• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of CLEAR-VOF method to wave and flow simulations

    2012-08-16 09:04:01YingweiSUNHaiguiKANG
    Water Science and Engineering 2012年1期

    Ying-wei SUN, Hai-gui KANG*

    School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, P. R. China

    Application of CLEAR-VOF method to wave and flow simulations

    Ying-wei SUN, Hai-gui KANG*

    School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, P. R. China

    A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF functionFwas calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.

    water wave; water flow; numerical simulation; CLEAR-VOF;three-step finite element method

    1 Introduction

    Modeling unsteady free surface flows is an important step in study of water wave problems. At present, the volume of fluid (VOF) method is the most popular free surface modeling method. But the original VOF method, which is based on the finite difference method, is limited to problems with complicated computation domains. In order to make up for this limitation, novel VOF methods have been developed by many researchers. Jeong and Yang (1998) improved the method for calculating the VOF function and presented a numerical model that combined the VOF method with finite element analysis and could be applied to adaptive meshes. L?hner et al. (2006) developed a new VOF model, which can be operated on adaptive unstructured meshes to simulate the interactions between extreme waves and three-dimensional structures. Yang et al. (2006) simulated interfacial flow with the VOF method on unstructured triangular meshes by combining an adaptive coupled level set.Mencinger and ?un (2011) presented a variant of the VOF model, which is based on the piecewise linear interface calculation method and can be used on general moving meshes. Ashgriz et al. (2004) presented a novel VOF method, namely the computational Lagrangian-Eulerian advection remap-VOF (CLEAR-VOF) method. In this method, the volume fraction of each element is calculated in the Lagrangian manner with geometric tools, and the piecewise linear reconstruction method is used to reconstruct the interface. With the help of the finite element method, this method can be easily applied in unstructured meshes.

    In this study, a two-dimensional numerical model was established by combining the Navier-Stokes equations with the CLEAR-VOF method. The three-step finite element method (Jiang and Kawahara 1993), which has a third-order accuracy, was used to discretize the Navier-Stokes equations. Using this model, the propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated. Numerical results were compared with experimental data and theoretical solutions. To verify the performance of the model on unstructured meshes, a benchmark test of dam-collapse flow was also carried out.

    2 Governing equations and discretization

    2.1 Governing equations

    The governing equations are the following continuity equation and two-dimensional Navier-Stokes equations for incompressible viscous fluid:

    whereuis the velocity; the subscriptsiandjrepresent coordinate directions;ρis the fluid density and equals 1000 kg/m3;pis the pressure;fis the unit body force and equals 0 m/s2in thexdirection and –9.8 m/s2in theydirection, respectively;νeis the effective viscosity coefficient and can be described asνe=ν+νt, whereνis the kinematic viscosity and equals 1.002 × 10-6m2/s, andνtis the turbulent viscosity. Here, the Smagorinsky subgrid-scale turbulence model is employed:

    wherecsis the Smagorinsky constant ranging from 0.1 to 0.2, andΔis the characteristic length of the element.

    2.2 Three-step finite element method

    The Navier-Stokes equations are discretized with the three-step finite element method inwhich the time-splitting idea is employed to discretize the time term. As shown in Eq. (4), the Taylor series expansion of velocityuas a function oftcan be described as

    wherendenotes the number of time steps. By approximating Eq. (4) to a third-order accuracy, the three-step formula for velocityucan be written as

    By applying the three-step formula to Eq. (2), the following discretized Navier-Stokes equations can be obtained:

    It can be seen from Eq. (10) thatpn+1should be obtained in advance to calculateun+1. By applying divergence to both sides of Eq. (10) and introducing the incompressible constraint, the following Poisson equation of pressure is obtained:

    By applying the standard Galerkin finite element method, the weak form of the momentum equations and the Poisson equation are derived:

    wherewis the weight function,Vis the volume of elements,uiβis the velocity at nodeβin directioni,ujγis the velocity at nodeγin directionj, andφβandφγare the basis functions. It should be noted that the same order basisfunctions are used for the interpolation of velocities and pressures. In the present study, the quadrilateral isoparametric element is used, soβandγrange from 1 to 4, and the basis functions are as follows:

    whereζandψrepresent the local coordinates of the standard element and range from –1 to 1.

    The explicit momentum equations are solved using the lumped-mass matrix method, and the Poisson equation is solved using a preconditioned bi-conjugate gradient method.

    3 CLEAR-VOF method

    3.1 Calculation of VOF function

    In the original VOF method, the VOF functionFis updated every time step by solving its transport equation. Since the CLEAR-VOF method is also applied in Eulerian fixed meshes, and the volume of fluid advection is calculated in the Lagrangian manner with geometric tools, it is unnecessary to solve the transport equation. The procedure for calculating theFfunction with the CLEAR-VOF method can be divided into three steps:

    (1) Construction of fluid polygons for elements: In this step, the vertices of fluid polygons in each element need to be determined, as shown in Fig. 1. IfF= 0, there is no fluid polygon because no fluid exists in this element. If 0 <F< 1, the element is partially filled with fluid: the nodesa,b, anddof the element are inside the fluid polygon, and nodeseandgare the intersections of the interface and the background grid. The nodesa,b,e,g, anddconstitute the vertices of the fluid polygon. IfF= 1, the element is fully filled with the fluid, and the fluid polygon is identical to the background grid. The nodesa,b,c, anddof the grid are also the vertices of the fluid polygon.

    Fig. 1 Vertices of fluid polygon

    (2) Polygon movement calculation: Once a polygon is identified, its movement is calculated in the Lagrangian manner.andare the velocity components of the vertices of the fluid polygon at thenth time step. After a time step Δt, the displacements and new locations of the vertices can be obtained by Eqs. (17) and (18):

    As shown in Fig. 2, nodesa,b,c,d, andein Fig. 2(a) and nodesa1,b1,c1,d1, ande1in Fig. 2 (b) are the vertices of the fluid polygon atthenth time step and the (n+1)th time step, respectively.

    Fig. 2 Sketch of CLEAR-VOF method

    (3) VOF function calculation at a new time step: The new fluid polygona1b1c1d1e1intersects with the background grids. A portion of the fluid remains inside the home element, and the rest enters its neighboring elements. In Fig. 2, the home element has eight neighboring elements. The fluid-covered areas in the home element and other neighboring elements are calculated, and the new VOF functionFcan be derived by repeating the procedure for all the fluid polygons.

    3.2 Interface reconstruction

    The piecewise linear reconstruction method (Ashgriz et al. 2004) is used to reconstruct the interface. For an interface elementIwithJneighbouring elements, the unit normal vectormof the line interface, expressed asm=mxi+myj, can be obtained by

    where ? is the differential operator. ?Ffor elementIis solved by the following linear system:

    where

    where (xcen,ycen) is the location of the centroid of each element. Then the interface equation can be obtained by

    whereDis a constant.

    4 Numerical results

    4.1 Regular wave simulation

    A two-dimensional numerical wave flume model was established. The domain was 10 m long and 0.8 m high. The computational domain and coordinate system are shown in Fig. 3. The origin of thex-axis was fixed at the inflow boundary on the left side and the origin of they-axis was fixed at the bottom boundary. A mesh of 800 elements in thexdirection and 150 elements in theydirection was used.

    Fig. 3 Sketch of computational domain for traveling wave

    On the left side, the numerical wave generation theory (Dong and Huang 2004) was adopted to generate second-order Stokes waves. With a piston-type wave board, the horizontal velocityv(t) of the wave paddle satisfies

    whereHis the wave height, andLis the wave length.

    On the right side, a damping layer boundary condition (Larsen and Dancy 1983) was adopted to absorb the wave energy gradually. In the damping layer, the velocity components are divided byμ(x). The damping factorμ(x) was described as

    whereαis equal to 1.1,Lwis the length of the computational domain, andλis the thickness of the damping layer and is set as the wave length.

    Fig. 4 and Fig. 5 show the time histories of the simulated regular wave cases with a still water depth (h0) of 0.35 m, wave heights (H) of 0.10 m and 0.12 m, and wave periods (T) of 1.2 s and 1.3 s, respectively. After the first three or four waves, the temporal curves of the simulated waves are very stable. The phases and amplitudes of the waves generated by the numerical model are in good agreement with the theoretical solutions. The nature of the second-order Stokes wave with the wave shape asymmetrical to the still water level is well demonstrated in the numerical results.

    Fig. 4 Temporal curves of wave free surface (H= 0.10 m, andT= 1.2 s)

    Fig. 5 Temporal curves of wave free surface (H= 0.12 m, andT= 1.3 s)

    4.2 Solitary wave simulation

    To generate a solitary wave, the following displacement of a piston-type wave maker (Goring and Raichlen 1980) is given:

    whereis the initial heig ht of the solitary wave,cis the wave speed and can be calculated

    The velocity of a wave maker is described as follows:

    wherexis the position of the wave maker.

    4.2.1 Propagation of solitary wave

    The configuration of the flume is similar to the previous case shown Fig. 3. The flume is 18 m long and 0.5 m deep. The domain is divided by 1 440 elements in thexdirection and 90 elements in theydirection. A solitary wave for, propagating rightward over a water surface with a constant still water depth ofh0=0.3m was simulated.

    Fig. 6 Comparison of solitary wave profile

    Fig. 6 shows the solitary wave profile generated by the present numerical model using Boussinesq’s theory att =2.5 s. The numerical result is shown to be very close to the analytical solution.

    Fig. 7 shows the solitary wave propagation at four moments in the numerical flume. It can be seen that the solitary wave profile is stable in a permanent form during propagation. The attenuation of the solitary wave height during the propagating process was small. According to Mei’s perturbation theory (Mei 1989), the solitary wave height during propagation can be determined by

    Fig. 8 shows thatcalculated by the present model agrees with Mei’s perturbation theory.

    Fig. 7 Propagation of solitary waves in numerical flume

    Fig. 8 Attenuation of solitary wave height during propagation

    4.2.2 Shoaling and breaking of solitary waves on slopes

    The shoaling and breaking of solitary waves on different slopes were computed with thepresent model. Fig. 9 shows the computational domain.

    Fig. 9 Computational domain for solitary wave shoaling and breaking on slopes

    In the first case, the slope was 1:15, andwas 0.3. In the second case, the slope was 1:35 andwas 0.2. Figs. 10 and 11 show the comparison of the numerical results of the present method with those of Grilli et al. (1997), in which an experimentally validated fully nonlinear wave model was used to simulate the shoaling and breaking processes of solitary waves. The coordinates in both the horizontal and vertical directions were normalized by the still water depth, andt1,t2,t3, andt4rep resent four different moments. It can be seen that the shoaling and breaking processes in the present study were quite similar to those of Grilli et al. (1997) in both cases. The breaking points also matched well. The water tongues in the present study were a little thicker than those in Grilli et al. (1997).

    Fig. 10 Free surface profiles of solitary wave shoaling and breaking on 1:15 slope (=0.3)

    Fig. 11 Free surface profiles of solitary wave shoaling and breaking on 1:35 slope (=0.2)

    The maximum wave runup (Rm) of a solitary wave on a 1:1 slope was also investigated and a comparison of results is shown in Fig. 12. It can be seen that the results of the present study lie between those of Synolakis (1987) and Maiti and Sen (1999).

    Fig. 12 Maximum runup of solitary waves on 1:1 slope

    4.3 Dam-collapse flow simulation

    Dam-collapse flow simulation, which is a classic-benchmark test for the verification of a free surface model, was conducted with an unstructured mesh to verify the performance of the CLEAR-VOF method. As shown in Fig. 13, an initial water column with both the height (h1) and width (h2) of 0.055 m is determined on the left of the flume. The computational domain, which is 0.3 m long and 0.06 m high, is divided by an unstructured quadrilateral mesh with 2 172 elements and 2 313 nodes.

    Fig. 13 Computational domain with unstructured quadrilateral mesh

    Fig. 14 shows the evolution of the free surface at the instants oft= 0.06 s,t= 0.08 s,t= 0.10 s, andt= 0.12 s. It can be seen that the interface can be captured by the present model with an unstructured mesh.

    Fig. 14 Evolution of free surfaces

    Fig. 15 and Fig. 16 show the comparisons of numerical results and experimental data (Martin and Moyce 1952) for the variation of the water surface elevationYon the left side wall and the position of water frontXalong the bottom, respectively. The dimensionless coordinates are defined as

    The comparisons of the numerical results and experimental data are fairly acceptable, demonstrating the validity of the present model on unstructured meshes.

    Fig. 15 Variation of free surface elevation on left side wall

    Fig. 16 Variation of water front along bottom

    5 Conclusions

    Based on the Navier-Stokes equations and the CLEAR-VOF method, a two-dimensional numerical model for wave and flow simulations was developed in this study. The three-step finite element method was used to discretize the Navier-Stokes equations.

    The model was used to simulate the propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on different slopes, and a benchmark test of dam-collapse flow with an unstructured mesh was also carried out. The result shows that, compared with the original VOF method that could be only applied in structured meshes, the CLEAR-VOF method can be applied in both structured and unstructured meshes due to its combination with the finite element method. The present model provides a convenient way for simulating wave and flow problems with complex boundaries.

    Ashgriz, N., Barbat, T., and Wang, G. 2004. A computational Lagrangian-Eulerian advection remap for free surface flows.International Journal for Numerical Methods in Fluids, 44(1), 1-32. [doi:10.1002/fld.620]

    Dong, C. M., and Huang, C. J. 2004. Generation and propagation of water waves in a two-dimensional numerical viscous wave flume.Journal of Waterway, Port, Coastal and Ocean Engineering, 130(3), 143-153. [doi:10.1061/(ASCE)0733-950X(2004)130:3(143)]

    Goring, D., and Raichlen, F. 1980. The generation of long waves in the laboratory.Proceedings of the 17th International Coastal Engineering Conference, 763-783. New York: ASCE.

    Grilli, S. T., Svendsen, I. A., and Subramanya, R. 1997. Breaking criterion and characteristic for solitary waves on slopes.Journal of Waterway, Port, Coastal and Ocean Engineering, 123(3), 102-112. [doi:10.1061/ (ASCE)0733-950X(1997)123:3(102)]

    Jeong, J. H., and Yang, D. Y. 1998. Finite element analysis of transient fluid flow with free surface using VOF(Volume of Fluid) method and adaptive grid.International Journal for Numerical Methods in Fluids, 26(10), 1127-1154. [doi:10.1002/(SICI)1097-0363(19980615)26:10<1127::AID-FLD644>3.0.CO;2-Q]

    Jiang, C. B., and Kawahara, M. 1993. The analysis of unsteady incompressible flows by a three-step finite element method.International Journal for Numerical Methods in Fluids, 16(9), 793-811. [doi:10.1002/ fld.1650160904]

    Larsen, J., and Dancy, H. 1983. Open boundaries in short wave simulations: A new approach.Coastal Engineering, 7(3), 285-297. [doi:10.1016/0378-3839(83)90022-4]

    L?hner, R., Yang, C., and O?ate, E. 2006. On the simulation of flows with violent free surface motion.Computer Methods in Applied Mechanics and Engineering, 195(41-43), 5597-5620. [doi:10.1016/ j.cma.2005.11.010]

    Maiti, S., and Sen, D. 1999. Computation of solitary waves during propagation and runup on a slope.Ocean Engineering, 26(11), 1063-1083. [doi:10.1016/S0029-8018(98)00060-2]

    Martin, J. C., and Moyce, W. J. 1952. An experimental study of the collapse of liquid columns on a rigid horizontal plane.Philosophical Transaction of the Royal Society of London,Series A, Mathematical and Physical Sciences, 224(882), 312-324.

    Mei, C. C. 1989.The Applied Dynamics of Ocean Surface Waves. Singapore City: World Scientific.

    Mencinger, J., and ?un, I. 2011. A PLIC–VOF method suited for adaptive moving grids.Journal of Computational Physics, 230(3), 644-663. [doi:10.1016/j.jcp.2010.10.010]

    Synolakis, C. E. 1987. The runup of solitary waves.Journal of Fluid Mechanics, 185, 523-545. [doi:10.1017/ S002211208700329X]

    Yang, X. F., James, A. J., Lowengrub, J., Zheng, X. M., and Cristini, V. 2006. An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids.Journal of Computational Physics, 217(2), 364-394. [doi:10.1016/j.jcp.2006.01.007]

    This work was supported by the National Natural Science Foundation of China (Grant No. 50679008).

    *Corresponding author (e-mail:hgkang@dlut.edu.cn)

    Received Oct. 24, 2011; accepted Jan. 11, 2012

    精品午夜福利视频在线观看一区| 国产精品亚洲美女久久久| 久久中文字幕一级| 18禁黄网站禁片免费观看直播| www日本在线高清视频| 欧美另类亚洲清纯唯美| 成人手机av| 十八禁人妻一区二区| 哪里可以看免费的av片| 免费电影在线观看免费观看| 色综合婷婷激情| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产| 免费在线观看视频国产中文字幕亚洲| 十分钟在线观看高清视频www| 母亲3免费完整高清在线观看| 91麻豆精品激情在线观看国产| 久久婷婷成人综合色麻豆| 国产伦一二天堂av在线观看| 午夜久久久久精精品| 欧美日韩亚洲国产一区二区在线观看| 成人精品一区二区免费| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 国产精品日韩av在线免费观看| 久久九九热精品免费| 亚洲成国产人片在线观看| 免费一级毛片在线播放高清视频| 熟女电影av网| 午夜免费观看网址| 母亲3免费完整高清在线观看| 亚洲第一欧美日韩一区二区三区| 757午夜福利合集在线观看| 神马国产精品三级电影在线观看 | 国产成人精品久久二区二区91| 人人妻人人澡欧美一区二区| 欧美在线一区亚洲| 久99久视频精品免费| 午夜久久久久精精品| 777久久人妻少妇嫩草av网站| 国产精品影院久久| 嫩草影院精品99| 久9热在线精品视频| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 在线观看免费日韩欧美大片| 人人澡人人妻人| 久热爱精品视频在线9| 男女下面进入的视频免费午夜 | 很黄的视频免费| 两人在一起打扑克的视频| 观看免费一级毛片| 热re99久久国产66热| 999精品在线视频| 免费在线观看完整版高清| 又大又爽又粗| 性欧美人与动物交配| 91麻豆av在线| 在线免费观看的www视频| 午夜激情av网站| 手机成人av网站| 看免费av毛片| 国产精品乱码一区二三区的特点| 亚洲专区国产一区二区| 色婷婷久久久亚洲欧美| 91在线观看av| 成年版毛片免费区| 在线免费观看的www视频| 十八禁人妻一区二区| 在线播放国产精品三级| 色哟哟哟哟哟哟| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器 | 日本黄色视频三级网站网址| АⅤ资源中文在线天堂| 99热6这里只有精品| 欧美最黄视频在线播放免费| 曰老女人黄片| 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 欧美午夜高清在线| 欧美+亚洲+日韩+国产| 女同久久另类99精品国产91| 999精品在线视频| 日韩国内少妇激情av| 亚洲精品av麻豆狂野| 淫妇啪啪啪对白视频| 一本精品99久久精品77| 黄片播放在线免费| 国产激情欧美一区二区| 看片在线看免费视频| netflix在线观看网站| 99国产精品一区二区三区| 亚洲色图av天堂| 亚洲成人免费电影在线观看| 欧美+亚洲+日韩+国产| 欧美在线黄色| 国产私拍福利视频在线观看| 日韩有码中文字幕| 亚洲自偷自拍图片 自拍| 国产精品久久久av美女十八| 久久精品成人免费网站| 久久 成人 亚洲| 韩国精品一区二区三区| 精品免费久久久久久久清纯| 中文字幕最新亚洲高清| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 中文字幕久久专区| 国产野战对白在线观看| 视频在线观看一区二区三区| 国产1区2区3区精品| 日韩精品青青久久久久久| 黄色视频,在线免费观看| 无人区码免费观看不卡| 很黄的视频免费| 久热爱精品视频在线9| 韩国精品一区二区三区| 波多野结衣高清作品| 18禁裸乳无遮挡免费网站照片 | 国产精品 欧美亚洲| 久久国产亚洲av麻豆专区| 久久久久免费精品人妻一区二区 | 动漫黄色视频在线观看| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 搡老岳熟女国产| 看免费av毛片| 亚洲av成人一区二区三| 在线国产一区二区在线| 欧美 亚洲 国产 日韩一| 国产伦一二天堂av在线观看| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 久久久久九九精品影院| 久久久久国产一级毛片高清牌| 国产精品一区二区免费欧美| 精品国产乱子伦一区二区三区| 日韩欧美在线二视频| 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 无限看片的www在线观看| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 一级毛片高清免费大全| 亚洲精品久久成人aⅴ小说| 亚洲精品久久国产高清桃花| 男男h啪啪无遮挡| 亚洲成人精品中文字幕电影| 亚洲五月婷婷丁香| 中文资源天堂在线| 宅男免费午夜| 首页视频小说图片口味搜索| 亚洲电影在线观看av| 久久香蕉国产精品| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久男人| 亚洲国产中文字幕在线视频| 亚洲成人久久性| 99国产综合亚洲精品| 亚洲avbb在线观看| 日韩欧美 国产精品| 黑丝袜美女国产一区| 亚洲第一欧美日韩一区二区三区| 亚洲精品国产区一区二| 51午夜福利影视在线观看| 高清在线国产一区| 国产av在哪里看| av视频在线观看入口| 九色国产91popny在线| 久久精品人妻少妇| 视频在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产免费av片在线观看野外av| 亚洲aⅴ乱码一区二区在线播放 | av电影中文网址| 久久狼人影院| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 男人舔女人下体高潮全视频| 可以在线观看的亚洲视频| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧洲综合997久久, | 国产高清激情床上av| 亚洲黑人精品在线| 十分钟在线观看高清视频www| 亚洲欧美日韩高清在线视频| 精品福利观看| 亚洲精品色激情综合| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点| 亚洲精品国产精品久久久不卡| 国产精品亚洲av一区麻豆| 久久国产精品影院| 免费观看人在逋| 男女那种视频在线观看| 搡老岳熟女国产| 欧美成狂野欧美在线观看| 国产伦在线观看视频一区| 丁香欧美五月| 免费高清在线观看日韩| 麻豆成人av在线观看| 成人精品一区二区免费| 搞女人的毛片| 成年版毛片免费区| 国产一级毛片七仙女欲春2 | 亚洲熟妇熟女久久| 91av网站免费观看| 制服诱惑二区| 婷婷丁香在线五月| 中文资源天堂在线| 午夜福利高清视频| 久久中文看片网| 免费人成视频x8x8入口观看| 久久久国产成人免费| √禁漫天堂资源中文www| 女人爽到高潮嗷嗷叫在线视频| 国内少妇人妻偷人精品xxx网站 | 亚洲专区国产一区二区| 欧美日韩乱码在线| 精品高清国产在线一区| 亚洲成av片中文字幕在线观看| 欧美丝袜亚洲另类 | 亚洲一区二区三区不卡视频| 亚洲av成人av| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆 | 亚洲精品一卡2卡三卡4卡5卡| 99在线人妻在线中文字幕| 亚洲第一欧美日韩一区二区三区| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 免费在线观看日本一区| 亚洲第一青青草原| 欧美中文综合在线视频| 2021天堂中文幕一二区在线观 | av中文乱码字幕在线| 午夜福利视频1000在线观看| 老司机在亚洲福利影院| 欧美性猛交╳xxx乱大交人| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 国产麻豆成人av免费视频| 亚洲色图av天堂| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频不卡| 久久热在线av| 日韩欧美一区二区三区在线观看| 精品欧美一区二区三区在线| 久久精品人妻少妇| 巨乳人妻的诱惑在线观看| 国产激情欧美一区二区| 男人舔奶头视频| 欧美黑人巨大hd| 国产精品一区二区免费欧美| av中文乱码字幕在线| 精品国产乱码久久久久久男人| 人妻久久中文字幕网| 国产一区二区三区视频了| 91av网站免费观看| 制服人妻中文乱码| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 亚洲 欧美一区二区三区| 2021天堂中文幕一二区在线观 | 99国产精品一区二区三区| 亚洲第一青青草原| 在线观看日韩欧美| 99久久99久久久精品蜜桃| av中文乱码字幕在线| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 亚洲自偷自拍图片 自拍| 美女免费视频网站| 亚洲一码二码三码区别大吗| 99国产精品99久久久久| 黄色视频不卡| 国产激情欧美一区二区| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 男女做爰动态图高潮gif福利片| 欧美中文日本在线观看视频| 久久久国产欧美日韩av| 久久久久久亚洲精品国产蜜桃av| 亚洲真实伦在线观看| 给我免费播放毛片高清在线观看| 侵犯人妻中文字幕一二三四区| 国产亚洲精品久久久久5区| 中文字幕av电影在线播放| 在线免费观看的www视频| 欧美中文综合在线视频| 亚洲国产精品sss在线观看| 久久这里只有精品19| 婷婷亚洲欧美| 99在线人妻在线中文字幕| 少妇的丰满在线观看| 日本黄色视频三级网站网址| 俺也久久电影网| 国产精品国产高清国产av| 成在线人永久免费视频| 国产熟女xx| 亚洲精品国产精品久久久不卡| 两个人看的免费小视频| 深夜精品福利| 日韩大尺度精品在线看网址| 久久精品影院6| 黑人欧美特级aaaaaa片| 欧美黑人欧美精品刺激| 久久久久久大精品| 一级毛片高清免费大全| 露出奶头的视频| 免费在线观看日本一区| 久久久水蜜桃国产精品网| 国产又黄又爽又无遮挡在线| av欧美777| 国产成人欧美在线观看| 精华霜和精华液先用哪个| aaaaa片日本免费| 国产精品综合久久久久久久免费| av福利片在线| 伊人久久大香线蕉亚洲五| 欧美色视频一区免费| 欧美三级亚洲精品| a在线观看视频网站| 欧美不卡视频在线免费观看 | 欧美色欧美亚洲另类二区| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 亚洲国产高清在线一区二区三 | 老司机深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 精品久久蜜臀av无| 国产精品久久久av美女十八| 亚洲av电影不卡..在线观看| 日韩欧美一区视频在线观看| 精品久久久久久久久久久久久 | 成年女人毛片免费观看观看9| 男女午夜视频在线观看| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 国内久久婷婷六月综合欲色啪| 久久亚洲精品不卡| 正在播放国产对白刺激| 久久精品国产清高在天天线| 制服人妻中文乱码| 亚洲熟妇中文字幕五十中出| 欧美大码av| 亚洲 国产 在线| 99久久无色码亚洲精品果冻| 欧洲精品卡2卡3卡4卡5卡区| 黄色成人免费大全| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 看黄色毛片网站| 男人舔奶头视频| 18禁美女被吸乳视频| 夜夜躁狠狠躁天天躁| 色在线成人网| 精品欧美国产一区二区三| 日韩精品中文字幕看吧| 一二三四社区在线视频社区8| 成人国语在线视频| 欧美日韩黄片免| 国产高清有码在线观看视频 | 老司机午夜福利在线观看视频| 欧美日韩黄片免| 亚洲黑人精品在线| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| 老司机福利观看| 久久久久亚洲av毛片大全| 日韩高清综合在线| 不卡一级毛片| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 久99久视频精品免费| 好男人电影高清在线观看| 亚洲成人久久爱视频| 日韩精品青青久久久久久| 国产日本99.免费观看| 午夜免费成人在线视频| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 日本一本二区三区精品| 在线天堂中文资源库| 99精品在免费线老司机午夜| 女性生殖器流出的白浆| 久久精品亚洲精品国产色婷小说| 亚洲国产精品成人综合色| 国产精品免费视频内射| 大香蕉久久成人网| 老熟妇仑乱视频hdxx| bbb黄色大片| 婷婷精品国产亚洲av在线| 欧美黄色淫秽网站| 亚洲精品久久成人aⅴ小说| 久久久久精品国产欧美久久久| 他把我摸到了高潮在线观看| 一级毛片女人18水好多| 亚洲狠狠婷婷综合久久图片| 国产精品乱码一区二三区的特点| 午夜福利在线观看吧| 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 国产爱豆传媒在线观看 | av电影中文网址| 久久精品国产亚洲av高清一级| 老司机在亚洲福利影院| 国产色视频综合| 国产爱豆传媒在线观看 | 国产精品亚洲美女久久久| 亚洲精品中文字幕一二三四区| 欧美日韩精品网址| 一本一本综合久久| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久| 免费电影在线观看免费观看| 黄色毛片三级朝国网站| 免费观看人在逋| 国产乱人伦免费视频| 99riav亚洲国产免费| 亚洲成人久久性| 免费在线观看成人毛片| 国产又爽黄色视频| 最新美女视频免费是黄的| 波多野结衣高清作品| 看黄色毛片网站| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女| 国产又色又爽无遮挡免费看| aaaaa片日本免费| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看 | 夜夜爽天天搞| 999精品在线视频| 久久这里只有精品19| 国产在线观看jvid| 91大片在线观看| 在线免费观看的www视频| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 桃色一区二区三区在线观看| 日韩欧美国产一区二区入口| 一级作爱视频免费观看| 午夜福利高清视频| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区| 最好的美女福利视频网| 性欧美人与动物交配| 91成人精品电影| 欧美中文日本在线观看视频| 国产精品久久久av美女十八| 欧美一级毛片孕妇| www日本黄色视频网| 老司机福利观看| 午夜福利欧美成人| 欧美另类亚洲清纯唯美| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久亚洲av鲁大| 国产亚洲av嫩草精品影院| 精品少妇一区二区三区视频日本电影| 麻豆av在线久日| 精品福利观看| 1024视频免费在线观看| 日本成人三级电影网站| 久久久久久久精品吃奶| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 久久久久久久久中文| 日韩欧美三级三区| 国产av一区在线观看免费| 草草在线视频免费看| 国产v大片淫在线免费观看| 国产三级在线视频| 久久久国产成人精品二区| 最好的美女福利视频网| 在线看三级毛片| 亚洲精品在线观看二区| 国产亚洲欧美98| 亚洲真实伦在线观看| xxxwww97欧美| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 18禁黄网站禁片免费观看直播| 婷婷丁香在线五月| 久久亚洲精品不卡| 黄色丝袜av网址大全| 91麻豆精品激情在线观看国产| 久久热在线av| 国产av不卡久久| 脱女人内裤的视频| 啦啦啦 在线观看视频| 看免费av毛片| 色综合站精品国产| 国产成人精品久久二区二区免费| 91成年电影在线观看| 亚洲中文日韩欧美视频| 成人免费观看视频高清| 国产1区2区3区精品| av在线天堂中文字幕| 天天一区二区日本电影三级| 国产精品 国内视频| 欧美成人午夜精品| 国产成人精品久久二区二区91| 老司机在亚洲福利影院| 18美女黄网站色大片免费观看| 国产亚洲av高清不卡| 91国产中文字幕| 999精品在线视频| 人人妻人人澡人人看| 久久精品人妻少妇| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 很黄的视频免费| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 国产在线观看jvid| www.精华液| 香蕉av资源在线| 制服人妻中文乱码| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 99国产精品99久久久久| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 精品国产乱码久久久久久男人| 精品卡一卡二卡四卡免费| 亚洲人成77777在线视频| 9191精品国产免费久久| 亚洲av电影在线进入| 91九色精品人成在线观看| 国产一区二区三区在线臀色熟女| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 午夜免费鲁丝| 国产亚洲欧美在线一区二区| 99精品在免费线老司机午夜| 露出奶头的视频| 欧美日韩瑟瑟在线播放| 1024视频免费在线观看| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| 999精品在线视频| 久久久国产成人免费| 好男人电影高清在线观看| 亚洲免费av在线视频| 精品久久久久久,| 精品日产1卡2卡| 男人舔女人下体高潮全视频| www国产在线视频色| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 久久精品国产清高在天天线| 午夜久久久久精精品| 国产欧美日韩一区二区三| 国产av一区在线观看免费| 一进一出好大好爽视频| 午夜免费鲁丝| 淫秽高清视频在线观看| 国产免费男女视频| 一个人观看的视频www高清免费观看 | 丝袜在线中文字幕| 中文字幕精品亚洲无线码一区 | 免费高清在线观看日韩| 搞女人的毛片| 国产精品久久视频播放| 欧美三级亚洲精品| 操出白浆在线播放| 2021天堂中文幕一二区在线观 | 国产精品香港三级国产av潘金莲| 久久热在线av| 国产精品爽爽va在线观看网站 | 男女做爰动态图高潮gif福利片| 天堂影院成人在线观看| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 精品免费久久久久久久清纯| 亚洲熟女毛片儿| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| 国产久久久一区二区三区| 黄片小视频在线播放| 免费观看精品视频网站| 久久香蕉国产精品| 热re99久久国产66热| 极品教师在线免费播放| 欧美国产精品va在线观看不卡| 一边摸一边抽搐一进一小说| 黄色 视频免费看| 两人在一起打扑克的视频| 国产高清激情床上av| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 国内少妇人妻偷人精品xxx网站 | 免费看a级黄色片| 99久久综合精品五月天人人| 国产一卡二卡三卡精品| 一级毛片高清免费大全|