• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault Diagnosis Method Based on Fractal Theory and Its Application in Wind Power Systems

    2012-07-25 06:22:46ZHAOLing趙玲HUANGDarong黃大榮SONGJun宋軍
    Defence Technology 2012年3期
    關(guān)鍵詞:宋軍

    ZHAO Ling(趙玲),HUANG Da-rong,2(黃大榮),SONG Jun(宋軍)

    (1.College of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China;2.National Key Laboratory Incubation Base of Bridge Structural Engineering,Chongqing Jiaotong University,Chongqing 400074,China)

    Introduction

    Usually,due to the influence of various factors,the dynamics behavior of mechanical component in failure is non-linear and the vibration signal is non-stationary and non-periodic signal with transient characteristics.In rotating machinery,the failure of rolling bearing can result in the deterioration of machine running condition.Effective detection and diagnosis of the incipient fault of rolling element can assure the running reliability of machine.Generally,extracting the fault feature from the vibration signal to detecting the fault can effectively reduce the possibility of catastrophic damage and the downtime.The random fractal is an important and active branch of current non-linear analysis,and it is particularly suitable for the research of various nonlinear phenomena[1].The fractal dimension can quantitatively describe the non-linear behavior of vibration signal,and is broadly applied to the field of fault diagnosis.

    The time domain and frequency domain analyses are always relatively independent in classical signal analysis methods,and it is impossible to express the characteristic in both time and frequency domains simultaneously.Wavelet packet transform is also a timedomain analysis method,and its unique characteristic of multi-scale makes it a good solution to analyze nonstationary signal[2-3].For the non-stationary and timevarying characteristics of vibration signal extracted from running machinery,neural network presents a new procedure to solve complex identify and diagnose problems,due to its self-learning,adaptive,robustness and extensive capacity.

    This paper presents a new fault diagnosis procedure using the wavelet transform,fractal technology and neural network for machinery systems.

    1 Noise Reduction of Signal

    The wind turbine vibration signal is always dis-turbed by the background noise and the fault components,such as bearing and gear in the rotation part,and shows periodic non-stationary characteristic.Meanwhile,the alternate load generated by the nonstationary wind on the transmission system makes the vibration signal show Gaussian noise and non-linearity characteristic.Analyzed the key components in the gear-box,the fault frequency can be calculated.

    For the pretreatment of wind turbine vibration signal,a de-noising method based on wavelet is put forward in this paper.Considered the wind turbine structures,the signals are non-stationary,and its parameters are time-varying.But for early fault signals,the fault feature is not strong enough and drowned in the strong noise,and it is difficult to be extracted.In this case,the traditional filter methods can not separate the noise and useful signal.The wavelet de-nosing method has better analysis effect,while has some difficulties in the selection of wavelet base and decomposition level.Aimed at adverse working conditions and strong noise,‘sym8’wavelet can be taken as wavelet base to carry out the decomposition and the decomposition level can be set as 5,also‘sqtwolog’rule can be chosen as the soft threshold.The experiment results reveal that the method can considerably improve the capability of feature extraction and incipient fault diagnosis under strong noise background,as shown in Fig.1.

    Fig.1 Vibration signal waveform before and after de-nosing

    2 Fault Characteristics Exaction for WindPowerSystem Basedon Wavelet Packet Transform

    The wavelet packet transform is an extension of wavelet transform,and it can solve the“l(fā)ow resolution in high frequency”problem of binary wavelet transform.To carry out the wavelet packet decomposition of vibration signalx(t),the following recurrence formulas can be used.

    The substance of wavelet packet decomposition is making the signal get through the high-pass and lowpass combination filterhkandgk,and the signal is decomposed into high-and low-frequency parts.After decomposition,data reduces by 50%,and the amount of data is compressed.The band width Δf,decomposing layerjand the sampling frequencyfsof wavelet packet decomposition meet following relation.

    After the wavelet packet decomposition,the amplitude,energy,mean value,variance and kurtosis,etc.of the vibration signal in each frequency band can be selected as the characteristic parameters.In this paper,the energy in special band is extracted as the signal characteristics.The steps[3]of characteristics extraction of wavelet are as follows.Firstly,the sampled signals are decomposed by using wavelet packet.Experientially,the number of decomposition layers can be set as 5,then according to the results of initial decomposition,the perfect number of decomposition layers can be chosen,and the decomposition is carried again.LetSrepresent the original signal,and(i,j)represent thej-th node ofi-th layer in the wavelet packet decomposition tree,i=0,1,2,…,N;j=0,1,2,…,2N-1,whereNis the number of decomposition layers.The wavelet in each frequency band is restructured.Denote the signals in all frequency bands asS1,S2,…,Si,…,Sn,and the energy of each frequency band can be calculated by using

    wherexik(i=1,2,…,16;k=0,1,…,m)represents the amplitude of discrete point of restructured signalSi,mis the number of sample point in the duty cycle.Comprehensively analyze all the sampled vibration signals,choose the most concentrated frequency band of fault signal change,and normalize the selectedmfrequency bands as

    The vibration wave,for misaligned rotor in rotating speed of 1 500 r/min,is shown in Fig.1(a).The signal sampling frequency is 2 000 Hz,after decomposing the sampled signal,in 5th decomposition layer,the bands 1,2,4,5,7 and 9 with band width Δf=31.2 Hz are chosen as the characteristic band where centralizing the fault signal change;the energy statistics,and the wavelet decomposition are shown in Fig.2(a)and(b),respectively.

    Fig.2 Waveform and Statistics of sampled signal

    The energies in 6 frequency bands form a six-dimensional vector,which is normalized as [0.36,0.40,0.10,0.02,0.03,0.02].

    3 Fractal Characteristics Analysis for Vibration Signal

    As well known,the non-linear dynamic and chaos theories can be used to describe the irregular broadband signals in non-linear dynamical systems,and some interesting physical information and useful features can be extracted from such signals.The fractal is a group of objects or systems with self-similarity in a somewhat technical sense or in all scales.Such an object needs not to exhibit exactly the same structure in all scales,but the similar type of structures must appear.According to the point of view of fractal geometry,though the complex objects are chaotic,they have no scales or self-similarity.Scale-free or self-similarity is often regarded as a criterion to determine if an object has the fractal characteristics,and if it does,the fractal methods can be used to analyze it.

    Figuer 3 shows the logarithmic curve of the sampled signal and its least squares fitting,and the slope of fitting line is the fractal dimension.Then,the fractal scale-free range can be determined.The determination of the scale-free interval means the sampled signal can be analyzed with the fractal methods.

    Fig.3 Logarithmic curve of sampled signal

    The fault vibration signal ofwind power system is time-varying and irregular,and within a certain scale,it has fractal characteristic,so the structure characteristic,i.e.fractal dimension,can be extracted from it and used as the eigenvector for fault quantitative identification[4-5].

    4 Grid Fractal and Fractal Dimension Calculation

    The fractal theory developed from non-linear dy-namic and chaos theories is a promising new tool to interpret physical systems with irregular time-domain analysis scale.For given discrete information,there are several kinds of fractal modes,and the grid fractal is a fractal dimension easier to be implemented.It divides the Euclidean spaceRnintoΔgrids as small as possible.When formally isometric separating,i.e.,it uses the cube with side lengthΔandndimension to separate the setXinto digital points set.The number of points in setXin the discrete space can be denoted asNΔ.Then,kcount points in the different grid widths can be obtained.Thus,Δgrid is magnified asKΔgrid,andNKΔrepresents the count point of setXin the discrete space(the distance isKΔ).

    Setxk=log(k),yk=log(NkΔ),k=1,2,…,K,then the slope of straight line structured byMk(xk,yk)is the grid dimension.The actual signal sampling is calculated by using the grid points dimension as the points set of discrete space.

    The grid dimension of vibration signal can be calculated as follows.According to the calculation principle of discrete information grid fractal,the real sampling time isT,the sampling interval is Δt,and the vibration signal isx1,x2,…,xn,wherenis the number of sample points,n=T/Δt,and Δtdepends on signal state.Define the fractal dimension of signal as

    It reflects the signal characteristic.For normal signal and various unusual signals of machinery,the values ofdjshould be different,and it is used as a characteristic variable to judge different signal status.

    For the six typical status of rotor,i.e.normal,imbalance,misaligned,oil film eddy,oil vibration,surging and rotating stall,the sampling is carried out in the same cycleTi(T1=0.05,T2=0.1,T3=0.2,T4=0.4,T5=0.8,T6=0.16 ms).By using formula(4),the dimensiondican be obtained,andTiis used as the characteristic fractal dimension of sampling correspondingly,as shown in Tab.1.

    5 Wavelet Neural Network

    The nonlinear mapping function of wavelet neural network can be used for classifying the faults,even for the concurrent and multiple faults[8-12],and its convergence is obviously faster than the BP neural network.Its structure is similar to the three-layer BP network,including input layer,hidden layer and output layer.The wavelet function or scaling function is used as its activation function,as shown in Fig.4.

    Fig.4 Structure of wavelet neural network

    To improve the performance of wavelet neural network,an accelerating algorithm can be used to increase the convergence speed and avoid the convergence at a local minimum.In this paper,the improved adaptive BP algorithm is used for training the wavelet neural network[8],as shown in Fig.5.

    The whole process of network can be divided into two stages.In the first stage,the calculation is carried out from the input layer.Calculate the output of each layer according to the input sample.Find the output of output layer.This is a forward propagation.In the second stage,the weight has to be corrected.Calculate and revise each layer from the output layer.This is a backward propagation,i.e.the error backward propa-gation algorithm.These two processes run iteratively,till convergence.

    Fig.5 Algorithm flowchart

    The dynamic adjustment method for each adjustable parameters of the learning rate is

    For showing the superiority of wavelet neural network,based on BP algorithm,we structure a traditional neural network,which has the same input,output and hidden nodes as the wavelet network.Select 17 samples to train the wavelet network and BP network.The numbers of input and output nodes are 5,the number of hidden nodes is 10,and system error is 0.01.After the network learning,the time costs of these two networks training is shown in Tab.2.It can be seen that,for the same training error,the training time of wavelet neural network is much shorter than that of the traditional BP network and it has stronger tolerance ability.

    Tab.2 Training time costs of two networks

    6 Fault Diagnosis Method Based on Fractal,Wavelet and Neural Network

    The model of fault diagnosis is shown in Fig.6.The real status of equipment is online monitored by sing sensors and the data of rotor is collected.After data pretreatment,the data is analyzed by using wavelet.If there is something wrong with the equipment,it will have a greater impact on the energy of the signal in each frequency band.Therefore,the signal energy in each frequency band can be taken to structure the characteristic vector to extract the fault characteristic effectively.Firstly,wavelet decomposing the sampled signals are decomposed by using the wavelet packet;reconstruct the wavelet is restructured in each frequency band to obtain the energyEiof signal in each frequency band;choose the most concentrated frequency bands of signal change caused by faults are chosen,and then the selected frequency bands are normalized and compose the original characteristic vector with the calculated fractal dimensions of sampled signals in different sampling cycles,d=[E1,E2,…,Em,D1,D2,…,Dn]T.

    Fig.6 Flowchart of fault Diagnosis

    The improved wavelet neural network can be trained by data;and considered the actual fault output state pattern,the weight is adjusted to establish the wavelet neural network for fault online monitoring.Set the number of input and output nodes as the fault characteristic numberk.The initial number of hidden nodes can be set by using experience formula,and adjusted in the training.During the network training,set the learning step lengthηas 10,the inertia factorαas 0.01,and system error as 0.001.Because the Db6 wavelet of the Doubechies wavelets has the orthogonality,compactness and good property,it can be selected as the wavelet neural network neuron.

    For standard thep-th sample [dp1,dp2,…,dpm][0,0,…1,…,0],when the sample output matrix is identity matrix,the corresponding status or fault is 1,and the non-corresponding status is 0.The sample output is decimal fraction.When recognizing,the distance function is used for judgment.

    7 RotorFaultDiagnosisinWind Power System

    In the online monitoring and fault diagnosis for wind power system,the waveform of vibration signal is colleted by using sensors.When the system is in failure,the vibration waveform shows the different characteristics depending upon the fault type.The proportions of harmonic energy in different frequency bands are also different.Moreover,the severity of system fault determines the complexity of vibration wave.Because the vibration signal shows non-equilibrium and fractal property,the fractal dimension of vibration waveform can be used to represent the characteristic of system fault.There exists some correspondence between the fractal dimension and fault type.Therefore,the calculated fractal dimension can be used to judge the fault type.

    Rotor is a main part of the rotating machinery,and its vibration signal reflects the mechanical fault information in the amplitude,frequency and time domains.In this paper,six typical states,shuch as normal,unbalance,misalignment,oil film eddy,oil film whip,surge and rotating stall,are selected as the input samples of network diagnosis model,and the corresponding fault outputs are defined as the target sample.The energy characteristic vectorT=[E1,E2,E3,E4,E5,E6]can be obtained,as described in Section 1.For all the vibration signal,the fractal dimension can be found out,as stated in Section 4,and the dimension characteristic vectorD=[D1,D2,D3,D4,D5,D6]can be obtained.The dimension characteristic vectorD=[D1,D2,D3,D4,D5,D6]is used as the input vector of wavelet neural network.

    The number of input nodes is set as 6,the number of output nodes equals to the number of input nodes,i.e.6,and the number of hidden nodes can be determined by using the experience formula,initially set as 10 and adjusted in the training.Let learning step length beη=10,inertia factorα=0.01,and select Db6 wavelet as the wavelet neural network neuron.When the system error is required as 0.001,the network can stop learning in 49 steps,as shown in Fig.7.

    Fig.7 Error curve of wavelet neural network of wind power system

    Then,the trained network is used to diagnose the vibration signal in Fig.1.The energy characteristic vector and dimension characteristic vector are input into network,and a vector[0.002,0.978,0.001,0.023,0.006,0.002]outputs.According to the distance function,the fault diagnosis result is misaligned,and it is consistent with the actual situation and shows that this method is valuable.

    8 Conclusions

    There always exists noise in sampled signal;therefore the noise reduction is indispensable.With the de-noising,some information in signal will be removed,thus,it is necessary to choose the correct soft threshold.In the each stage of signal processing,choosing suitable method to minimize the error can reduce the error accumulation.

    The wavelet analysis is especially suitable for processing the non-stationary signal.By transforming the sampled vibration signals,the fault characteristic can be extracted according to the energy distribution in each frequency band after decomposition.By using the fractal dimension as the fault characteristic parameter,the difficulties of traditional methods on fault characteristic extraction and analysis are overcome effectively.

    [1]XIE He-ping,XUE Xiu-qian.Fractal geometry[M].Beijing:Science Press,1997:27 -40.(in Chinese)

    [2]YANG Fu-sheng.Wavelet transform analysis and application[M].Beijing:Science Press,2001:42 - 45.(in Chinese)

    [3]LU Sen-lin,ZHANG Jun,HE Wei-xing,et al.The application of wavelet packet energy feature to the fault diagnosis of automotive transmission bearing[J].Automotive Engineering,2007,(6):537 -539.(in Chinese)

    [4]YANG Jun-yan,ZHANG You-yun,ZHU Yong-sheng.Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J].Mechanical Systems and Signal Processing,2007,21(5):2012 -2024.(in Chinese)

    [5]Mba D,Rao Raj B K N.Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines:bearings,pumps,gearboxes,engines and rotating structures[J].The Shock and Vibration Digest,2006,38(1):3 -16.

    [6]YAN Jing-wen,SHEN Gui-ming,et al.Three-dimensional multispectral image data compression based on karhunen-loève transformation/wavelettransformation and vector quantification with spectral feature coding[J].Acta Optica Sinica,2003,23(10):1163 -1167.

    [7]Castrillon-Candas J E,Amaratunga K.Fast estimation of continuous Karhunen-Loeve eigenfunction using wavelets[J].IEEE Transactions on Signal Processing,2002,50(1):78-86.

    [8]Chih-Hao Chen,Rong-Juin Shyua,Chih-Kao Ma.Rotating machinery diagnosis using wavelet packets-fractal technology and neural networks[J].Journal of Mechanical Science and Technology,2007,21:1058 -1065.

    [9]Abdallah M El-Ramsisi,Hassan A Khalil.Diagnosis system based on wavelet transform,fractal dimension and neural network[J].Journal of Applied Sciences,2007,7:3971-3976.

    [10]WANG Peng,George Vachtsevanos.Fault prognostics using dynamic wavelet neural networks[J].Artificial Intelligence for Engineering Design Analysis and Manufacturing,2001,15:349 -365.

    [11]HUANG Da-rong,SONG Jun,ZHAO Gang.Research on safety performance evaluation method of fault-prediction technology based on misclassification cost[J].Acta Armamentarii,2011,32(10):1292 -1297.(in Chinese)

    [12]ZHU Wen-ji,HE Yi-gang.A neural-network-based fault diagnosis approach for analog circuits by using wavelet transformation and fractal dimension as a preprocessor[J].International Journal of Electrical and Computer Engineering,2010,(5):3 -333.(in Chinese)

    猜你喜歡
    宋軍
    金蟬脫殼戲敵軍
    教訓(xùn)
    金蟬脫殼戲敵軍
    三十六計(jì)之二十一計(jì)金蟬脫殼
    小讀者之友(2021年8期)2021-09-10 18:23:40
    被保姆欺騙而贈(zèng)與對(duì)方房產(chǎn),這份公證過(guò)的遺囑能否撤回?
    婦女生活(2021年6期)2021-07-26 02:06:15
    巧用羊腿來(lái)退兵
    小讀者之友(2020年3期)2020-04-10 11:08:15
    羊腿退兵
    羊腿退兵
    幸福(2019年35期)2019-12-17 15:23:15
    巧用羊腿來(lái)退兵
    宋軍在三川口、平夏城兩場(chǎng)戰(zhàn)役中的防御戰(zhàn)術(shù)之比較
    西夏研究(2017年4期)2017-08-17 08:53:06
    国产免费视频播放在线视频| .国产精品久久| 免费在线观看成人毛片| 一级毛片久久久久久久久女| 亚洲精品成人久久久久久| 十八禁网站网址无遮挡 | 久久鲁丝午夜福利片| 欧美高清性xxxxhd video| 一区二区三区乱码不卡18| 国产男人的电影天堂91| 国产色爽女视频免费观看| 性插视频无遮挡在线免费观看| av一本久久久久| 天堂中文最新版在线下载 | 久久久久久久久久人人人人人人| 精品一区二区三卡| 欧美xxxx性猛交bbbb| videossex国产| 在线观看国产h片| 国产成人精品婷婷| 一区二区三区精品91| 免费av不卡在线播放| 午夜视频国产福利| 99热这里只有精品一区| 青春草国产在线视频| 亚洲四区av| 一个人观看的视频www高清免费观看| 成人特级av手机在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品av视频在线免费观看| 少妇丰满av| 国产成人免费观看mmmm| 又粗又硬又长又爽又黄的视频| 久久99蜜桃精品久久| 亚洲成人av在线免费| 男人添女人高潮全过程视频| 日日啪夜夜爽| 亚洲欧美一区二区三区国产| av卡一久久| 一二三四中文在线观看免费高清| 亚洲国产欧美人成| 精品人妻视频免费看| av天堂中文字幕网| 国产成人精品福利久久| 免费观看在线日韩| 精品国产露脸久久av麻豆| 交换朋友夫妻互换小说| 亚洲av日韩在线播放| .国产精品久久| 免费看光身美女| 亚洲精品一二三| 久久这里有精品视频免费| 国产一区有黄有色的免费视频| 国产综合懂色| 国产在线一区二区三区精| 乱系列少妇在线播放| 亚洲va在线va天堂va国产| 狂野欧美激情性xxxx在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻偷拍中文字幕| 看十八女毛片水多多多| 午夜免费男女啪啪视频观看| 免费观看性生交大片5| 99九九线精品视频在线观看视频| 亚洲精品成人久久久久久| 久久精品人妻少妇| 亚洲av日韩在线播放| 国产精品一区二区在线观看99| eeuss影院久久| 七月丁香在线播放| 久久久久久久午夜电影| 美女视频免费永久观看网站| 少妇人妻久久综合中文| 成人美女网站在线观看视频| 精品少妇久久久久久888优播| 在线看a的网站| 国产日韩欧美亚洲二区| 最后的刺客免费高清国语| 日韩三级伦理在线观看| 人人妻人人爽人人添夜夜欢视频 | 免费电影在线观看免费观看| 日本熟妇午夜| 又爽又黄a免费视频| 欧美成人a在线观看| 黑人高潮一二区| 久久综合国产亚洲精品| 一级毛片我不卡| 精品人妻熟女av久视频| 99热这里只有精品一区| 中文在线观看免费www的网站| 国产综合懂色| 欧美潮喷喷水| 国产毛片a区久久久久| 在线天堂最新版资源| 国产精品一区二区三区四区免费观看| 免费人成在线观看视频色| 国产淫片久久久久久久久| 国产精品人妻久久久影院| 22中文网久久字幕| 免费人成在线观看视频色| 欧美亚洲 丝袜 人妻 在线| 欧美xxxx性猛交bbbb| .国产精品久久| 97在线视频观看| 少妇丰满av| 天天一区二区日本电影三级| 高清毛片免费看| 高清欧美精品videossex| 欧美一区二区亚洲| 亚洲av.av天堂| 亚洲激情五月婷婷啪啪| 白带黄色成豆腐渣| tube8黄色片| 中文字幕亚洲精品专区| 97精品久久久久久久久久精品| 国模一区二区三区四区视频| 欧美国产精品一级二级三级 | 又粗又硬又长又爽又黄的视频| 亚洲精品亚洲一区二区| 欧美激情久久久久久爽电影| 又爽又黄a免费视频| a级毛色黄片| 99久久精品国产国产毛片| 国产成人免费无遮挡视频| 三级国产精品片| 国产免费视频播放在线视频| 中国国产av一级| 亚洲av成人精品一二三区| 男的添女的下面高潮视频| 天天一区二区日本电影三级| 日韩一区二区视频免费看| 国产综合懂色| 美女高潮的动态| 国产精品一区www在线观看| 大香蕉97超碰在线| av国产精品久久久久影院| 国产男人的电影天堂91| 26uuu在线亚洲综合色| 黑人高潮一二区| 久久人人爽人人爽人人片va| 最新中文字幕久久久久| 亚洲精品aⅴ在线观看| 99精国产麻豆久久婷婷| 三级经典国产精品| 亚洲,欧美,日韩| 精品人妻一区二区三区麻豆| 99热全是精品| 少妇人妻精品综合一区二区| 欧美成人一区二区免费高清观看| 99九九线精品视频在线观看视频| 精品一区在线观看国产| 免费电影在线观看免费观看| 菩萨蛮人人尽说江南好唐韦庄| 91aial.com中文字幕在线观看| 国产精品一区二区性色av| 国产精品国产av在线观看| 精品久久久噜噜| 直男gayav资源| 欧美成人精品欧美一级黄| 韩国高清视频一区二区三区| 国产美女午夜福利| 国产亚洲精品久久久com| 久久午夜福利片| 国产av国产精品国产| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久影院| 免费观看a级毛片全部| 午夜福利高清视频| 肉色欧美久久久久久久蜜桃 | 26uuu在线亚洲综合色| 国产精品成人在线| 日产精品乱码卡一卡2卡三| 边亲边吃奶的免费视频| 国内精品美女久久久久久| 九九在线视频观看精品| 日韩在线高清观看一区二区三区| a级一级毛片免费在线观看| 伊人久久国产一区二区| 男人狂女人下面高潮的视频| 国产美女午夜福利| 免费看av在线观看网站| 免费黄网站久久成人精品| 男女那种视频在线观看| 免费人成在线观看视频色| 99久久精品一区二区三区| 日韩在线高清观看一区二区三区| 国产伦在线观看视频一区| 岛国毛片在线播放| 国产免费一级a男人的天堂| 一区二区三区精品91| eeuss影院久久| 亚洲精品色激情综合| 精品久久国产蜜桃| 免费大片18禁| 插阴视频在线观看视频| 人妻少妇偷人精品九色| 国产69精品久久久久777片| 中文字幕免费在线视频6| 高清毛片免费看| 日韩一区二区视频免费看| 国产毛片在线视频| 国产精品一区二区三区四区免费观看| 在线天堂最新版资源| 亚洲欧美一区二区三区黑人 | 欧美人与善性xxx| 亚洲欧美日韩东京热| 岛国毛片在线播放| av在线蜜桃| 日本色播在线视频| 日韩制服骚丝袜av| 色哟哟·www| av国产精品久久久久影院| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩卡通动漫| 高清欧美精品videossex| 99热这里只有是精品在线观看| 成人亚洲精品av一区二区| 尤物成人国产欧美一区二区三区| 三级经典国产精品| 成人毛片a级毛片在线播放| 日本午夜av视频| 日韩大片免费观看网站| 丰满乱子伦码专区| 一级二级三级毛片免费看| 好男人视频免费观看在线| 国产黄色视频一区二区在线观看| 亚洲av在线观看美女高潮| 人妻一区二区av| 久久久亚洲精品成人影院| 亚洲av男天堂| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 精品视频人人做人人爽| 色网站视频免费| 成人黄色视频免费在线看| 又粗又硬又长又爽又黄的视频| 国产免费一区二区三区四区乱码| 熟妇人妻不卡中文字幕| 国产精品国产av在线观看| 永久网站在线| 免费不卡的大黄色大毛片视频在线观看| 综合色丁香网| 在线免费观看不下载黄p国产| av黄色大香蕉| 国产欧美亚洲国产| 自拍偷自拍亚洲精品老妇| 国产成年人精品一区二区| 国产免费一区二区三区四区乱码| 久热久热在线精品观看| 国产午夜精品一二区理论片| 熟女电影av网| 在线观看一区二区三区| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| 久久久精品免费免费高清| 免费观看av网站的网址| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 91狼人影院| 国产高潮美女av| 亚洲一级一片aⅴ在线观看| 欧美成人一区二区免费高清观看| 香蕉精品网在线| 91精品一卡2卡3卡4卡| 九九在线视频观看精品| 久久精品国产自在天天线| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区| 精品久久久久久久人妻蜜臀av| 九九在线视频观看精品| 在线观看三级黄色| 国产成人a∨麻豆精品| 美女视频免费永久观看网站| 赤兔流量卡办理| 亚洲精品自拍成人| 自拍欧美九色日韩亚洲蝌蚪91 | 成年版毛片免费区| 日本午夜av视频| 亚洲av一区综合| 国产精品一二三区在线看| 80岁老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 精品久久国产蜜桃| 亚洲国产精品成人久久小说| 男女无遮挡免费网站观看| 国产精品久久久久久久电影| 美女主播在线视频| 成人漫画全彩无遮挡| 一级黄片播放器| 小蜜桃在线观看免费完整版高清| 99视频精品全部免费 在线| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 又爽又黄无遮挡网站| 日韩成人伦理影院| 91aial.com中文字幕在线观看| 欧美性感艳星| 国产在线一区二区三区精| 免费大片黄手机在线观看| 国产真实伦视频高清在线观看| 亚洲欧美日韩卡通动漫| 中文字幕制服av| 色综合色国产| 亚洲怡红院男人天堂| 久久6这里有精品| 成年av动漫网址| .国产精品久久| 成人国产av品久久久| 久久精品久久精品一区二区三区| 韩国av在线不卡| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 天美传媒精品一区二区| 亚洲精品中文字幕在线视频 | 亚洲自拍偷在线| 国产av国产精品国产| 亚洲精品一区蜜桃| 色网站视频免费| 久久久久久伊人网av| 一本久久精品| 精品一区二区三卡| 成人毛片a级毛片在线播放| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 日韩电影二区| 亚洲真实伦在线观看| 欧美激情在线99| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 国产69精品久久久久777片| 白带黄色成豆腐渣| 亚洲成人中文字幕在线播放| 久久精品久久精品一区二区三区| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 亚洲av福利一区| 好男人在线观看高清免费视频| av专区在线播放| 久久国产乱子免费精品| 丝袜美腿在线中文| 欧美成人午夜免费资源| 在线天堂最新版资源| 日本猛色少妇xxxxx猛交久久| 日韩 亚洲 欧美在线| 在线播放无遮挡| 成人黄色视频免费在线看| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va| 男人和女人高潮做爰伦理| 免费黄频网站在线观看国产| 午夜日本视频在线| 最近中文字幕高清免费大全6| av线在线观看网站| 夫妻性生交免费视频一级片| 国产成人免费观看mmmm| 春色校园在线视频观看| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 午夜免费鲁丝| 亚洲美女搞黄在线观看| 天堂中文最新版在线下载 | 黄色怎么调成土黄色| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 黑人高潮一二区| 国产美女午夜福利| 人人妻人人爽人人添夜夜欢视频 | 亚洲色图综合在线观看| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| 又粗又硬又长又爽又黄的视频| 国产精品99久久99久久久不卡 | 天美传媒精品一区二区| 成年av动漫网址| 天堂中文最新版在线下载 | 韩国高清视频一区二区三区| 黄色一级大片看看| 99久久中文字幕三级久久日本| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 黑人高潮一二区| 日韩一区二区三区影片| 熟女av电影| 18禁裸乳无遮挡动漫免费视频 | 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久| 大片电影免费在线观看免费| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 亚洲国产欧美人成| 国产亚洲一区二区精品| av天堂中文字幕网| 97在线视频观看| 特大巨黑吊av在线直播| 免费观看av网站的网址| 亚洲最大成人av| 亚洲精品国产av蜜桃| 国产精品久久久久久久电影| 欧美日韩视频高清一区二区三区二| 久久精品国产鲁丝片午夜精品| 午夜福利高清视频| av在线播放精品| 欧美高清性xxxxhd video| 欧美精品人与动牲交sv欧美| 青青草视频在线视频观看| 亚洲精品乱码久久久v下载方式| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 国产色婷婷99| 国产精品成人在线| 日本一二三区视频观看| 欧美+日韩+精品| 欧美精品国产亚洲| 成人鲁丝片一二三区免费| av天堂中文字幕网| 久久久精品欧美日韩精品| 日日啪夜夜爽| 国产乱人视频| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 亚洲怡红院男人天堂| 最近的中文字幕免费完整| h日本视频在线播放| 久久久久久国产a免费观看| 欧美极品一区二区三区四区| 亚洲av欧美aⅴ国产| 男男h啪啪无遮挡| 色5月婷婷丁香| 国产成人福利小说| 国产日韩欧美亚洲二区| 国产精品福利在线免费观看| 国内精品宾馆在线| 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 18禁动态无遮挡网站| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| 尾随美女入室| 七月丁香在线播放| 国产精品一二三区在线看| 一级毛片黄色毛片免费观看视频| 色视频在线一区二区三区| 一级毛片aaaaaa免费看小| 视频区图区小说| 欧美丝袜亚洲另类| 在线看a的网站| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 久久久精品94久久精品| 国产大屁股一区二区在线视频| 91在线精品国自产拍蜜月| 一级毛片我不卡| 成年版毛片免费区| 卡戴珊不雅视频在线播放| 国产伦在线观看视频一区| 听说在线观看完整版免费高清| 成年女人在线观看亚洲视频 | 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线 | 2021天堂中文幕一二区在线观| 乱系列少妇在线播放| 在线a可以看的网站| 日本av手机在线免费观看| 国产综合懂色| 久久久久精品久久久久真实原创| 男男h啪啪无遮挡| 久久久久久久亚洲中文字幕| 日韩中字成人| 国产精品嫩草影院av在线观看| 国产男女超爽视频在线观看| 观看美女的网站| 国产成人午夜福利电影在线观看| 亚洲av免费在线观看| 中文字幕免费在线视频6| 久久精品人妻少妇| 久久久色成人| 免费观看在线日韩| 国产精品三级大全| 日韩一区二区视频免费看| 少妇人妻久久综合中文| 尤物成人国产欧美一区二区三区| 少妇人妻 视频| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 色视频www国产| 黄片无遮挡物在线观看| 别揉我奶头 嗯啊视频| 啦啦啦在线观看免费高清www| 免费看不卡的av| 在线观看免费高清a一片| 日本黄大片高清| 色视频www国产| 亚洲综合色惰| 人妻 亚洲 视频| 黄色怎么调成土黄色| 熟女电影av网| 国产视频内射| av免费在线看不卡| 国产在线男女| 嫩草影院入口| 91久久精品电影网| 国产v大片淫在线免费观看| 美女国产视频在线观看| 免费看不卡的av| 六月丁香七月| 亚洲激情五月婷婷啪啪| 高清毛片免费看| 色哟哟·www| 国产精品一区二区三区四区免费观看| 成年人午夜在线观看视频| 精品人妻视频免费看| 老女人水多毛片| 亚洲内射少妇av| 久久久久国产网址| 精品一区二区三区视频在线| 美女主播在线视频| 青春草视频在线免费观看| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 建设人人有责人人尽责人人享有的 | 欧美精品人与动牲交sv欧美| 亚洲国产成人一精品久久久| 一边亲一边摸免费视频| 大香蕉久久网| 亚洲成人久久爱视频| 日韩精品有码人妻一区| 美女被艹到高潮喷水动态| 免费观看无遮挡的男女| 欧美精品一区二区大全| 国产爽快片一区二区三区| 亚洲欧洲日产国产| h日本视频在线播放| 欧美xxxx性猛交bbbb| 亚洲欧美成人综合另类久久久| 国产欧美日韩精品一区二区| 午夜福利视频精品| 亚洲精品自拍成人| 又爽又黄a免费视频| 激情 狠狠 欧美| 国产高清不卡午夜福利| 国产视频内射| 各种免费的搞黄视频| 亚洲在久久综合| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 观看免费一级毛片| 色视频在线一区二区三区| 大话2 男鬼变身卡| 欧美极品一区二区三区四区| 97在线视频观看| 国产男女超爽视频在线观看| 青春草国产在线视频| 18禁裸乳无遮挡动漫免费视频 | 精品久久久精品久久久| 午夜福利在线在线| 丝袜喷水一区| 69人妻影院| 麻豆久久精品国产亚洲av| 在线亚洲精品国产二区图片欧美 | 不卡视频在线观看欧美| 亚洲国产色片| 日韩伦理黄色片| 国产在线男女| 亚洲va在线va天堂va国产| 亚洲自拍偷在线| 日韩视频在线欧美| 91精品伊人久久大香线蕉| 亚洲av国产av综合av卡| 老女人水多毛片| 日本爱情动作片www.在线观看| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 激情五月婷婷亚洲| 三级男女做爰猛烈吃奶摸视频| 国产乱来视频区| 我的女老师完整版在线观看| 亚洲在久久综合| 在线免费十八禁| 久久99热这里只有精品18| 日韩成人伦理影院| 色婷婷久久久亚洲欧美| 国产一区二区在线观看日韩| 亚洲av中文字字幕乱码综合| 亚洲精品影视一区二区三区av| 男的添女的下面高潮视频| 伊人久久国产一区二区| 观看美女的网站| 国产爱豆传媒在线观看| av黄色大香蕉| 日本av手机在线免费观看| 国产永久视频网站| 乱码一卡2卡4卡精品| 校园人妻丝袜中文字幕| 国产乱人视频| 免费黄频网站在线观看国产| 亚洲,一卡二卡三卡| 亚洲精品自拍成人| 日本一本二区三区精品| 一二三四中文在线观看免费高清| 久久久午夜欧美精品| 国产日韩欧美在线精品| 国产精品久久久久久av不卡| 亚洲精品久久久久久婷婷小说| 在线观看一区二区三区激情| 久久韩国三级中文字幕| 2021天堂中文幕一二区在线观| 大又大粗又爽又黄少妇毛片口|