool GHOBADIAN*, Ensiyeh MERATIFASHI

    Department of Water Engineering, Razi University, Kermanshah 6715685438, Iran

    A circular sharp-crested weir is a circular control section used for measuring flow in open channels, reservoirs, and tanks. As flow measuring devices in open channels, these weirs are placed perpendicular to the sides and bottoms of straight-approach channels. Considering the complex patterns of flow passing over circular sharp-crested weirs, an equation having experimental correlation coefficients was used to extract a stage-discharge relation for weirs. Assuming the occurrence of critical flow over the weir crest, a theoretical stage-discharge relation was obtained in this study by solving two extracted non-linear equations. To study the precision of the theoretical stage-discharge relation, 58 experiments were performed on six circular weirs with different diameters and crest heights in a 30 cm-wide flume. The results show that, for each stage above the weirs, the theoretically calculated discharge is less than the measured discharge, and this difference increases with the stage. Finally, the theoretical stage-discharge relation was modified by exerting a correction coefficient which is a function of the ratio of the upstream flow depth to the weir crest height. The results show that the modified stage-discharge relation is in good agreement with the measured results.

    circular weir; stage-discharge relation; analytical method

    1 Introduction

    Regardless of their performance, properties, ages, or conditions, it should be noted that weirs are engineering structures that have to function in difficult conditions (Rickard et al. 2003). As one of the main components of dam-buildings and water projects, weirs are important structures built for various purposes. Two of the most important functions of weirs are measurement of water discharge and adjustment of the water level in primary and secondary channels. Considering the complex work they do, weirs should be strong, reliable, and highly efficient so that they can readily be put to use. Broad-crested, sharp-crested, cylindrical-crested, and ogee weirs are the most common types of weirs. The advantages of circular sharp-crested weirs are that the crest can be turned and beveled with precision in a lathe, and more particularly that they do not have to be leveled (Bos 1989).

    According to different standards, weirs can be classified into different categories. For example, weirs are of the following types: primary, ancillary, or emergent based on theirperformance, and overflow, chute, or tunnel based on structural components. With consideration of the type of entrance weirs, they are classified as siphon, lateral, orifice, and morning-glory weirs.

    Although much research has been done on sharp-crested weirs, there are few studies that have focused on circular sharp-crested weirs. A circular control section located in a vertical thin plate, which is placed at a right angle to the sides and bottom of a straight-approach channel, is defined as a circular thin plate weir. Circular sharp-crested weirs, in practice, are fully contracted so that the bed and sides of the approach channel can be sufficiently remote from the control section to have no influence on the development of the nappe (Bos 1989). Also, a circular orifice installed at the end of the discharge pipe would be running partly for most of time and became a circular weir (Steven 1957).

    Greve (1924) analyzed sharp-edged circular weirs and showed that if the cross-section upstream of the weir is large, the depth of water nearly reaches the energy head. He developed an empirical equation between discharge and energy head. Greve (1932) investigated the characteristics of flow through circular, parabolic, and triangular weirs with diameters ranging from 0.076 m to 0.76 m. Panuzio and Ramponi (1936) (reported in Lencastre (1961)) investigated circular sharp-crested weirs and developed a different equation for the overflow with a discharge coefficientμbeing a function of the relative depth. Staus (1931) determined experimental values for a discharge coefficient, which is a function of the filling ratio, of circular sharp-crested weirs with different weir diameters. Stevens (1957) derived a function relationship between the theoretical discharge and water head in terms of the complete elliptic integrals of the first and second kinds. This complex equation is not very suitable for practical purposes. Stevens also tabulated his solution. Rajarathnam and Muralidhar (1964) investigated the end depth in a cylindrical channel. They proposed a function between discharge and the water depth at the end of the channel. Vatankhah (2010), using experimental data, presented a theoretical discharge equation and a suitable discharge coefficient equation for a circular sharp-crest weir. Thus, actual discharge can be computed via his proposed equations. With a theoretical formula, the relationship between discharge and the wetted area for free overflow in a semi-circular channel was developed by Qu et al. (2010). Their results provide a basis for circular weir development.

    Although a handful of simple and accurate equations in the technical literature can be used to analytically predict the stage-discharge relation for circular weirs, due to the complex patterns of the flow passing over circular sharp-crested weirs, the stage-discharge relation for these weirs cannot be estimated merely analytically. In order to extract a stage-discharge relation for weirs, it is necessary to apply an equation having experimental correction coefficients. Assuming the occurrence of critical flow over a weir crest, in this study, a theoretical stage-discharge relation was obtained by solving two non-linear equations. To modify the relation, an experimental correction coefficient, which was a function of the ratio of the flow depth of the upstream canal to the height of the weir crest and was obtained from experimental results, was applied.

    2 Materials and methods

    2.1 Governing equations

    For a circular sharp-crested weir, the discharge is given by Panuzio and Ramponi (1936) (reported in Lencastre (1961)) as follows:

    whereDis the diameter (dm),Qis the discharge (dm3/s),?is a function of the water level, andμis the discharge coefficient, calculated from Eq. (2), in whichhis the water head:

    Panuzio and Ramponi (1936) obtained another equation for circular weirs with the distance between the lowest points of weirs and the bottom of the canal ranging from 0.4 m to 0.8 m:

    whereSis the flow area between the crest and the free surface related to the water headh, andgis the gravitational acceleration.μwas obtained from the following formula:

    whereS′ is the canal flow area.

    In this study, assuming that the flow depth reached the critical depth while flowing downward over the weir, for circular channels, the values of flow discharge and total head above the weir crest were calculated from Eqs. (5) and (6), respectively (Chow 1959):

    whereHis the total head upstream of the weir,Acis the flow area between the weir crest and the free surface specified to a critical depthyc,Tcis the width of the water surface over the weir crest specified to the critical depth, andθcis the central angle of the circular weir corresponding to the critical depth.

    A theoretical stage-discharge relation is obtained by substituting hypothetical values ofθcin Eqs. (5) and (6).

    2.2 Experimental setup

    To examine the precision of the theoretical stage-discharge relation, this study made six circular weirs with different diameters (D= 15 cm, 20 cm, and 25 cm) and different crest heights (P= 20 cm and 25 cm). The weirs were sharp-crested and made of plexiglas materials.

    In the hydraulic laboratory of the Department of Water Engineering in Razi University, 58 experimental tests were performed on these weirs at different discharge values in a 9 m-long, 0.30 m-wide, and 0.55 m-high flume. Weir characteristics and flow conditions in the experimental tests are provided in Table 1.

    Table 1 Weir characteristics and flow conditions in experimental tests

    The height of the water surface above weirs was measured with a point gauge device with a precision of 0.1 mm. The flume discharge was measured after drainage of water inside a cubic metal tank equipped with a triangular weir with a notch angle of 53°. The pumping system supplied a maximum discharge of 15 L/s. Fig. 1 shows the experimental setup.

    Fig. 1 Plan view of experimental setup (Unit: m)

    3 Results and discussion

    The stage-discharge relations calculated by Eqs. (5) and (6), along with those measured using weirs with different diameters (D) and different crest heights (P), are illustrated in Fig. 2. As seen in the figure, for each upstream stage of the weir, the theoretically calculated discharge is less than the measured value, and this difference increases with the stage.

    Fig. 2 Calculated (before modification) and measured stage-discharge relations for weirs with different diameters (D) and crest heights (P)

    To modify the calculated stage-discharge relation (Eqs. (5) and (6)), a correction coefficient was defined as, whereQcandQmwere calculated and measured discharge for the same upstream stage of the weir, respectively.

    Using genetic programming, Eq. (7) can be obtained to calculate the correction coefficient. The coefficient of determination (R2) of Eq. (7) is 0.889 3. The application limits for Eq. (7) werey1Pbetween 1 and 1.7 and the maximum flow discharge was equal to 15 L/s.

    For each of the 58 tests performed, the values ofCare plotted against the ratios of the upstream flow depth to the weir crest height (y1P) in Fig. 3.

    Fig. 3 Changes of correction coefficient (C) against ratio of upstream flow depth to weir crest heightFollowing calculation ofC, a calculated discharge value was obtained from the following equation, which is a modified form of Eq. (5):

    Measured discharge values are plotted against modified calculated values in Fig. 4, indicating a high precision of Eq. (7) in determining the correction coefficientC.

    Additional evidence of the precision of Eq. (7) in determining the correction coefficient is the comparison of the measured stage-discharge relation with the calculated one presented in Fig. 5.

    In order to compare the results from the present study with those of earlier research, the discharge values measured and calculated using Eq. (8) and the equation presented by Panuzio and Ramponi (Eq. (3)), respectively, are shown in Fig. 6, for weirs withD= 0.25 m andP= 0.25 m, andD= 0.15 m andP= 0.15 m.

    Fig. 4 Measured discharge values vs. values calculated with Eq. (8)

    Fig. 5 Stage-discharge relations measured and calculated with Eqs. (6) and (8) for weir withP= 0.2 m andD= 0.2 m

    Fig. 6 Comparison of measured and calculated discharge values using Eq. (8) and Eq. (3)

    As observed, the discharge values calculated from Eq. (3) are always slightly lower than measured values, while Eq. (8) presented in this study estimates the discharge values with high precision.

    4 Conclusions

    A new method for determination of the stage-discharge relation for circular sharp-crested weirs is outlined in this study. Assuming the occurrence of critical flow over the weir crest, a theoretical stage-discharge relation was obtained in this study through solutions of two extracted non-linear equations. The calculated discharge, using the proposed relationship, is less than the measured discharge, and this difference increases with the stage. Using the data from 58 experiments performed on six circular weirs with different diameters and crest heights in a 30 cm-wide flume, a correction coefficient was extracted, which is a function of the ratio of the upstream flow depth to the weir crest height. The modified stage-discharge relation, after application of the correction coefficient, shows good agreement with the data sets derived from experiments.

    Bos, M. G. 1989.Discharge Measurement Structures. Wageningen: International Institute for LandReclamation and Improvement (ILRI).

    Chow, V. T. 1959.Open-channel Hydraulics. New York: McGraw-Hill.

    Greve, F. W. 1924. Semi-circular Weirs Calibrated at Purdue University.Engineering News-Record, 93(5).

    Greve, F. W. 1932.Flow of Water Through Circular, Parabolic, and Triangular Vertical Notch-weirs. Lafayette: Purdue University.

    Lencastre, A. 1961.Manuel D'hydraulique Générale. Paris: Eyrolles.

    Panuzio, F. L., and Ramponi, F. 1936.Circular Measuring Weirs. Bureau of Reclamation.

    Qu, L. Q., Yu, X. X., Xiao, J., and Lei, T. W. 2010. Development and experimental verification of a mathematical expression for the discharge rate of a semi-circular open channel.International Journal of Agriculture and Biology Engineering, 3(3), 19-26. [doi:10.3965/j.issn.1934-6344.2010.03.019-026]

    Rajaratnam, N., and Muralidhar, D. 1964. End depth for circular channels.Journal of the Hydraulics Division, 90(2), 99-119.

    Rickard, C., Day, R., and Purseglove, J. 2003.River Weirs:Good Practice Guide. Swindon: R&D Publication.

    Staus, A. 1931. Der Beiwert kreisrunder Uberfalle.Wasserkraft und Wasserwirtschaft, 25(11), 122-123.

    Stevens, J. C. 1957. Flow through circular weirs.Journal of Hydraulic Engineering, 83(6), 1455.

    Vatankhah, A. R. 2010. Flow measurement using circular sharp-crested weirs.Flow Measurement and Instrumentation, 21(2), 118-122. [doi:10.1016/j.flowmeasinst.2010.01.006]

    *Corresponding author (e-mail:r_ghobadian@razi.ac.ir)

    Received Dec. 11, 2010; accepted Feb. 24, 2012

    国产片特级美女逼逼视频| 美女福利国产在线| 波多野结衣av一区二区av| 建设人人有责人人尽责人人享有的| 一区二区三区乱码不卡18| 欧美黑人欧美精品刺激| 秋霞在线观看毛片| 精品一区二区三区av网在线观看 | 亚洲成国产人片在线观看| 国产 一区精品| 中文天堂在线官网| 看十八女毛片水多多多| 国产在线视频一区二区| 99re6热这里在线精品视频| 美女午夜性视频免费| 乱人伦中国视频| 亚洲国产成人一精品久久久| 精品人妻在线不人妻| 日韩,欧美,国产一区二区三区| 婷婷色麻豆天堂久久| 99热网站在线观看| 青春草亚洲视频在线观看| 多毛熟女@视频| 丁香六月欧美| 亚洲av综合色区一区| 国产免费又黄又爽又色| 久久影院123| 夫妻午夜视频| 女性被躁到高潮视频| 黄色 视频免费看| 日韩 欧美 亚洲 中文字幕| 岛国毛片在线播放| 国产黄色免费在线视频| 国产成人91sexporn| 久久午夜综合久久蜜桃| 国产精品久久久久成人av| 美国免费a级毛片| 久久青草综合色| 色婷婷av一区二区三区视频| a级毛片在线看网站| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久午夜乱码| 亚洲美女视频黄频| 国产一区二区三区av在线| 交换朋友夫妻互换小说| 久久久国产精品麻豆| 久久av网站| 在线观看免费视频网站a站| 蜜桃国产av成人99| 亚洲欧美一区二区三区国产| 我要看黄色一级片免费的| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻熟女乱码| 丝袜人妻中文字幕| 久久精品国产亚洲av高清一级| 欧美最新免费一区二区三区| www.av在线官网国产| 国产精品久久久av美女十八| 精品国产超薄肉色丝袜足j| a级毛片黄视频| 中文乱码字字幕精品一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲精品日本国产第一区| 超碰成人久久| 女性被躁到高潮视频| netflix在线观看网站| 9191精品国产免费久久| 看免费av毛片| 精品一区在线观看国产| 国产精品免费大片| 熟女少妇亚洲综合色aaa.| 国产精品人妻久久久影院| 菩萨蛮人人尽说江南好唐韦庄| 精品国产乱码久久久久久小说| 波多野结衣一区麻豆| 波多野结衣一区麻豆| 街头女战士在线观看网站| 51午夜福利影视在线观看| 国产精品.久久久| 国产成人系列免费观看| 亚洲国产精品国产精品| 国产精品久久久久久精品古装| 99热全是精品| 免费看av在线观看网站| 亚洲综合精品二区| 伦理电影免费视频| av福利片在线| 美女大奶头黄色视频| 久久99一区二区三区| 亚洲国产日韩一区二区| 国产高清不卡午夜福利| 精品人妻熟女毛片av久久网站| 日韩精品免费视频一区二区三区| 亚洲欧美色中文字幕在线| 亚洲精品国产区一区二| 国产精品一区二区精品视频观看| 一本久久精品| 久久久久网色| 9191精品国产免费久久| 欧美日韩视频高清一区二区三区二| 色视频在线一区二区三区| av一本久久久久| 久久人人爽av亚洲精品天堂| 丰满迷人的少妇在线观看| 一本色道久久久久久精品综合| 亚洲美女视频黄频| 国产97色在线日韩免费| e午夜精品久久久久久久| 一区二区av电影网| 最新在线观看一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩另类电影网站| 亚洲精品日本国产第一区| 曰老女人黄片| 在线观看www视频免费| 丁香六月天网| 久久毛片免费看一区二区三区| 亚洲人成网站在线观看播放| 免费看不卡的av| 九色亚洲精品在线播放| 亚洲四区av| 国产精品一区二区精品视频观看| 久久久久久免费高清国产稀缺| 亚洲美女搞黄在线观看| 欧美av亚洲av综合av国产av | 久久婷婷青草| 一区二区日韩欧美中文字幕| 亚洲av日韩精品久久久久久密 | 国产亚洲一区二区精品| 性色av一级| 搡老岳熟女国产| 夫妻性生交免费视频一级片| 天天操日日干夜夜撸| 又大又爽又粗| 亚洲一级一片aⅴ在线观看| av国产精品久久久久影院| 国产在视频线精品| 18禁观看日本| 亚洲精品国产av蜜桃| 男女午夜视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲成人国产一区在线观看 | 99re6热这里在线精品视频| 久久精品国产亚洲av高清一级| 亚洲精品,欧美精品| 日韩大片免费观看网站| a级片在线免费高清观看视频| 精品人妻熟女毛片av久久网站| 这个男人来自地球电影免费观看 | 亚洲一级一片aⅴ在线观看| 看免费av毛片| 一本久久精品| 性色av一级| 国产又爽黄色视频| videosex国产| 日本vs欧美在线观看视频| 成人免费观看视频高清| 亚洲精品aⅴ在线观看| 只有这里有精品99| 黄片无遮挡物在线观看| 免费高清在线观看视频在线观看| 免费不卡黄色视频| 亚洲精品国产一区二区精华液| 成人漫画全彩无遮挡| 卡戴珊不雅视频在线播放| 成年人午夜在线观看视频| 超碰97精品在线观看| 国产在线一区二区三区精| 亚洲精品一二三| 最近中文字幕2019免费版| 国产极品天堂在线| svipshipincom国产片| 老司机深夜福利视频在线观看 | xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 在线看a的网站| 亚洲精品乱久久久久久| 五月天丁香电影| 精品一区二区三卡| 伊人亚洲综合成人网| 国产一区二区 视频在线| 欧美亚洲日本最大视频资源| 成年动漫av网址| 香蕉国产在线看| 精品一区二区三区av网在线观看 | 亚洲av电影在线进入| 免费高清在线观看视频在线观看| 国产一区二区 视频在线| 亚洲熟女毛片儿| 看十八女毛片水多多多| 精品久久久久久电影网| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 日韩伦理黄色片| 丰满少妇做爰视频| 亚洲精华国产精华液的使用体验| 大香蕉久久成人网| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产专区5o| 亚洲精品美女久久av网站| 免费在线观看黄色视频的| 一边摸一边抽搐一进一出视频| 少妇被粗大的猛进出69影院| av在线观看视频网站免费| 激情五月婷婷亚洲| 999精品在线视频| 成人免费观看视频高清| 欧美日韩亚洲国产一区二区在线观看 | 欧美xxⅹ黑人| 制服人妻中文乱码| 性色av一级| 成人免费观看视频高清| 男女边吃奶边做爰视频| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 国产精品 欧美亚洲| 国产精品一二三区在线看| 亚洲精品美女久久av网站| 国产男人的电影天堂91| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 日韩大码丰满熟妇| 18禁国产床啪视频网站| 18在线观看网站| 啦啦啦视频在线资源免费观看| 亚洲精品久久成人aⅴ小说| av在线观看视频网站免费| 啦啦啦视频在线资源免费观看| 亚洲国产看品久久| av在线观看视频网站免费| 在线观看免费高清a一片| 男人舔女人的私密视频| 亚洲男人天堂网一区| 日本午夜av视频| √禁漫天堂资源中文www| 9191精品国产免费久久| 亚洲,欧美精品.| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| 中文字幕人妻熟女乱码| 精品国产国语对白av| 午夜福利,免费看| 极品人妻少妇av视频| 曰老女人黄片| 夫妻性生交免费视频一级片| 久久久国产一区二区| 性色av一级| 在线看a的网站| 精品一区二区三区av网在线观看 | 免费少妇av软件| 亚洲激情五月婷婷啪啪| 久久久久久久久免费视频了| 国产精品久久久久久久久免| 中文天堂在线官网| 人人妻人人添人人爽欧美一区卜| 新久久久久国产一级毛片| 久久99精品国语久久久| 好男人视频免费观看在线| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| www日本在线高清视频| 国产成人一区二区在线| 色婷婷av一区二区三区视频| 一边摸一边抽搐一进一出视频| 亚洲av日韩精品久久久久久密 | 欧美日韩视频精品一区| 在线 av 中文字幕| 18禁国产床啪视频网站| av网站在线播放免费| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 1024视频免费在线观看| 美女福利国产在线| 美女午夜性视频免费| 精品一区二区免费观看| 丝袜脚勾引网站| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 久久久国产一区二区| 黄色 视频免费看| 欧美xxⅹ黑人| 久久精品国产综合久久久| 久久久精品免费免费高清| 久久久久精品久久久久真实原创| 国产乱来视频区| 精品国产露脸久久av麻豆| 国产成人啪精品午夜网站| 91成人精品电影| 大香蕉久久成人网| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久av网站| 搡老乐熟女国产| 男女午夜视频在线观看| 成人国产麻豆网| 午夜激情av网站| 久久精品人人爽人人爽视色| 日本爱情动作片www.在线观看| 巨乳人妻的诱惑在线观看| 亚洲一区二区三区欧美精品| 亚洲四区av| 男女床上黄色一级片免费看| 别揉我奶头~嗯~啊~动态视频 | 日韩人妻精品一区2区三区| 午夜福利影视在线免费观看| 人妻一区二区av| 哪个播放器可以免费观看大片| 国产乱来视频区| 香蕉丝袜av| 亚洲欧洲精品一区二区精品久久久 | www.av在线官网国产| 亚洲精品国产一区二区精华液| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 一本久久精品| 成人亚洲欧美一区二区av| 大码成人一级视频| 亚洲熟女毛片儿| 午夜日本视频在线| 天天躁日日躁夜夜躁夜夜| 国产探花极品一区二区| 欧美日韩亚洲国产一区二区在线观看 | svipshipincom国产片| 黑人巨大精品欧美一区二区蜜桃| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 少妇精品久久久久久久| 国产黄色免费在线视频| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 多毛熟女@视频| 久久精品熟女亚洲av麻豆精品| 99精品久久久久人妻精品| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 麻豆av在线久日| 欧美日韩国产mv在线观看视频| 国产毛片在线视频| 中文字幕最新亚洲高清| 午夜福利视频在线观看免费| 亚洲国产av新网站| 久久人人爽人人片av| 国产av精品麻豆| 91精品伊人久久大香线蕉| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 欧美av亚洲av综合av国产av | av在线app专区| 欧美日韩视频精品一区| 九色亚洲精品在线播放| 一级片免费观看大全| 久久韩国三级中文字幕| av线在线观看网站| 日本一区二区免费在线视频| 黄网站色视频无遮挡免费观看| 女人久久www免费人成看片| 搡老乐熟女国产| 免费少妇av软件| 在线观看三级黄色| av线在线观看网站| 又大又黄又爽视频免费| 激情视频va一区二区三区| 亚洲一码二码三码区别大吗| www日本在线高清视频| 午夜福利免费观看在线| 日日撸夜夜添| 男女午夜视频在线观看| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 热re99久久精品国产66热6| 成人毛片60女人毛片免费| 99九九在线精品视频| 大香蕉久久网| 日韩中文字幕视频在线看片| 久久久久久人人人人人| 婷婷色综合大香蕉| 国产乱来视频区| 叶爱在线成人免费视频播放| 久久青草综合色| 在线观看免费视频网站a站| 一级片'在线观看视频| 丝瓜视频免费看黄片| 别揉我奶头~嗯~啊~动态视频 | 黑人欧美特级aaaaaa片| 国产xxxxx性猛交| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡| 男女高潮啪啪啪动态图| 80岁老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 91成人精品电影| 大码成人一级视频| 涩涩av久久男人的天堂| av片东京热男人的天堂| 国产爽快片一区二区三区| 免费人妻精品一区二区三区视频| 婷婷色av中文字幕| 亚洲七黄色美女视频| 国产片特级美女逼逼视频| 久久久国产精品麻豆| 欧美精品av麻豆av| 久久av网站| 一级毛片电影观看| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 999久久久国产精品视频| 亚洲伊人久久精品综合| 国产一级毛片在线| 欧美日韩视频精品一区| 亚洲精品在线美女| 大香蕉久久成人网| 麻豆精品久久久久久蜜桃| 老鸭窝网址在线观看| 亚洲精品国产av成人精品| 高清黄色对白视频在线免费看| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 女人久久www免费人成看片| 一级毛片我不卡| 看十八女毛片水多多多| 久久久久久久精品精品| 午夜福利在线免费观看网站| 精品一区二区三区av网在线观看 | 久久国产精品大桥未久av| 嫩草影院入口| 亚洲在久久综合| 久久久国产一区二区| 日本欧美视频一区| e午夜精品久久久久久久| 欧美97在线视频| 十分钟在线观看高清视频www| 巨乳人妻的诱惑在线观看| 欧美激情极品国产一区二区三区| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 黄色 视频免费看| 国产精品一国产av| 丝袜在线中文字幕| 亚洲av男天堂| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 一区福利在线观看| 久久热在线av| 欧美激情 高清一区二区三区| 日韩中文字幕视频在线看片| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 午夜影院在线不卡| 精品久久蜜臀av无| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 韩国精品一区二区三区| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| 伊人亚洲综合成人网| 免费看av在线观看网站| 亚洲人成电影观看| 国产一级毛片在线| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 欧美精品av麻豆av| 国产成人一区二区在线| 男男h啪啪无遮挡| 天天添夜夜摸| 日本爱情动作片www.在线观看| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 在现免费观看毛片| 香蕉丝袜av| 9热在线视频观看99| 狠狠婷婷综合久久久久久88av| 亚洲国产精品成人久久小说| 日韩av在线免费看完整版不卡| 一边摸一边做爽爽视频免费| 久久99精品国语久久久| 国产一级毛片在线| 日本一区二区免费在线视频| 97在线人人人人妻| 国产精品免费大片| 人妻 亚洲 视频| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 在线观看免费高清a一片| 美女脱内裤让男人舔精品视频| 精品一区二区三区av网在线观看 | 免费在线观看黄色视频的| 老司机靠b影院| 亚洲av国产av综合av卡| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 国产精品麻豆人妻色哟哟久久| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 国产片特级美女逼逼视频| 人成视频在线观看免费观看| 免费黄色在线免费观看| 观看av在线不卡| 天天影视国产精品| 美女扒开内裤让男人捅视频| 大香蕉久久网| 99久久99久久久精品蜜桃| 亚洲激情五月婷婷啪啪| 亚洲成人一二三区av| 一本色道久久久久久精品综合| 午夜影院在线不卡| 日日撸夜夜添| 久久狼人影院| www.精华液| 国产精品.久久久| 午夜福利影视在线免费观看| 亚洲一码二码三码区别大吗| 一级片免费观看大全| 一二三四中文在线观看免费高清| 99re6热这里在线精品视频| 久久99一区二区三区| 美女福利国产在线| 1024香蕉在线观看| 国产男人的电影天堂91| 不卡av一区二区三区| 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 自线自在国产av| 色网站视频免费| 亚洲成人手机| 国产探花极品一区二区| 中文精品一卡2卡3卡4更新| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 国产免费视频播放在线视频| 国产在线免费精品| 啦啦啦在线观看免费高清www| 少妇 在线观看| 精品国产一区二区三区四区第35| av福利片在线| 精品国产超薄肉色丝袜足j| 男女床上黄色一级片免费看| 日本av免费视频播放| 久久久久国产精品人妻一区二区| 国产伦人伦偷精品视频| av在线播放精品| 成年人免费黄色播放视频| 大码成人一级视频| 久久久国产欧美日韩av| 制服诱惑二区| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| av国产精品久久久久影院| 女性生殖器流出的白浆| 观看美女的网站| a级片在线免费高清观看视频| 午夜免费鲁丝| 男女床上黄色一级片免费看| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 桃花免费在线播放| 日韩制服丝袜自拍偷拍| 精品免费久久久久久久清纯 | 日日啪夜夜爽| 亚洲情色 制服丝袜| 久久人妻熟女aⅴ| 中文字幕制服av| 一本色道久久久久久精品综合| 精品少妇黑人巨大在线播放| 美女国产高潮福利片在线看| 国产一区二区在线观看av| 久久av网站| 美女国产高潮福利片在线看| 亚洲国产av影院在线观看| 人妻一区二区av| 亚洲国产精品成人久久小说| 菩萨蛮人人尽说江南好唐韦庄| 国产成人午夜福利电影在线观看| 一区二区三区乱码不卡18| 一区在线观看完整版| 考比视频在线观看| 欧美日韩国产mv在线观看视频| 国产一区二区三区av在线| 成年动漫av网址| 咕卡用的链子| 男人操女人黄网站| 80岁老熟妇乱子伦牲交| 一本大道久久a久久精品| 在线观看免费午夜福利视频| 国产精品国产av在线观看| 欧美 亚洲 国产 日韩一| bbb黄色大片| 人妻一区二区av| 欧美日韩av久久| 最近最新中文字幕免费大全7| www.av在线官网国产| 麻豆乱淫一区二区| 又粗又硬又长又爽又黄的视频| 性高湖久久久久久久久免费观看| 一级黄片播放器|