• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The various substrates of Usnea aurantiaco-atra and its algal sources in the Fildes Peninsula, Antarctica

    2015-02-06 07:16:39CAOShunanZHENGHongyuanLIUChuanpengTIANHuiminZHOUQimingZHANGFang
    Advances in Polar Science 2015年4期

    CAO Shunan, ZHENG Hongyuan, LIU Chuanpeng, TIAN Huimin, ZHOU Qiming,5* & ZHANG Fang*

    1 SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China;

    2 College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;

    3 School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China;

    4 Medical Faculty of Chifeng University, Chifeng 024000, China;

    5 Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

    1 Introduction

    Lichen is a typical symbiotic association, comprising the lichenized fungus (mycobiont) and its photosynthetic partner(alga or cyanobacterium, photobiont). In this symbiosis,the photobiont provides carbon sources, such as polybasic alcohol (green algae) or glucose (cyanobacteria) by photosynthesis activity[1–3], and the mycobiont protects its photosynthetic partner from strong radiation and desiccation by enveloping the algae cells. In the lichen thallus, the sexual reproduction of the photobiont is inhibited[4]or suppressed[5].However, the mycobiont has various ways of reproducing,such as by vegetative propagation (soredia or segment of the thallus), by a sexual procedure (the ascospores), or by an asexual method (the conidiospores). The ascospores of fungi must meet and recognize their compatible photobiont partner before they form a stabilized relationship developing into lichen thalli. This process is known as “l(fā)ichenization”.The sources of lichenized algae have attracted considerable attention because free photobionts are very rare in nature[6].

    About 17500 lichenized fungi have been identified[7],but only 200 photosynthetic partners have been reported based on morphological studies (100 green algae and 100 cyanobacteria)[8]. This means that many different lichens must harbor the same photobiont. Conversely, some lichenized fungi may incorporate different algae as their photobionts[9-10],and it is believed that the mycobionts are able to adapt to various environments in this way[11-12].

    There are two ぼowering plants, 104 mosses and about 427 lichens in Antarctica[13]. In the Fildes Peninsula, where the Great Wall Station is located, about 120 lichens have been reported (http://www.aari.aq/kgi/Vegetation/lst_lichens.html), of which the most dominant species is the fruticose lichenUsnea aurantiaco-atra(Jacq.) Bory. Most individuals of this species grow on rock, have erect and strong thalli,and apothecia; the minority grow with mosses, have thin and flattened thalli, and without apothecia.Umbilicaria antarcticaFrey & I. M. Lamb, whose diameter could reach 20 cm, was the most abundant foliose lichen in this area.Lichen substrates provide the micro-environment for their survival and have some specificity[14]. For example, all species in the genusUmbilicariaHoffm. were found to grow on rocks exceptU. yunnana(Nyl.) Hue; besides, wood is rarely also the substrate for someUmbilicarialichens under harsh environmental conditions[15-16].

    Antarctica is an ideal area for the study of the recognition and association between mycobionts and photobionts. During the 27th and 28th Chinese National Antarctic Research expeditions (CHINARE), a fewUsnea aurantiaco-atraindividuals were found growing on the lichenUmbilicaria antarcticaand on wood. This provides a new insight in understanding the lichenization process.

    ITS rDNA is one of the most widely used molecular markers in taxonomy, systematics and phylogenetics[17–19], and has been used as a DNA barcodes marker[20]. ITS rDNA was used to identify and analyze the phylogenetics of symbionts fromUmbilicaria antarcticaandUsnea aurantiaco-atrain Fildes Peninsula, Antarctica. Our study clarified the algal source in lichenization, and revealed the ecological function of the substratum preference.

    2 Materials and Methods

    2.1 Materials

    2.1.1 Sampling

    During the 27th and 28th CHINAREs, seven typicalUsnea aurantiaco-atraindividuals (two growing on rock, two on wood, two with moss and one onUmbilicaria antarctica)and sevenUmbilicaria antarcticaindividuals (Table 1)were collected in the Fildes Peninsula and Ardley Island,Antarctica. Fragments of thalli (200–500 mg) from 280 (on rock) and 104 (with moss) individuals ofUsnea aurantiacoatrawere gathered for molecular phylogenetic analysis. The sampling sites were marked using Google Earth 7.1.2.2041(Google Inc., USA) (Figure 1).

    2.2 Methods

    2.2.1 Morphology

    Typical individuals ofUsnea aurantiaco-atra(with wellgrown thalli and clear features such as apothecia or soredia)and the special individuals (growing on other substrates such as woods or other lichens), together withUmbilicaria antarcticaindividuals, were photographed and collected. The morphological features were investigated using a SMZ–168 stereo zoom microscope (Motic China Group Co., LTD.) in the Scientific Research Building of the Great Wall Station.

    Table 1 Samples used in this study

    Figure 1 Map of sampling locations.: Usnea aurantiaco-atra thalli fragments;: U. aurantiaco-atra on rock;: U. aurantiaco-atra on moss;: U. aurantiaco-atra on wood;: U. aurantiaco-atra on thallus of Umbilicaria antarctica;: Umbilicaria antarctica.

    2.2.2 Extraction of total DNA

    Total DNA was extracted using a modified CTAB Method[21]from the 14 morphologically inspected samples (sevenUmbilicaria antarcticaand sevenUsnea aurantiaco-atra)and 384U. aurantiaco-atracollected with a small amount of their thalli

    2.2.3 ITS rDNA Amplification

    The primer pairs ITS5 (5′–GGAAGTAAAAGTCGTAACAA GG–3′)/ITS4 (5′–TCCTCCGCTTAT TGATATGC–3′)[22]and nrSSU–1780–5′(5′–CTGCGGAAGGATCATTGATTC–3′) /nr LSU–0012–3′ (5′–AGTTCAGCGGGTGGTCTTG–3′)[4]were used to amplify ITS rDNA regions from the mycobiont and photobiont, respectively. PCR reactions were performed in a 50 μL reaction volume (100 ng of DNA template, 200 nM of each primer, 400 nMdNTP, 1×buffer,1 U of rTaq) as follows: an initial denaturation at 95°C for 5 min, followed by 33 cycles of 95°C for 30 s, 52°C for 30 s, 72°C for 2 min, and completed with an extra extension at 72°C for 10 min.

    2.2.4 Gel electrophoresis

    The PCR product of each sample was detected in 1.2%agarose gel electrophoresis with DL2000 DNA Marker(Takara Biotechnology Co., Ltd., Dalian, China) as the marker.

    2.2.5 Sequencing of the PCR product

    PCR products were purified using E.Z.N.A.?Gel Extraction Kit (Omega Bio-tek Inc., USA). The products for those listed in Table 1 were bi-directionally sequenced using ABI3730XL. The PCR products from those samples collected in small amounts were digested with Sau3AI and detected by electrophoresis. Based on the electrophoresis results,products from 27 mycobionts and 24 photobionts were selected arbitrarily and sequenced.

    2.2.6 Alignment and phylogenetic analysis

    Sequences were assembled with Lasergene SeqMan Pro(DNASTAR, Inc., USA) and corrected manually, and then aligned using ClustalW in Mega 5.10[23-24]. The phylogenetic analysis was executed with Mega 5.10 software, and the Kimura-2 parameter was selected as the nucleotide substitution model. The maximum likelihood (ML)method was used to construct the phylogenetic tree and the reliability of the inferred tree was tested by 1000 bootstrap replications[25].

    3 Results

    3.1 Morphology and attachment

    Usnea aurantiaco-atraindividuals growing on rock(Figure 2a), with moss (Figures 2b, 2c), on wood (Figure 2d)or onUmbilicaria antarctica(Figure 2e–2f) were inspected,and specimens were stored in the Resource-sharing Platform of Polar Samples (BIRDS) (Table 1). In general, apothecia were observed on the thalli of those attached to rocks(Figure 2a). Rare apothecia could be observed from those associated with mosses, both those growing on spalls beneath mosses (Figure 2b), and the others with moss but without any attachment (Figure 2c). Specially, there were no apothecia on thoseUsnea aurantiaco-atraindividuals growing on wood (Figure 2d) or on the lichenUmbilicaria antarctica(Figure 2e–2f).

    Figure 2Usnea aurantiaco-atra on different substrates. a, on rock; b, with moss, growing on spall; c, with moss, no attachment; d, on wood; e–f, on Umbilicaria antarctica thallus.

    3.2 ITS Sequences analysis

    The ITS rDNA region of sevenUsnea aurantiaco-atraand sevenUmbilicaria antarcticawas sequenced and submitted to GenBank (Table 1). PCR-RFLP (restriction fragment length polymorphism) was used to analyze the genotypes for 384Usnea aurantiaco-atraindividuals (280 on rock,104 with moss) distributed around the Fildes Peninsula.The electrophoresis result showed that the genotypes for mycobionts or photobionts fromUsnea aurantiacoatrawere identical (result not shown here). Therefore, 27 mycobiont PCR products (F01-F27, GenBank Accession Nos. KR053321–KR053347) and 24 photobiont PCR products (A01–A24, GenBank Accession Nos. KR053362–KR053385) were selected randomly to be sequenced.

    Based on the phylogenetic analysis of the mycobiont ITS rDNA, there were minimum differences withinUsnea aurantiaco-atraorUmbilicaria antarctica. The ML tree based on mycobiont ITS rDNA sequences showed these two lichen species were supported well with high bootstrap values (96%forUsnea aurantiaco-atraand 99% forUmbilicaria antarctica)(Figure 3a).Usnea aurantiaco-atraindividuals were unable to form monophyletic groups based on their substrates. For the photobiont, all the samples were clustered withTrebouxia jamesii(Hildreth & Ahmadjian) G?rtner (Figure 3b) by a bootstrap value of 99%, which meant that all photobionts in our study wereT. jamesii. The results also demonstrated that some photobionts fromUsnea aurantiaco-atraandUmbilicaria antarcticacould share the same genotype. For example, ITS genotypes of AG282, AG236 and AG247 (fromUsnea aurantiaco-atra) and those of AG041 and AG035 (fromUmbilicaria antarctica) were identical (Figure 3b).

    Figure 3 ML trees based on ITS rDNA sequences of mycobiont (a) and photobiont (b). The numbers in each node represent bootstrap support values. Only bootstrap values higher than 50% are indicated. : on rock; ■: on moss;▲: on wood; : on thallus of Umbilicaria antarctica. Italic font indicates the sequences obtained by the authors.

    4 Discussion

    As the dominant organism in extreme terrestrial environments,lichen is able to adapt to various harsh conditions[26–28]. The symbiotic relationship between mycobiont and photobiont plays an important role in lichen’s adaptability. Hence the key process allowing lichen to spread to novel habitats,especially for those dispersing by ascospores, is the obtaining by the mycobiont of its compatible photobiont.

    Nearly 20%–40% of bare ground (not covered by permanent snow) in the Fildes Peninsula, Antarctica, is covered by lithophilousUsnea aurantiaco-atra[26], classified in theUsneasubgenusNeuropogon. During the investigation at the Great Wall Station, we found that some individuals ofU. aurantiaco-atracould grow on wood, and even on other lichen thalli. The species provided the ideal materials to reveal the sources of the photobiont in lichenization. Generally,the substrate ofU. aurantiaco-atrawas rock[27], but our researches suggested that this lichen species was not strictly substrate-dependent (Figures 2d–2f). Two growth forms were reported forU. aurantiaco-atra[29]: Individuals of form I grew on rock and had erect branches and apothecia (Figure 2a);those of form II grew with mosses and had prostrate branches,but noapothecia (Figure 2b–2c). The individuals growing with mosses were attached to spalls beneath the mosses in most cases, and those without connection to spalls(Figure 2c) were thought to have been split away from rocks.At the Great Wall Station, it was recorded that the annual mean wind speed was 7.3 m·s-1, there were 137 d with galeforce winds and the fastest wind speed reached 35 m·s-1[30].Individuals belonging to forms I or II would have had to adapt to the windy environment of Fildes Peninsula through attaching to either rocks or to mosses, to prevent them from being blown away to drift into the ocean.

    TwoUsneaspecies had been reported from this region,U. aurantiaco-atrahaving apothecia but no soredia, andU.antarcticaDu Rietz having soredia but no apothecia[31-32].Recently, phylogenetic study suggested thatU. aurantiacoatraandU. antarcticacannot be distinguished at molecular level as they share the same ITS genotype, and thatU.antarcticashould be treated a synonym ofU. aurantiacoatra[33]. Therefore,U. aurantiaco-atraandU. antarcticawere not treated as separate species in present study.

    PCR-RFLP was performed in our study in addition to morphological identification. The results showed that the difference for the ITS rDNA region among mycobionts or photobionts ofU. aurantiaco-atrawas very small, so only a minority of PCR products (27 for mycobionts and 24 for photobionts) were sequenced, representing 384 samples collected in a small amount. The sequencing results showed that there were 0–4 bps discrepancy among mycobionts and 0–10 polymorphism sites in photobiont sequences. The unique sequence suggested that randomly sequenced PCR products could have reぼected the local genetic background ofU. aurantiaco-atrain this region.

    TheU. aurantiaco-atraindividuals growing on wood and on lichen thalli (Figure 2d–2f) were observed during the 27th and 28th CHINAREs at the Great Wall Station.No distinction was detected at molecular level among some individuals growing on lichenUmbilicaria antarctica(AG282), on wood (AG235, AG236) and on rock (AG251,AG297, F01-F27) according to the mycobiont ITS rDNA analysis (Figure 3a). The photobionts ofUsnea aurantiacoatraandUmbilicaria antarcticaall belonged to the same algal speciesT. jamesii(Figure 3b). BecauseUsnea aurantiaco-atrawas the dominant lichen in the Fildes Peninsula, the dominant photobiont species wasT. jamesiihere. The same photobiont genotype was observed forU. aurantiaco-atragrowing on different substrates; furthermore,U. aurantiaco-atraandUmbilicaria antarcticacould share the same photobiont genotype, which indicated that there was an algae pool from which lichenized fungi could obtain their photobionts.

    The algae pool suggests one lichen could capture its photobiont from the thallus of another lichen. SomeUsnea aurantiaco-atrahas the same photobiont as those inUmbilicaria antarctica, which confirmed that these two lichen species shared the same algae pool. Molecular data showed that the ITS rDNA sequences of the mycobionts fromUmbilicaria antarctica(AG017, AG019, AG023, AG024,AG038 and AG041) were identical, and their photobionts were all from the same species,T. jamesii, although a few variance sites existed in the ITS rDNA region. The result was fully consistent with that of the latest pyrosequencing of Antarctic lichens[34]. It could be inferred that the photobiont ofUmbilicaria antarctica, on whose thallusUsnea aurantiacoatra(AG282) was growing, should also be the same as that of AG282. However, theUmbilicaria antarcticaindividual had died, and so information from its photobiont could not be obtained directly. Ascospores fromUsnea aurantiacoatrawere able to germinate on the thallus ofUmbilicaria antarctica, capture its photobiont and finally form a lichen thallus. Individuals ofUsnea aurantiaco-atragrowing on wood might undergo a similar progress. Free-living photobionts are very rare in nature, but the photobionts could be released from vegetation fragments and survive for a short time[35]. Our research implied that free-living photobiont was present in the Fildes Peninsula, especially on wood surfaces,because no other lichens were observed on the wood.

    Meanwhile,Usnea aurantiaco-atragrowing with mosses, was the dominant organism in the Ardley Island.More attention should be paid to the mosses growing withU. aurantiaco-atrato elucidate the process of succession between these two organisms, and to examine whether there is a specific relationship between lichen and moss.

    Our findings, especially the discovery ofU. aurantiacoatragrowing onUmbilicaria antarctica, provided evidence for photobionts transferring directly between lichens. TheUsnea aurantiaco-atrafound on wood also confirmed there was free-livingT. jamesiiin the Fildes Peninsula, because there were no other lichens on the wood. There is a possibility that the thalli ofU. aurantiaco-atraon wood or other lichens were from vegetable structures such as soredia, and this could not be excluded completely. However, the unique fungal ITS genotypes for AG238 (on wood) and AG282 (onUmbilicaria antarctica) strongly implied that they had passed through a process of sexual reproduction so that their fungal ITS sequences were not in accordance to those growing on rocks.This meant that ascospores had captured the algal partner on substrates other than rocks.

    There are multiple algal species in the Fildes Peninsula,but only one species was found accompanying the dominant lichen speciesUsnea aurantiaco-atra. This indicates that this algal species has adapted to the micro-environment,becoming the preponderant lichenized algae. The various substrates ofU. aurantiaco-atraindicated that the sources of its photobiont were not unique; the alga in a new thallus could be obtained from the parental thallus, from other lichens or from the environment. Some works have demonstrated that the decrease in selectivity of the mycobiont to its photobiont may be helpful for lichen surviving in extreme environments because mycobionts could form a lichen thallus with a broad range of photobionts to survive[10,13,36]. However, the decreased selectivity ofU. aurantiaco-atrato the substrates is also a strategy to survive in harsh environments. For example, some lichens belonging to the genusUmbilicaria, found growing on rocks, can also inhabit wood[37].

    In summary, morphology and molecular analysis demonstrated the available photobiont sources, and confirmed that there was an algae pool in this area. This provides real insight into the growth ofUsnea aurantiaco-atraon various substrates, which in turn will help us to understand the distribution of photobionts, photobiont transfer mechanisms and the process of lichenization.

    AcknowledgementOur research was facilitated by the Resource-sharing Platform of Polar Samples (http://birds.chinare.org.cn/) where information on lichens and data are stored. We are grateful to the Chinese Arctic and Antarctic Administration for its help in carrying out the project in the Great Wall Station during the 27th and 28th CHINAREs. This research was supported by State Oceanic Administration, P. R. China (Grant nos. 10/11 GW06, 2011GW12016), and the National Natural Science Foundation of China (Grant nos. 31000010, 31270118, 41206189).

    1 Smith D C, Douglas A E. The biology of symbiosis. London, UK:Edward Arnold, 1987

    2 Feige G B, Jensen M. Basic carbon and nitrogen metabolism of lichens//Reisser W. Algae and symbioses: plants, animals, fungi,viruses, interactions explored. Bristol, UK: Biopress, 1992: 277–299

    3 Nash T H III. Lichen biology. 2nd edn. Cambridge UK: Cambridge University Press, 2008

    4 Piercey-Normore M D, DePriest P T. Algal switching among lichen symbioses. Am J Bot, 2001, 88(8): 1490–1498

    5 Sanders W B, Moe R L, Ascaso C. The intertidal marine lichen formed by the pyrenomycete fungusVerrucaria tavaresiae(Ascomycotina)and the brown algaPetroderma maculiforme(Phaeophyceae): thallus organization and symbiont interaction. Am J Bot, 2004, 91(4): 511–522

    6 Back A, Friedl T, Rambold G. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol, 1998, 139(4): 709–720

    7 Kirk P M, Cannon P F, Minter D W, et al. Dictionary of the Fungi.10th edn. Wallingford, UK: CAB International, 2008

    8 Tschermak-Woess E. The algal partner//Galun M. CRC handbook of lichenology. Florida, USA: CRC Press, 1988: vol. I

    9 Yahr R, Vilgalys R, DePriest P T. Geographic variation in algal partners ofCladonia subtenuis(Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol, 2006, 171(4): 847–860

    10 Muggia L, Pérez-Ortega S, Kopun T, et al. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot, 2014, 114(3): 463–475

    11 Kosugi M, Shizuma R, Moriyama Y, et al. Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol, 2014, 166(1): 337–348

    12 Werth S, Sork V L. Ecological specialization inTrebouxia(Trebouxiophyceae) photobionts ofRamalina menziesii(Ramalinaceae) across six range-covering ecoregions of western North America. Am J Bot,2014, 101(7): 1127–1140

    13 Engelen A, Convey P, Ott S. Life history strategy ofLepraria borealisat an Antarctic inland site, Coal Nunatak. Lichenologist, 2010, 42(3):339–346

    14 Wang L Y, Wang H, Xu R S, et al. Analysis on lichen studies history of Anhui Province. Res Environ Yangtze Basin, 2014, 23(8): 1072–1080 (in Chinese)

    15 S?chting U. Lignicolous species of the lichen genusCaloplacafrom Svalbard. Opera Bot, 1989, 100: 241–257

    16 Vondrák J, Li?ka J. Changes in distribution and substrate preferences of selected threatened lichens in the Czech Republic. Biologia, 2010,65(4): 595–602

    17 Beiggi S, Piercey-Normore M D. Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species ofCladoniasect.Cladonia(Cladoniaceae, Ascomycotina). J Mol Evol, 2007, 64(5): 528–542

    18 Fernández-Mendoza F, Domaschke S, García M A, et al. Population structure of mycobionts and photobionts of the widespread lichenCetraria aculeata. Mol Ecol, 2011, 20(6): 1208–1232

    19 Werth S, Sork V L. Identity and genetic structure of the photobiont of the epiphytic lichenRamalina menziesiion three oak species in southern California. Am J Bot, 2010, 97(5): 821–830

    20 Kelly L J, Hollingsworth P M, Coppins B J, et al. DNA barcoding of lichenized fungi demonstrates high identification success in a ぼoristic context. New Phytol, 2011, 191(1): 288–300

    21 Zhou Q M, Guo S Y, Huang M R, et al. A study of the genetic variability ofRhizoplaca chrysoleucausing DNA sequences and secondary metabolic substances. Mycologia, 2006, 98(1): 57–67

    22 White T J, Bruns T, Lee S S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis M A, Gelfand D H, Sninsky J J. PCR protocols: a guide to methods and applications. London: Academic Press, Inc., 1990: 315–322

    23 Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17(12):1244–1245

    24 Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28(10): 2731–2739

    25 Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4): 783–791

    26 Casanovas P, Lynch H J, Fagan W F, et al. Understanding lichen diversity on the Antarctic Peninsula using parataxonomic units as a surrogate for species richness. Ecology, 2013, 94(9): 2110

    27 ?vstedal D O, Smith R I L. Lichens of Antarctica and South Georgia:a guide to their identification and ecology. Cambridge UK: Cambridge University Press, 2001

    28 Pérez-Ortega S, Ortiz-álvarez R, Allan Green T G, et al. Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol, 2012,82(2): 429–448

    29 Chen J B. Lichens from Fildes Peninsula, King George Island,Antarctica I. the genusUsneasubgenusNeuropogon. Acta Mycol Sin,1996, 15(1): 21–25 (in Chinese)

    30 Yang Q H, Zhang L, Wang X Q. Analysis and forecasting of the gale weather at Great Wall Station, Antarctica. Mar Forecasts, 2007, 24(4):1–12 (in Chinese)

    31 Kim J H, Ahn I Y, Hong S G, et al. Lichen ぼora around the Korean Antarctic Scientific Station, King George Island, Antarctic. J Microbiol, 2006, 44(5): 480–491

    32 Lee J S, Lee H K, Hur J S, et al. Diversity of the lichenized fungi in King George Island, Antarctica, revealed by phylogenetic analysis of partial large subunit rDNA sequences. J Microbiol Biotechnol, 2008,18(6): 1016–1023

    33 Seymour F A, Crittenden P D, Wirtz N, et al. Phylogenetic and morphological analysis of Antarctic lichen-formingUsneaspecies in the groupNeuropogon. Antarct Sci, 2007, 19(1): 71–82

    34 Park C H, Kim K M, Elvebakk A, et al. Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol, 2015, 62(2): 196–205

    35 Ahmadjian V. The lichen algaTrebouxia: does it occur free-living?Plant Syst Evol, 1988, 158(2): 243–247

    36 Guzow-Krzemi?ska B. Photobiont flexibility in the lichenProtoparmeliopsis muralisas revealed by ITS rDNA analyses. Lichenologist,2006, 38(5): 469–476

    37 Davydov E A. Lichens from the family Umbilicariaceae on bark and wood//The fourth IAL symposium, progress and problems in lichenology at the Turn of the Millennium. Barcelona: Universitat de Barcelona, 2000

    亚洲 欧美一区二区三区| 男女下面插进去视频免费观看| 免费在线观看完整版高清| 国产亚洲精品久久久久5区| 国产精品偷伦视频观看了| 夫妻午夜视频| 丝袜美足系列| 999久久久精品免费观看国产| 国产精品久久久人人做人人爽| 国产av精品麻豆| 久久久国产成人免费| 久久国产精品人妻蜜桃| 欧美成人午夜精品| 精品视频人人做人人爽| 欧美精品一区二区大全| 精品久久久久久电影网| 久久 成人 亚洲| 国产亚洲精品一区二区www | 老司机亚洲免费影院| 黑人巨大精品欧美一区二区蜜桃| 视频区欧美日本亚洲| 久久香蕉激情| 青青草视频在线视频观看| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免费看| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 亚洲成人手机| 狠狠精品人妻久久久久久综合| 欧美黑人欧美精品刺激| 久久精品成人免费网站| av一本久久久久| 水蜜桃什么品种好| 久热这里只有精品99| 久久99一区二区三区| 亚洲精品乱久久久久久| 欧美 亚洲 国产 日韩一| 国产日韩欧美亚洲二区| 香蕉丝袜av| 性少妇av在线| 丝袜美足系列| 国产精品影院久久| 欧美日韩亚洲综合一区二区三区_| 一区二区av电影网| 91九色精品人成在线观看| 三上悠亚av全集在线观看| 亚洲成av片中文字幕在线观看| 十八禁人妻一区二区| 伦理电影免费视频| 一区二区三区激情视频| 十八禁网站免费在线| 成年人黄色毛片网站| 亚洲精品国产色婷婷电影| 欧美日韩av久久| 国产不卡一卡二| 久久99一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 男女边摸边吃奶| √禁漫天堂资源中文www| 国产精品国产高清国产av | 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费视频内射| 日韩欧美三级三区| 美女主播在线视频| 日本av手机在线免费观看| 另类精品久久| 一二三四社区在线视频社区8| 久久精品亚洲av国产电影网| 免费一级毛片在线播放高清视频 | 在线观看一区二区三区激情| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 精品免费久久久久久久清纯 | 色老头精品视频在线观看| 午夜福利欧美成人| 18在线观看网站| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕在线视频| 老司机影院毛片| 日本撒尿小便嘘嘘汇集6| 99九九在线精品视频| 亚洲伊人色综图| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 黄色成人免费大全| 一本一本久久a久久精品综合妖精| 欧美精品一区二区免费开放| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃| 国产有黄有色有爽视频| 男女免费视频国产| 免费av中文字幕在线| 一级黄色大片毛片| 国产午夜精品久久久久久| 操出白浆在线播放| 日韩免费高清中文字幕av| 免费少妇av软件| av超薄肉色丝袜交足视频| 正在播放国产对白刺激| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 999久久久精品免费观看国产| 成年人免费黄色播放视频| 精品国产乱码久久久久久小说| 王馨瑶露胸无遮挡在线观看| 一个人免费看片子| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 日本撒尿小便嘘嘘汇集6| av不卡在线播放| 在线观看免费视频网站a站| 麻豆av在线久日| 国产精品一区二区免费欧美| 精品亚洲乱码少妇综合久久| 人成视频在线观看免费观看| 国精品久久久久久国模美| 日韩免费av在线播放| 考比视频在线观看| 日韩欧美免费精品| 久久性视频一级片| 精品国产一区二区久久| 丰满迷人的少妇在线观看| 无限看片的www在线观看| 纯流量卡能插随身wifi吗| 免费少妇av软件| 宅男免费午夜| 亚洲性夜色夜夜综合| 1024视频免费在线观看| 操美女的视频在线观看| √禁漫天堂资源中文www| 中文字幕高清在线视频| 在线观看免费视频日本深夜| 日本五十路高清| 免费在线观看完整版高清| 亚洲性夜色夜夜综合| 久久九九热精品免费| 啪啪无遮挡十八禁网站| 一进一出抽搐动态| 久久久久久久久免费视频了| 亚洲国产成人一精品久久久| 99国产综合亚洲精品| 亚洲欧洲日产国产| 999精品在线视频| 国产一区二区三区在线臀色熟女 | 在线观看免费午夜福利视频| 下体分泌物呈黄色| 日韩三级视频一区二区三区| 亚洲精品国产一区二区精华液| 侵犯人妻中文字幕一二三四区| 亚洲视频免费观看视频| 极品人妻少妇av视频| www日本在线高清视频| 国产免费av片在线观看野外av| 久久九九热精品免费| 色综合婷婷激情| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 午夜日韩欧美国产| 国产又色又爽无遮挡免费看| 精品熟女少妇八av免费久了| 国产精品久久久久久精品电影小说| 亚洲成人国产一区在线观看| 夜夜夜夜夜久久久久| 国产精品一区二区精品视频观看| 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 中文亚洲av片在线观看爽 | 亚洲成a人片在线一区二区| 亚洲色图av天堂| 亚洲久久久国产精品| 日本撒尿小便嘘嘘汇集6| 九色亚洲精品在线播放| 欧美一级毛片孕妇| 另类精品久久| 狠狠婷婷综合久久久久久88av| 亚洲精品国产色婷婷电影| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 99热国产这里只有精品6| 在线 av 中文字幕| 国产欧美日韩精品亚洲av| 国产成人免费观看mmmm| 久久久久久免费高清国产稀缺| 精品国产一区二区三区久久久樱花| 高清在线国产一区| videos熟女内射| 男女边摸边吃奶| 在线观看免费高清a一片| 啦啦啦免费观看视频1| 久久精品亚洲av国产电影网| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 侵犯人妻中文字幕一二三四区| 亚洲第一av免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩精品网址| 亚洲性夜色夜夜综合| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 亚洲av美国av| 色婷婷av一区二区三区视频| 欧美日韩黄片免| 91av网站免费观看| 熟女少妇亚洲综合色aaa.| 国产成+人综合+亚洲专区| 精品人妻在线不人妻| 久久中文字幕人妻熟女| 国产精品 欧美亚洲| 亚洲精品国产区一区二| 亚洲av日韩在线播放| 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| 最新的欧美精品一区二区| 99九九在线精品视频| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 亚洲少妇的诱惑av| 日本av免费视频播放| 久久99热这里只频精品6学生| 日韩成人在线观看一区二区三区| 99香蕉大伊视频| 成年人午夜在线观看视频| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 国产无遮挡羞羞视频在线观看| 性色av乱码一区二区三区2| 精品国产乱子伦一区二区三区| 丁香欧美五月| 99精品久久久久人妻精品| 国产老妇伦熟女老妇高清| 久久久水蜜桃国产精品网| 亚洲综合色网址| 少妇粗大呻吟视频| 交换朋友夫妻互换小说| 搡老熟女国产l中国老女人| 成人国产av品久久久| 18禁美女被吸乳视频| 色视频在线一区二区三区| 啦啦啦免费观看视频1| 日韩有码中文字幕| 一级黄色大片毛片| cao死你这个sao货| 我要看黄色一级片免费的| 中文字幕人妻丝袜一区二区| √禁漫天堂资源中文www| 亚洲伊人色综图| 久久精品亚洲av国产电影网| 在线观看66精品国产| 99精国产麻豆久久婷婷| 午夜免费鲁丝| 精品视频人人做人人爽| 中文字幕色久视频| 亚洲精品在线观看二区| 99香蕉大伊视频| 少妇 在线观看| 国内毛片毛片毛片毛片毛片| 热re99久久国产66热| 久久毛片免费看一区二区三区| 日韩大片免费观看网站| 日韩制服丝袜自拍偷拍| 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| 大型av网站在线播放| 成人精品一区二区免费| 99国产精品免费福利视频| 亚洲欧洲日产国产| 久久狼人影院| 桃花免费在线播放| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影免费在线| 老司机靠b影院| 日韩人妻精品一区2区三区| 丰满少妇做爰视频| 视频区欧美日本亚洲| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看 | 黄色丝袜av网址大全| 少妇精品久久久久久久| aaaaa片日本免费| 亚洲精品在线美女| 大香蕉久久成人网| 精品少妇一区二区三区视频日本电影| 欧美精品一区二区大全| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 99精品在免费线老司机午夜| 久久久久精品人妻al黑| 久久国产精品人妻蜜桃| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 国产精品久久久av美女十八| 欧美黄色淫秽网站| 国产日韩欧美亚洲二区| 国产成人av教育| 欧美亚洲日本最大视频资源| 超色免费av| 国产精品久久久久久精品电影小说| 叶爱在线成人免费视频播放| 丝袜美足系列| 国产在线免费精品| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线 | 免费在线观看日本一区| 91精品三级在线观看| 男女高潮啪啪啪动态图| 国产不卡一卡二| 一本色道久久久久久精品综合| www.自偷自拍.com| 国产一区二区在线观看av| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻熟女乱码| 少妇粗大呻吟视频| 免费在线观看黄色视频的| 日本黄色视频三级网站网址 | 搡老乐熟女国产| 美女午夜性视频免费| 桃花免费在线播放| 一个人免费看片子| 大码成人一级视频| 国产不卡一卡二| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 亚洲人成伊人成综合网2020| 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 后天国语完整版免费观看| 国产日韩欧美视频二区| 欧美精品一区二区大全| av免费在线观看网站| 在线看a的网站| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 国产精品久久久久成人av| av有码第一页| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 精品国内亚洲2022精品成人 | 久久人妻福利社区极品人妻图片| 一本综合久久免费| 中文字幕人妻丝袜制服| www日本在线高清视频| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 久久人妻福利社区极品人妻图片| 99国产精品一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 黑丝袜美女国产一区| 精品少妇内射三级| 90打野战视频偷拍视频| 咕卡用的链子| 亚洲九九香蕉| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品大桥未久av| 少妇猛男粗大的猛烈进出视频| 欧美日本中文国产一区发布| 美女福利国产在线| 99国产综合亚洲精品| 亚洲av片天天在线观看| 亚洲视频免费观看视频| 婷婷丁香在线五月| 国产精品香港三级国产av潘金莲| 日韩一区二区三区影片| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 成人手机av| 精品一区二区三区视频在线观看免费 | 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 悠悠久久av| 69精品国产乱码久久久| av线在线观看网站| 性少妇av在线| 国产成人系列免费观看| 国产男女内射视频| 国产不卡av网站在线观看| 欧美精品av麻豆av| 考比视频在线观看| 国产成人av激情在线播放| 捣出白浆h1v1| 日日夜夜操网爽| 黄色视频不卡| 中文字幕高清在线视频| 狠狠婷婷综合久久久久久88av| 欧美性长视频在线观看| 69av精品久久久久久 | 别揉我奶头~嗯~啊~动态视频| 欧美亚洲日本最大视频资源| 三级毛片av免费| 国产在线一区二区三区精| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 成人三级做爰电影| 日韩欧美一区视频在线观看| 9色porny在线观看| 日韩熟女老妇一区二区性免费视频| 一区二区三区国产精品乱码| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| 99国产精品一区二区蜜桃av | 午夜福利一区二区在线看| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区蜜桃| 欧美乱妇无乱码| a级毛片黄视频| 黄频高清免费视频| 欧美日韩av久久| 丝袜人妻中文字幕| 国产精品久久久久久精品古装| 男人操女人黄网站| av线在线观看网站| 成人三级做爰电影| 亚洲第一青青草原| 黄色毛片三级朝国网站| 欧美日韩亚洲综合一区二区三区_| 99国产精品一区二区三区| 夜夜爽天天搞| 精品一区二区三区视频在线观看免费 | 亚洲少妇的诱惑av| 亚洲精品国产一区二区精华液| 亚洲视频免费观看视频| 啦啦啦在线免费观看视频4| 精品久久久久久久毛片微露脸| av电影中文网址| 交换朋友夫妻互换小说| 妹子高潮喷水视频| aaaaa片日本免费| 巨乳人妻的诱惑在线观看| 成人18禁在线播放| 99在线人妻在线中文字幕 | 十八禁高潮呻吟视频| 婷婷丁香在线五月| 国产一卡二卡三卡精品| 日日爽夜夜爽网站| 99国产综合亚洲精品| 亚洲午夜精品一区,二区,三区| 99九九在线精品视频| 久久久久久久大尺度免费视频| 亚洲色图 男人天堂 中文字幕| 成人国产一区最新在线观看| 精品久久蜜臀av无| 他把我摸到了高潮在线观看 | 男女之事视频高清在线观看| 黑人巨大精品欧美一区二区mp4| 香蕉国产在线看| 国产精品影院久久| 国产激情久久老熟女| 亚洲,欧美精品.| 丁香六月欧美| 性色av乱码一区二区三区2| 黄色成人免费大全| 在线观看免费午夜福利视频| 搡老岳熟女国产| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕 | 欧美精品高潮呻吟av久久| 一级毛片电影观看| 亚洲av美国av| 一区二区三区乱码不卡18| 精品福利永久在线观看| 97人妻天天添夜夜摸| 丝袜人妻中文字幕| www.自偷自拍.com| 免费久久久久久久精品成人欧美视频| 精品少妇黑人巨大在线播放| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影 | 精品免费久久久久久久清纯 | 深夜精品福利| 欧美乱码精品一区二区三区| 亚洲精品自拍成人| 自线自在国产av| 老司机福利观看| 91麻豆精品激情在线观看国产 | 精品一区二区三区av网在线观看 | 国产av国产精品国产| 国产有黄有色有爽视频| 国产视频一区二区在线看| 美女主播在线视频| 啦啦啦免费观看视频1| 国产片内射在线| 国产亚洲欧美在线一区二区| 成年人午夜在线观看视频| 欧美成狂野欧美在线观看| 精品亚洲成a人片在线观看| 久久久精品94久久精品| videosex国产| 成年版毛片免费区| 久久香蕉激情| 美女午夜性视频免费| 国产成人av激情在线播放| 久久中文字幕人妻熟女| 麻豆乱淫一区二区| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产区一区二| 嫁个100分男人电影在线观看| 老司机深夜福利视频在线观看| 69av精品久久久久久 | 国产免费福利视频在线观看| www日本在线高清视频| 国产精品久久久久久人妻精品电影 | 午夜福利乱码中文字幕| 午夜成年电影在线免费观看| 欧美激情 高清一区二区三区| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看 | 操出白浆在线播放| 日韩免费av在线播放| 99久久国产精品久久久| 亚洲全国av大片| 黄色片一级片一级黄色片| 男人舔女人的私密视频| 亚洲天堂av无毛| 动漫黄色视频在线观看| a在线观看视频网站| 水蜜桃什么品种好| 午夜福利在线观看吧| 国产精品免费视频内射| 1024视频免费在线观看| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 变态另类成人亚洲欧美熟女 | av一本久久久久| 久久亚洲精品不卡| 伦理电影免费视频| 大陆偷拍与自拍| 在线观看66精品国产| 亚洲人成伊人成综合网2020| 久久天堂一区二区三区四区| 欧美日韩国产mv在线观看视频| 最新的欧美精品一区二区| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 久久久水蜜桃国产精品网| a级毛片黄视频| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕| 色播在线永久视频| 1024视频免费在线观看| 男女午夜视频在线观看| 精品一区二区三区av网在线观看 | 精品卡一卡二卡四卡免费| 久久久久国内视频| 免费看a级黄色片| 久久久精品94久久精品| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 成人国语在线视频| 捣出白浆h1v1| 九色亚洲精品在线播放| 老司机午夜十八禁免费视频| 欧美激情 高清一区二区三区| 夜夜骑夜夜射夜夜干| 国产欧美日韩一区二区精品| 一区福利在线观看| 精品少妇内射三级| 嫁个100分男人电影在线观看| 波多野结衣av一区二区av| 国产精品一区二区免费欧美| 亚洲av日韩在线播放| 国产欧美日韩一区二区三区在线| 成人18禁在线播放| 国产精品av久久久久免费| 日韩中文字幕欧美一区二区| 中文字幕色久视频| 黄色视频不卡| 久久国产精品影院| 国产成人欧美在线观看 | 日韩有码中文字幕| 日韩视频在线欧美| 亚洲中文日韩欧美视频| 亚洲一区二区三区欧美精品| 亚洲少妇的诱惑av| 日本av手机在线免费观看| 亚洲av欧美aⅴ国产| 99国产极品粉嫩在线观看| 久久热在线av| 99国产精品一区二区蜜桃av | 极品教师在线免费播放| 黄网站色视频无遮挡免费观看| 91麻豆av在线| 性高湖久久久久久久久免费观看| 侵犯人妻中文字幕一二三四区| 国产精品亚洲av一区麻豆| 亚洲精品粉嫩美女一区| 水蜜桃什么品种好| 成人国产av品久久久| 国产99久久九九免费精品| 最近最新免费中文字幕在线| 在线观看人妻少妇| 日本av手机在线免费观看| 亚洲精华国产精华精| 波多野结衣av一区二区av| 一级毛片精品| 高清毛片免费观看视频网站 | 老司机在亚洲福利影院| 菩萨蛮人人尽说江南好唐韦庄| 欧美黑人欧美精品刺激| 黄色视频在线播放观看不卡| 国产区一区二久久| 十八禁网站免费在线|